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Executive	Summary	

The Safety Kernel is a part of the KARYON architectural pattern, which is devoted to handling 
the information concerning the integrity of sensor data and concerning the timeliness of some 
system components, with the objective of determining the best possible operational mode in 
which the several cooperative functions will be performed safely. 

This report provides a final description of the Safety Kernel, focusing on its architecture and 
interfaces, and providing details on the solutions that were designed to implement its components. 
Therefore, it extends the preliminary description provided in D4.2, which did not include details 
on the specific solutions. Furthermore, this report also provides the following new contributions. 

First, it provides the results of a study on the requirements for developing the Safety Kernel, by 
applying ISO 26262 concepts, namely by considering the Safety Kernel as a Safety Element out 
of Context (SEooC). Given the performed hazard analysis, it is shown, perhaps not surprisingly, 
that the Safety Kernel must be assigned ASIL D. 

Second, the report provides a performance analysis of the central component of the Safety Kernel, 
the Safety Manager. The question we answer is about the ability of the solution to scale, which 
we do using the particular implementation that was done in the project. Although the main 
objective of the implementation was to demonstrate the concepts developed in KARYON, it is 
good enough to perform the intended analysis and derive relevant conclusions. In particular, we 
concluded that the approach allows for reaction delays in the millisecond scale, and for the 
possibility of defining and easily handling hundreds of safety constraints.  

Finally, given that this is one of the final project reports, we provide a revised overview of the 
fundamental concepts and definitions underlying the KARYON approach. To complement this 
overview, the deliverable includes two papers in which these concepts are elaborated in a more 
detailed way, discussing their implications and relevance for the achievement of safe and cost-
effective cooperative systems, and also explaining why the proposed architectural pattern is 
generic and thus applicable to different application domains. 

 

Editor note: All marked text (in yellow) corresponds to text that has been left unchanged with 
respect to the preliminary version of this deliverable (D4.2 – First report on Safety Kernel 
Definition).  
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1. Introduction	

1.1 Motivation,	Purpose	and	Scope	

KARYON focuses on the predictable and safe coordination of smart vehicles that autonomously 
cooperate and interact in an open and inherently uncertain environment. The fundamental 
challenge that is addressed consists in ensuring functional safety, while achieving at the same 
time high performance levels in a cost-effective manner. By excluding the use of costly 
components and solutions (e.g., specialized sensors and hardware, redundant components or sub-
systems), which could bring increased robustness and shield the operation from uncertainties 
affecting timeliness and quality of sensor data, a trade-off between safety and performance 
emerges. In one hand it is possible to achieve safety by sacrificing performance: the solution will 
be safe as long as all assumptions are satisfied, which requires explicitly assuming the existing 
(possibly high) uncertainties in the design, and thus allocating large safety margins that will 
impact on performance. On the other hand, if an optimistic approach is followed with respect to 
the assumptions about relevant operational variables (e.g., assuming typical values for 
communication jitter or typical deviations due to noise affecting sensor measurements, ignoring 
less probably values that may occur due to uncertainties), the result is that performance will be 
good, but it will not be possible to achieve the same (high) levels of safety integrity. 

KARYON addresses this paradox by proposing a new architectural pattern, which exploits three 
key concepts:  

 First, the architectural pattern exploits the concept of architectural hybridization, 
meaning that it is explicitly assumed that different parts of the system will exhibit 
different properties with respect to timeliness. This is instrumental to allow dealing with 
the temporal uncertainties affecting the system operation. In particular, the system 
components lying within the non-predictable (possibly non-timely) part of the system will 
not need not be proven timely in design time (e.g., components performing complex 
computations, components depending on wireless communication), provided that another 
part of the system always behaves timely (as proven in design time) with the required 
(possibly very high) probability.  

 Second, it exploits the concept of Level of Service (LoS), which consists in defining 
multiple modes of operation and/or system configurations, each with different safety 
integrity requirements, and each implying the execution of functionalities with different 
performance levels. In run-time, and depending on the observed health conditions (e.g., 
sensor data quality and satisfaction of timeliness requirements), it will be possible to 
select one LoS for which requirements are met, and which provides the best possible 
performance. This concept thus provides the needed flexibility to achieve high 
performance without compromise safety. 

 Third, and finally, an abstract sensor model is considered, to allow abstracting the 
various failure modes affecting the quality of sensor data. The abstraction allows a 
separation of concerns between the mechanisms for detecting faults and characterizing 
their effect, and the solutions for managing the system configuration and operation to 
meet the needed safety requirements. In essence, it will be possible to specify safety 
conditions (or safety rules) expressed in terms of a generic data validity metric, rather 
than in terms of specific metrics reflecting the operational conditions of particular sensors 
or particular processing components. Such an abstract sensor model allows abstracting 
faults both in the value and time domains. 

The Safety Kernel, on which we focus in this report, lies in the confluence of the above-mentioned 
concepts and is an integral part of the KARYON architectural pattern, consisting in set of 
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components that are concerned with managing safety-related information. Let us explain why the 
described concepts are important and influence the design of the Safety Kernel. 

From a functional perspective, the set of components that constitute the Safety Kernel are 
responsible to perform monitoring and management tasks, taking into consideration safety rules 
defined in design time and integrity-related information collected in run-time. The role of the 
Safety Kernel is to determine the highest Level of Service in which every functionality will be 
safely performed, providing indications on the needed operation modes and triggering 
configuration changes that will enforce those Levels of Service. Ultimately, the goal of the Safety 
Kernel is thus to ensure that the required functional safety goals are met in run-time. 

Given this goal, the integrity requirements allocated to the Safety Kernel subsystem must be as 
high as the highest integrity requirements allocated to any other part or components of the system. 
Therefore, considering the implications of applying the architectural hybridization concept, it 
must reside in the predictable part of the system, so that it may be proven timely at design time. 
Additionally, it has to be as simple and confined as possible for increased robustness.  

By abstracting sensor faults and characterizing the quality of sensor data through a generic 
validity attribute, the design and the task of the Safety Kernel can be simplified. Safety rules can 
be uniformly expressed in terms of validity requirements, facilitating their internal representation 
and evaluating run-time evaluation. In addition, interfaces for collecting integrity information can 
also be made generic, as this information is almost exclusively expressed in terms of validity. An 
overall benefit is that the Safety Kernel can be defined as a generic subsystem, which is 
completely independent from the application domain and from the concrete functionalities 
provided by the system in which it will be used. 

One fundamental issue in KARYON is that it deals with cooperative systems and hence with the 
execution of functionalities in a cooperative manner. This implies that the Level of Service 
concept is extended to a set of vehicles, that is, all vehicles execute the functionality with the 
same LoS. Furthermore, the implication on the KARYON pattern, and on the Safety Kernel 
definition in particular, is that they must be applicable in a distributed system, with nodes 
interconnected by a possibly unreliable network. The pattern is applicable to a KARYON node, 
and in each KARYON node there will be one Safety Kernel. A cooperative systems is formed by 
several KARYON nodes, which means that in each vehicle there is always at least one Safety 
Kernel. Within a vehicle it is possible to consider either centralised and distributed 
implementations of the Safety Kernel, provided that the needed properties are satisfied. 
Whichever the case, we describe the Safety Kernel as a logically unique subsystem, assuming that 
all distribution aspects will be hidden in the implementation. 

With the aim of clarifying the context in which the Safety Kernel has to operate, and the tasks it 
has to perform, we briefly characterize a KARYON system, according to the KARYON 
architectural pattern. 

A cooperative functionality is realized by a set of cooperating vehicles and in each vehicle the 
functionality is decomposed in a number of functions provided by functional components. Each 
of these functions can, in fact, be used in the provision of several functionalities. For instance, a 
function that calculates the front distance can be used in the provisioning of a Platooning 
functionality and, at the same time, to implement a cooperative warning functionality. Moreover, 
a function can either be implemented: 

a) As a single component that executes the function with a single performance level (a single 
operating mode);  

b) As a single component admitting multiple operation modes, possibly executing different 
selectable algorithms or a single algorithm with different parameterizations, each leading 
to a different performance level;  
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c) By multiple components, executing independently and redundantly, where some 
components provide a better performance level than others due to being implemented 
differently, possibly with resorting to different approaches, algorithms, data inputs, etc.  

Components can be of different categories, depending on their purpose. Sensor components 
interact with the physical environment and produce information to the system. Actuator 
components receive information from the system and interact with the physical environment. 
Computing components are within the system and may receive and produce information from/to 
other components. Finally, communication components are special in the sense that they can 
receive and produce information from/to the system, but can also interact with the physical 
environment. The data produced by components, in particular sensor data (but also other 
computed data), can have an attached data validity attribute, which is provided by the component 
on its output. Each data value can thus have a validity attribute. 

Depending on the specific operation mode (or performance level) of each function (performed by 
a component), or on the components that are selected for realizing some function, the overall 
functionality (which  is achieved by the combined use of several components offering different 
functions) will be performed with different Levels of Service. The overall goal of the Safety 
Kernel is precisely to manage the combination of operation modes or the selected components, 
which is necessary to enforce the required LoS of each functionality and ensure that functional 
safety requirements are satisfied. These requirements have to be established in design time, 
resulting from the safety analysis that has to be performed for each functionality, which dictates 
safety requirements that are allocated to each functional component.  

In the design of the Safety Kernel, several issues need to be considered, of which we highlight 
the following:  

 It will have to deal with timing failures of some functional components, namely complex 
components whose timely behavior cannot be guaranteed (with the desired probability) 
in design time; 

 It will have to deal with the fact that the validity of sensor data may not be guaranteed at 
design time and thus might go beyond some threshold required for the operation within a 
certain LoS; 

 It will determine the best possible (leading to better performance) operation mode and/or 
configuration based on the observed timeliness of complex components and on the 
observed data validity, and considering predefined safety rules associated to each LoS of 
each functionality. 

In this report we describe the solutions that were defined in KARYON to address these issues and 
to achieve a Safety Kernel providing the intended functionality and exhibiting the required 
properties. 

1.2 Relation	to	other	work	

Within KARYON, the work presented in this deliverable is closely related to the general 
architecture defined in WP2 and to the work done in Task 4.1 concerning safety requirements and 
constraints. On the other hand, we report on a concrete implementation of the Safety Kernel, 
which was done and evaluated in the scope of WP4, and applied in the context of WP5. More 
specifically, the Safety Kernel implementation (including software and hardware) was integrated 
with the miniature cars of the Gulliver test-bed, to be used in the automotive demonstration, and 
was also integrated (only the software part) with the avionics simulation. 

Concerning related work available in the literature, we briefly review in the following paragraphs 
the state of the art in related areas and the state of practice in the industrial community.  
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Safety critical systems are typically built considering models in which assumed properties (e.g., 
synchrony, faults) are applied to the whole system and do not change over time. Therefore, these 
models are said to be homogeneous. On the contrary, we advocate that in order achieve 
performance improvements without sacrificing safety it is necessary to consider hybrid 
distributed system models [7]. These allow to better capture the real properties of the 
environments in which vehicles operate and in which functionality is implemented. More than 
that, we believe that architectural hybridization [8] is the natural way to architect systems in 
accordance to the considered hybrid system models. One simple example of a system well 
described by a hybrid system model is a system with a watchdog. The watchdog is used as a 
safeguard to make sure that if something goes wrong in the system then it will be possible to, at 
least, make the system stop in order to prevent some wrong or unsafe behaviour. Clearly, while 
the system is assumed to possibly fail, the watchdog is assumed to always operate correctly. 
Therefore, the watchdog is a subsystem with better properties than the rest of the system, which 
is possible because it is a simple component. 

Mixed criticality [6] is the concept of allowing applications with different levels of criticality to 
coexist on the same system. In this case, one may want that the properties and assumptions that 
hold for one application be different from the ones that hold for another application, which is not 
easily achieved in a system based on a homogeneous model. Mixed criticality models show 
affinity with hybrid system models, in which assumptions and properties may vary on different 
parts of the system or may hold only for a period of time. 

The GENESYS project [9] acknowledged the hybrid nature of systems and developed a 
component-based generic platform for embedded real-time system. However, GENESYS is 
significantly focused on the problems related to composition and component interfaces, whereas 
our interest is on understanding how uncertainty can be characterized and how the performance 
can be managed while making sure that safety requirements are always satisfied. 

The recovery block concept [10] follows a hybrid model, where multiple versions for the same 
function are developed. First it runs the more complex version of the function (with extra features 
and more prone to errors). If an error is detected, then a simpler implementation is executed. 
Simplex [11] follows a similar approach by defining an architecture composed of two system 
controllers:  one simple and proven safe, and one with additional features, but unreliable. It 
tolerates faults in the unreliable controller using a decision module that observes the plant to verify 
if the controller is being able to keep the controlled system within the desired operational 
envelope. If not, it switches the execution to the reliable controller, trading off performance for 
safety. 

The solution is thus designed by assuming that faults are ultimately reflected on some undesired 
external behaviour, which can be reliably observed through the existing sensors. In KARYON we 
look to the problem differently, because we consider that sensor data may not always be valid due 
to faults affecting sensors, or due to uncertainties affecting the timeliness of communication and 
hence the promptness (and validity) of the other sensor data received from remote vehicles. 
Therefore, we define an abstract sensor model that allows the validity of sensor data to be 
estimated, and we consider that some components may do timing failures due to their complexity. 
Given that, the solutions for deciding when to change the control algorithm, or when to perform 
some system reconfiguration, are done in a different way than it is done in Simplex. 

The coexistence of reliable and unreliable components calls for mechanisms for fault 
containment. Virtualization [12] has been widely used as a mechanism to run multiple systems 
within the same physical computing platform, allowing providing different environments in each 
virtual machine and isolation between them. However, most virtualization solutions do not 
provide strict temporal isolation. One approach to achieve mixed criticality without increased 
certification expense and providing a complete fault containment (including temporal isolation) 
between components is to use time and space partitioning (TSP) [1, 2]. TSP is a concept for safety-
critical systems in which applications with different criticality levels and different requirements 
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may coexist in the same execution platform. TSP separates the system’s software components 
into logical containers called partitions, ensuring that faults occurring in one partition do not affect 
other partitions, with respect to both time and space domains. These two properties ensure that 
faults are contained to their domain of occurrence, preventing them from propagating to other 
partitions. 

A prominent example of TSP system design is the adoption of the ARINC 653 [4] specification 
by the civil aviation domain. In the automotive industry, the top-level requirements for an 
AUTOSAR operating system include provisions that correspond, to some extent, to the notions 
of temporal and spatial isolation [8]. The specification of the AUTOSAR operating system, 
however, does not prescribe the use of strict partitioned scheduling as a means to achieve this 
temporal isolation among applications [13]. 

We take advantage of TSP properties to develop a solution that integrates in the same platform 
components of different complexity, some that are proven timely and reliable in design time, and 
other that may behave in uncertain ways. The latter can be used to implement improved functions, 
exploiting the additional information made available through cooperation, without compromising 
safety. The overall approach can still be viewed as sufficiently modular to be adopted by existing 
legacy systems. 

1.3 Structure	of	the	document	

In the next section (Section 2) we provide a revised and summarized description of the main 
concepts and definitions considered in the KARYON project, which have been firstly provided 
in deliverable D2.3. The section is complemented with two papers, provided in Annex A and 
Annex B, which further detail and discuss these concepts and their application. 

Then, Section 3 covers the issues in the design of the Safety Kernel, from tracking and assessing 
the safety requirements to the adaptation of the LoS. An extended version of this section is 
available in the preliminary version of this deliverable (D4.2 – First report on the Safety Kernel 
definition), from which the more relevant parts were taken. 

Section 4 presents the final architecture of the Safety Kernel, with small revisions with respect to 
the description provided in the preliminary version. The section begins by stating the relation 
between the Safety Kernel and the overall KARYON architecture. Then each component of the 
Safety Kernel is presented together with its interfaces. Also, to guarantee the timely information 
flow between the components, the required scheduler support is discussed.  

Section 5 provides an analysis of the requirements on the Safety Kernel development by 
considering the Safety Kernel as a SEooC (Safety Element out of Context), as defined in ISO 
26262.  

Then, Section 6 provides a description of the design and implementation of the several Safety 
Kernel components. In addition, the section also explains how the Safety Kernel can be 
configured. The final part of the section includes a use case to exemplify, in concrete terms, how 
to configure the Safety Kernel for operation in a system that executes two cooperative 
functionalities.  

Section 7 is devoted to performance analysis and provides evaluation results concerning the 
implemented Safety Kernel. The analysis is meant to assess the ability of the Safety Kernel to 
scale, as necessary to deal with complex systems involving many functionalities and safety rules.   
The evaluation, on the other hand, provides concrete performance results that allow assessing the 
possible reach and limitations of the solution when used in real applications. 

Finally, Section 8 concludes the report. 
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2. Fundamental	concepts	and	definitions	
In this section we provide a brief and revised overview of the main concepts, definitions and 
terminology employed in the KARYON project, which are relevant, in particular, to make the 
description of the Safety Kernel clearer. We explain how cooperation and cooperative systems 
are understood in the context of KARYON, we review the concept of data validity and its 
implications on the KARYON architectural pattern and we revisit the concept of Level of Service 
and explain why it is so important in KARYON. Finally, we consider functional safety aspects in 
the scope of cooperative systems and we explain why the proposed architectural pattern is generic 
and thus applicable to various domains. In both cases, we provide two papers as annexes to the 
deliverable, which include detailed discussions.  

2.1 Cooperation		

In KARYON we focus on cooperative systems or vehicles, like automobiles, robots, airplanes or 
Remote Piloted Vehicles (RPVs). We understand by cooperation that systems actively help each 
other in order to achieve some common goal, or to realize some cooperative functionality. 
Cooperation can be used to improve coordination among vehicles. Coordination is more general 
in the sense that it can take place by following pre-established rules dictated beforehand and 
embedded in local control rules. Vehicles can thus coordinate in the traffic by following some 
well-known rules, without the need to explicitly communicate. Cooperation can take place when 
vehicles are able to communicate with each other. This may allow improving the traffic flow, 
reducing energy consumption and satisfying safety requirements more easily.  

Cooperation entails a number of aspects, of which communication is perhaps the most prominent. 

2.1.1 Communication	

Since the ability to communicate is absolutely required to achieve cooperation, the well-known 
uncertainties affecting wireless communication become a serious issue. These uncertainties are 
due to mobility and to interferences affecting the signal quality, and their effects range from 
occasional omissions to the impossibility of transmitting any data for long periods of time.  Given 
that the considered cooperative systems must satisfy (critical) functional safety requirements, it 
is necessary to deal with these uncertainties. 

Our basic approach in this respect is to accept the fact that communication might not always be 
possible, devising solutions allowing vehicles to safely switch from cooperative to non-
cooperative modes of operation when communication is not possible, and switch back to 
cooperative modes when communication is regained. We thus focus on the dynamic aspects 
associated to communication with varying levels of quality, and on ensuring safety requirements 
despite such dynamics. Ensuring safety of autonomous modes of operation falls out of the scope 
of the project. 

We note that communication can also take place between vehicles and entities in fixed positions, 
like road-side units or air traffic management sites. Therefore, cooperation might also take place 
even if not based on direct vehicle to vehicle communication. 

Finally, we also note that some non-conventional forms of communication could be used to 
achieve cooperation. For instance, it would be possible to devise sound-based or light-based 
communication means, which could be used to send and receive information as an alternative to 
using radio-based communication networks. However, in KARYON we are only considering the 
typical communication networks used in vehicular scenarios, such as 802.11, 802.15.4 or ADS-
B. 
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2.1.2 Cooperation	scope	

Cooperation takes place between a set of cooperating entities. Therefore, one fundamental issue 
concerns the definition of the entities that are included in this set. In other words, it is necessary 
to define the scope in which some cooperative functionality is realised. 

Given that the considered entities (cars, airplanes) are mobile, and that it is usually only relevant 
to cooperate with geographically near entities, it is not possible to define a fixed scope that will 
hold for the lifetime of some functionality. On the contrary, the scope is varying over time. And 
the dynamic characteristics of this variation may constitute a limiting factor on the possibility of 
achieving performance improvements through cooperation. 

In KARYON we do not deal with the specific problem of defining the scope of cooperation, that 
is, we do not propose particular solutions for this problem. Instead, we assume that when some 
cooperative function will need to know the cooperation scope, this information will be provided 
by some functional component that will be included as part of the application. 

We note that the problem is not trivial. In fact, it is made difficult by the fact that we are 
considering a distributed system that is essentially asynchronous (in the sense that no strict bounds 
can be defined for the communication latency), subject to failures (because communication may 
not always be reliable), and dynamic, due to the need to consider joining and leaving vehicles. 
Existing solutions for agreement in asynchronous distributed systems can be helpful to address 
the issue of defining a cooperation scope. In the automotive or avionic scenarios it may also be 
possibly to adopt practical solutions like considering that there exists a central entity within the 
infrastructure, which provides scope information to all vehicles that are in a certain vicinity of 
this entity. 

2.2 Data	validity	

The considered autonomous vehicles rely on sensor data for decision-making. This data is 
collected from local sensors, but might also be received from external entities, like other vehicles, 
road-side units or ground control centres. Assuring the quality of this data is hence very important 
for safety reasons. When it is not possible to know, a priori, how good will be the data quality, as 
it happens when the operational environments are not fully controlled, when sensors can be 
affected by a varied set of faults or when information is received through communication links 
with loosely defined timeliness characteristics, it becomes necessary to characterize the varying 
data quality in run-time. 

In KARYON we look at this problem with particular attention. We generalize the problem of 
failures affecting sensor data quality and define an abstract sensor model for that purpose. 
Abstract sensors provide at their interface two values: the actual sensor data and a corresponding 
data validity value, which characterizes the confidence on the provided data. The notion is 
reflected both in the defined KARYON architectural pattern, as well as in the way the safety 
reasoning in developed. The abstract sensor model is introduced and described in detail in 
deliverable D2.5. 

2.3 Level	of	Service	

Achieving the optimal balance between performance improvements and the needed functional 
safety, implies that ability to dynamically change the way in which cooperative functions are 
realised, sacrificing performance when this is the only way for being safe. The concept of Level 
of Service (LoS) is introduced in this context and must be clearly explained. It is also important 
to explain the exact meaning of “performance”. 
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In vehicular cooperative systems, in which vehicles are moving in a physical shared space and 
perform a number of possible manoeuvres, we can intuitively characterize how well these 
manoeuvres are executed in terms of a number of metrics like the speed of execution, the 
smoothness of the movement or the distance between the vehicles. All of these are important 
traffic flow metrics, also allowing to evaluate how well the shared space is used and to reason in 
terms of energy (fuel consumption) costs. Other metrics could as well be considered, like the 
passenger comfort during the execution of the manoeuvres, which may be not so important from 
an economic perspective, but will surely be important for the acceptance of involved technologies. 
All of these are performance metrics, and the objective in KARYON is to allow these metrics to 
be improved.  

It is clear that the control algorithms employed in the execution of the cooperative functions must 
care about performance. At design time, the objective is to define control algorithms that will 
allow vehicles to move faster, closer, smoothly and following straight trajectories. These 
algorithms will also consider the operational contexts, including road conditions, weather 
conditions, traffic rules, etc. The resulting control system is what we call the nominal control 
system, which performs the intended functions. Quite clearly, it is also necessary to ensure that 
the resulting system will perform the functions safely.  

When designing the nominal control system, the designer will thus have to make a number of 
assumptions about the physical processes, context, and so on. And the function may eventually 
be proven safe, provided that the assumptions hold in reality. So far we have just talked about 
assumptions that are strictly related to the application semantics, which are outside the 
KARYON scope. However, there are also assumptions that need to be made concerning the 
control system itself, like fault and synchrony assumptions.  

In KARYON we consider that different operational modes (or performance levels) for each 
component can be defined, each relying on its own set of assumptions. A functionality requires 
possibly several components for being realised, and can thus be performed with different Levels 
of Service (LoS), depending on the combination of components being used, or on their 
operational mode. 

To ensure that a functionality is performed safely, all assumptions must be satisfied. And given 
that a functionality can be provided with different Levels of Service, different sets of assumptions 
have to be satisfied for each LoS. Therefore, depending on the system health (which faults might 
be affecting sensor data, how good is communication, how timely is the execution), which dictates 
which assumptions are satisfied at a given moment, the LoS under which the function can be 
safely provided may be chosen. 

From a safety perspective, it must be shown in design time that the functionality will always be 
safe for all the possible configurations (all LoS) under the assumptions considered in the design 
of components used in each of these configurations. One additional assumption has necessarily 
to be considered, which must be proven to hold in design time with the highest probability. This 
is an assumption on the time that it takes to switch from any higher LoS configuration, to the 
baseline LoS configuration. This time will have to be known and taken into account in the design 
of the control functions, in order to ensure that the functionality will always be safe.  

One final clarification is needed, to explain how the concept of Level of Service is understood in 
a cooperative context. It should be clear, from the previous discussion, that each LoS is associated 
with a certain configuration of the nominal control system. But since in a cooperative scenario 
there are multiple vehicles, then there is a question of what can be expected concerning the 
consistency between all vehicles’ configurations. 

From a performance perspective, it is better if the LoS, whatever it may be, is consistent across 
the cooperating vehicles, and if this consistency can be assumed in the design of the control 
algorithms. In fact, this allows restricting the possible heterogeneity between control decisions, 
because each vehicle is aware of the limits under which the cooperative function is being 



KARYON ‐ FP7‐288195 
D4.5.1 – Safety Kernel Definition (Public version) 
 

 
 

© 2014 KARYON Project    16/95 

 

KARY    N

executed, which are the same limits imposed in each vehicle. On the other hand, if such 
consistency is not ensured, then this will be reflected in the control algorithm, which will have to 
embed larger safety margins to encompass for the potential (and unknown) discrepancy between 
the control decisions taken in each vehicle. This will have a negative impact on the performance 
achievable in each LoS, but it will not be an impediment for achieving cooperative solutions. In 
KARYON we consider that the LoS is consistent among cooperative vehicles. It is thus a 
cooperative LoS. Given that each vehicle as a local perception of the best possible LoS under 
which it can execute a functionality, we refer to this as the local LoS. 

Ensuring a consistent LoS in the execution of the cooperative functionality may seem infeasible, 
because this requires some form of agreement, which may not always be achievable in the 
asynchronous communication environments that we consider. However, it must be noted that 
when communication is not possible between all the vehicles in the cooperation scope, then all 
the vehicles will end up executing in the baseline LoS, thus becoming consistent. On the other 
hand, if communication is possible, then it will also be possible to run some distributed algorithm 
to reach consensus on the cooperative LoS. The only issue is that the switching between two LoS 
may not be done precisely at the same time in all vehicles, and hence an inconsistency interval 
will have to be considered in the design of the control algorithms. 

2.4 Functional	Safety	for	Cooperative	Systems	

One of the application areas where the KARYON architectural pattern shows to be very valuable 
is for cooperative vehicles. In Annex A is investigated the problem of identifying and distributing 
the safety requirements among the vehicles in a road train (platoon). The problem KARYON 
addresses is how to achieve safe systems even though some components cannot be shown to have 
very high safety integrity in worst case. The two generic candidates for this problem are sensors 
and communication links. Depending on how a cooperation is defined, the safety implications on 
the communication will be different. When investigating road trains, this represents a very high 
degree of interdependence between the cooperative parties, which implies that the communication 
link becomes a critical part of the cooperative system. 

In Annex A is shown that it is important to take the entire cooperative system as the scope, instead 
of looking at the vehicles and the communication links separately, when addressing the safety 
problem. This is very much in line with the general KARYON pattern where the concept of Levels 
of Service is well suited for cooperative functions like road trains. Furthermore this cooperative 
perspective is an enabler for identifying the most efficient means for redundancy in the 
communication balancing the redundancy concept in the respective vehicles. In Annex A this is 
further elaborated in a jointly performed effort with the FP7 project SARTRE on road trains. 

 

In Annex A: reprint of the paper “Functional Safety for Cooperative Systems”. Josef Nilsson, Carl 
Bergenhem, Jan Jacobson, Rolf Johansson and Jonny Vinter. In proceedings of SAE International 
Congress 2013. 

2.5 Deployment	of	the	safety	architecture	pattern	

When deploying the KARYON architecture pattern it is important that it can be aligned with 
existing patterns and standards. This is especially true for complex products like in avionics and 
in automotive, where there are complex structures of suppliers and sub-suppliers involved. This 
is why it is important to show that the general KARYON architectural pattern can be instantiated 
according to AUTOSAR (automotive domain) and Integrated Modular Avionics, IMA (avionic 
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domain). In both cases these standards address the issue of getting an integrated rather than a 
federated E/E architecture. This means that the functional application software components can 
be rather freely distributed over the different hardware resources. This is enabled by the 
specification of the interface between application and platform, and the set of services that the 
platform should guarantee. 

When deploying the KARYON pattern to these domains it implies some extensions of the 
specifications of ARINC 653 and of AUTOSAR respectively. The details of these extensions are 
further elaborated in Annex B. Generally speaking, one implication is that for both domains an 
extension is needed specifying a dedicated Safety Manager in the platform. Furthermore, each 
software component signal is required to be extended by some safety integrity level attribute, 
complementing the nominal value. For the implication of the change of level of service, the 
existing means of mode management might be sufficient. The conclusion is that the KARYON 
architectural pattern is well suited to be adopted in the avionics and automotive domains, 
respectively. 

 

In Annex B: reprint of the paper “An Architecture Pattern enabling safety at Lower Cost and 
with  Higher  Performance”.  Rolf  Johansson,  Jörg  Kaiser,  António  Casimiro,  Renato  Librino, 
Kenneth Östberg, José Rufino, and Pedro Costa. In proceeding of Embedded Real Time Software 
and Systems (ERTS2) 2014. 

 

 

 

 

 



KARYON ‐ FP7‐288195 
D4.5.1 – Safety Kernel Definition (Public version) 
 

 
 

© 2014 KARYON Project    18/95 

 

KARY    N

3. Issues	in	the	design	of	the	Safety	Kernel	
There are several key issues that have to be considered in the design of the Safety Kernel. These 
issues are the focus of this section and are organized under three headings that correspond to the 
three stages of the Safety Kernel’s operation: a) gathering safety-related information, b) assessing 
the safety requirements and c) adapting the LoS by adjusting the operation mode of system 
components. 

3.1 Gathering	safety‐related	information	

Safety-related information consists in safety rules that are defined in design time, and in data 
validity and other health information collected in run time. While design time information can be 
statically stored in some safety information database, run time information must be continuously 
and periodically obtained.  Both design time and run time safety information is required to 
determine, for each functionality, the highest LoS in which it can be provided. In this section we 
discuss how this information is gathered. 

3.1.1 Defining	design	time	information	

Safety requirements should be stored as rules in a database accessible to the Safety Kernel. These 
rules refer to validity attributes that need to be gathered in runtime, which are provided at the 
output of some components, as well as to temporal bounds for the execution of some components, 
which must be monitored by the Safety Kernel. The rules must also express, for each LoS of each 
cooperative functionality, how to assess the validity attributes and timeliness of the components 
and adapt the LoS. 

The Safety Kernel, whose role and operation do not depend on the semantics of cooperative 
functionalities, only evaluates the rules using an appropriate rule evaluator engine, which is 
generic and not developed for particular rules or functionalities. For example, if a certain LoS of 
a cooperative functionality requires that variable V1 is lower bounded by some value (e.g., 
V1>0.9), then the Safety Kernel will just have to know the bound, the run time value of V1, and 
the comparison that needs to be done, in order to determine a Boolean value indicating if the LoS 
is sustainable. The specific meaning of the bound, or of the current value of V1, is irrelevant from 
the perspective of the Safety Kernel. 

Nevertheless, the design of the Safety Kernel requires the specification of the rules format and 
their interdependencies. The complexity of the rules can vary from a collection of independent 
checks of data validity to a sequence of interdependent checks of data validity and timeliness 
information.  

These rules should support the following decisions: 

 Determination of a maximum local LoS, at the node, for each cooperative functionality 
that constitutes an upper bound for the effective LoS; 

 Determination of the effective LoS for each cooperative functionality based on the 
maximum local LoS and, possibly, information from other nodes concerning their own 
perspective on the LoS of the cooperative functionality; 

 Determination of the performance level of each functional component at the node. 

The way these rules are generated is outside the scope of the Safety Kernel definition. 
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3.1.2 Collecting	run	time	information	

Run time information refers to data validity and to execution delays, which can be collected from 
functional components. The focus on this specific data stems from the considered fault model, 
which, in the case of KARYON, includes both value faults (affecting sensor data that is needed 
by control algorithms providing the functionality) and timing faults (of some components required 
to provide the functionality). 

The Safety Kernel implements an interface to allow the needed information to be retrieved from, 
or provided by the functional components. This interface will be known to the designer of 
functional components, and must be used when implementing the components, whenever 
necessary for the sake of collecting data validity or timeliness information. The details on this 
interface are provided ahead in the deliverable. 

The collection process is continuous and periodic. That is, the Safety Kernel will be periodically 
collecting information and analysing it, thus allowing some upper bound to be established on the 
time needed to detect a significant change of validity or timeliness.  

3.2 Assessing	the	safety	requirements	

Assessing safety requirements means, in practice, verifying if safety rules established in design 
time are satisfied in run time. This is done using the periodically collected information on validity 
and timeliness, which is fed into an engine that performs the necessary checks, as defined by each 
rule. The definition of this engine is dependent on the syntax of the rules, and is described in 
Section 6.2. 

Based on this assessment, the Safety Kernel is able to determine the LoS for each cooperative 
functionality and, from that, the performance level at which each component must operate. 

3.3 Adapting	the	level	of	service	

In general, the main objective of the Safety Kernel is the adaptation of the LoS of the cooperative 
functionalities under its supervision.  

The actual LoS of a cooperative functionality may not only be dependent on the assessment of 
the local components but may also be determined by information received from other vehicles. 
Due to the cooperative nature of the performed functionality, the Safety Kernel may have to 
consider the maximum LoS that is possible on other vehicles realising the functionality in the 
same scope. This depends on the specific functionality, and on how it is designed. There are 
basically two options: a) the functionality may be designed assuming that all involved vehicles 
are coherently executing the functionality in the same LoS, or b) it may be designed assuming 
that each vehicle executes the functionality in a different LoS (possibly knowing in which LoS 
are the other vehicles executing the functionality). In the first case, the Safety Kernel will locally 
enforce a LoS that takes into account the LoS information received from other vehicles (through 
a cooperative LoS evaluator component, described in Section 3). Otherwise, the locally enforced 
LoS will be the one that is determined upon the assessment of safety requirements. 

For example, in the case of a cooperative functionality where its LoS is based on an agreement 
between the participating nodes, the LoS enforced by the Safety Kernel would be the highest that 
can be maintained across these nodes. Whenever the LoS has to be degraded in a certain node, 
e.g., because this node is experiencing some failures, this change must be communicated to the 
other participating nodes and reflected on their own enforced LoS. Likewise, in the opposite 
situation, in which a certain node is able to operate at a higher LoS, this information is propagated 
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to the other participating nodes and, if they can all perform in this higher LoS, then the locally 
enforced LoS is raised. 

When the locally enforced LoS changes, this implies some sort of reconfiguration of the system 
functions. For this matter, we consider that every functionality has, in general, more than one LoS 
and that there may be several functions involved in the implementation of the functionality. Each 
of these functions can be necessary for the provision of several functionalities, as exemplified in 
Figure 1. In the figure, system function 2 is used in both cooperative functionalities (it could be, 
for instance, a function to determine the front distance, which is used both in Platooning and in 
cooperative lane change functionality). 

 
Cooperative 

Functionality 1 
Cooperative 

Functionality 2 

System Function 1   X   

System Function 2  X  X 

System Function 3  X   

System Function 4    X 

Figure 1: Example of functions being used in the provision of different functionalities. 

Adapting the LoS of a cooperative functionality requires changing the mode of operation of 
specific related system functions, which is in fact a way of changing the performance of these 
functions. Given that a function can be implemented as a single component (with multiple modes 
of operation) or by multiple components (each one executing a different algorithm), changing the 
mode of operation, or the performance, can be done by: 

a) Reconfiguring a single component, or  

b) Selecting one component among the several components that (redundantly) implement 
the function with different performance levels. 

These different options are reflected on the architecture of the Safety Kernel, that is, on the 
mechanisms and components that need to be included in the Safety Kernel.  

The LoS has to be adapted in a timely manner. Consequently, a change in the mode of execution 
of specific system functions has to be guaranteed to happen within certain temporal bounds. 
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4. Architecture	of	the	Safety	Kernel	
This section describes the architecture of the Safety Kernel to manage the LoS of cooperative 
functionalities. The Safety Kernel includes the necessary components to perform the tasks 
identified in Section 3. 

More specifically, the Safety Kernel has to perform the following tasks: 

 For the components that have their outputs monitored, their data validity information 
must be gathered and validated against the safety rules. Possibly, the LoS of cooperative 
functionalities and the performance level of components may change. 

 For the components located above the hybridization line, that is, complex components 
whose timeliness might not be guaranteed at design time, their timeliness is monitored, 
which required observing their execution time, so that the system knows whether the 
defined execution bounds are being fulfilled. 

 For the functions that have multiple components, where each implementation produces 
an output, the Safety Kernel must choose which of the produced outputs will be the 
function output that is forwarded to other functions. 

In the next sections, we begin by reviewing the role of the Safety Kernel within the overall 
KARYON architecture. Then, we present the components of the Safety Kernel and also external 
related components that play an important role in the operation of the Safety Kernel. This includes 
functional support from the Operating System. Next, we describe the interfaces between the 
components of the Safety Kernel and the nominal control system components. Finally, to 
guarantee the timely operation of the Safety Kernel components, the required scheduler support 
is discussed. 

4.1 Relation	with	overall	KARYON	architecture	

According to the defined KARYON architecture, system components are organized in three 
levels, separated by the hybridization line and by the semantics line. The hybridization line 
differentiates components that are proven timely in design time and those that are not (and thus 
might do timing faults in run time). The semantics line differentiates the components that realize 
the functionalities (and thus are developed with awareness of functionality semantics) and the 
components that provide support (and generic) functions. These functions are developed 
independently on the specific functionalities (and thus are unaware of functionality semantics). 
The Safety Kernel is positioned in the lowest level, below both the hybridization and semantic 
lines. This means that the Safety Kernel must be proven to behave correctly and in a timely way 
in design time. Besides that, it means that the Safety Kernel is not aware of the functionality 
semantics, that is, the components included in the Safety Kernel are designed independently from 
the considered cooperative functionalities. 

The functional components of the system are located in the two upper architectural levels, whose 
difference is the timeliness guarantees each one provides. The task of the Safety Kernel is to 
control the components in these levels, ensuring that they operate with the necessary performance 
levels to meet some desired LoS for the different functionalities. The required LoS is also 
determined by the Safety Kernel, and will be the one that is necessary to satisfy the functional 
safety goals.  



KARYON ‐ FP7‐288195 
D4.5.1 – Safety Kernel Definition (Public version) 
 

 
 

© 2014 KARYON Project    22/95 

 

KARY    N

4.2 Safety	Kernel	Components	

To perform its role, the Safety Kernel exchanges information with other components in the 
KARYON architecture. The exchanges with different types of components embody different 
aspects of the Safety Kernel’s operation, like receiving validity data and sending commands for 
controlling the operation mode of functional components. For this reason, we see the Safety 
Kernel as a set of components, with clearly defined and separated concerns, which are combined 
to verify and guarantee the operational conditions for safety. For the Safety Kernel to be relied 
upon for the provision of safety-critical functionalities, its components have to be proven to 
exhibit the necessary reliability and timeliness in design time. This section describes these 
components. 

The Safety Kernel collects the data validity or timeliness information made available by the 
monitored functional components, assesses it and adapts the LoS of cooperative functionalities 
by reconfiguring the functional components according to the predefined rules. The components 
of the Safety Kernel always involved in this control loop are: the Rules Database, the Local LoS 
Evaluator and the Safety Manager. The assessment is done by the Local LoS Evaluator and its 
result is forwarded to the Safety Manager. 

As mentioned before, each function of the nominal control system can be implemented in a single 
or with multiple components. When a function has two different implementations, where each 
one corresponds to a specific performance level, the Safety Kernel will have to assess the 
execution time of the components above the hybridization line, comparing it to some predefined 
execution bound.  An implication of having a component of this type is that the Safety Kernel has 
to guarantee that only the output of one of the components (the selected one, according to the 
LoS) is forwarded to other components. Two other components of the Safety Kernel will also 
cooperate in this process: the Data Component Multiplexer and the Timing Failure Detector. 

Another possibility is for the functions to have different modes of operation. In this case the 
performance level of a function can be adjusted through a reconfiguration of its mode of 
operation. 

Finally, for every cooperative functionality, the Safety Manager uses the result produced by the 
Local LoS Evaluator and, possibly, the result from the Cooperative LoS Evaluator and decides, 
based on rules, if there will be a change in the effective LoS. The Cooperative LoS Evaluator is 
an external component, which will be described in section 4.3.1. 

All these components and their interactions are represented in Figure 2. They will be described in 
the following sections. The figure also shows two example components, where function A has 
two implementations and produces an output to function B. 
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Figure 2: System components overview and interaction. 

4.2.1 Rules	Database	

The rules database contains the safety rules derived in design time, as mentioned before. The 
safety rules include: 

 Rules used to assess, at runtime, under which LoS a specific cooperative functionality 
may operate. The assessment is done by comparing data validity and timeliness 
information with respect to the bounds expressed in the safety rules. 

 Rules used to define the performance levels for every reconfigurable component in 
dependence of the LoS of each cooperative functionality. 

 Rules to guide the Safety Manager’s decision on how to handle the input provided by 
the Cooperative LoS Evaluator, in addition to the input received from the Local LoS 
Evaluator. 

The complexity of the rules can vary from a collection of independent checks of data validity to 
a sequence of interdependent checks of data validity. A solution for expressing these rules within 
the Safety Kernel is provided in Section 6.4. 

4.2.2 Data	Component	Multiplexer	

As explained in Section 4.1, some functions may have components above and below the 
hybridization line. Some, simpler, are proven to behave in a timely way. Others, more complex, 
have unpredictable execution times. More complex implementations produce a better result, with 
higher quality than simple implementations. 

As functions depend on other functions as data sources, the result of a function with multiple 
implementations with a quality that is lower than what is possible will negatively influence other 
functions that consume this data. The result of a function with multiple components should always 
correspond to the output of the component that better satisfies the safety requirements of the LoS 
of all cooperative functionalities that makes use of it. For instance, when a complex 
implementation of a function misses a deadline, the result provided by the function must be the 
output from a simpler component. 
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To avoid any time penalty whenever a complex component misses a deadline, all components 
(complex and simple) of a function may be executing simultaneously. In this case, the output of 
a timely component should be selected as the actual result of the function. And therefore, the 
deadline miss only affects the quality of the result but not the time at which it is produced. 

For example, considering two components that perform the same function, one with a complex, 
but unpredictable, algorithm and the other with a simple, but predictable, algorithm. When these 
two implementations are concurrently in execution, the result produced by the simpler but reliable 
implementation can always be used when the result from the more complex but unreliable 
implementation has not arrived in time. This way, it is possible to ensure that a valid output 
(produced by the simpler implementation) will always exist, and if a better and valid result 
(produced by more complex implementations) exists the later will be used. 

The task of the Data Component Multiplexer is to decide which component’s output will be the 
result of the function, discarding the others. To do so, each multiplexer must access the Rules DB 
and act accordingly. 

These components of the Safety Kernel are crucial to achieve safety in hybrid architectures such 
as KARYON, since they allow masking failures in complex components by using the result of 
another component. 

Functions that use the produced output forwarded by a multiplexer are independent from the 
function before it. 

The Data Component Multiplexer does not apply to functions with a single implementation. 

4.2.3 Timing	Failure	Detector	

The Timing Failure Detector (TFD) component is in charge of detecting failures in the time 
domain in an implementation of a component above the hybridization line, since these are the 
ones whose execution time is unpredictable and not bounded. Hence, this component of the Safety 
Kernel acts as a watchdog, looking up permanently for delays and crashes. 

In order to achieve this, each real-time complex component (above the hybridization line) must 
send a periodic heartbeat to the TFD. When executed, the TFD must, for all the components, 
check whether their heartbeats are still valid, or not, by evaluating their freshness. If a heartbeat 
is too old then this means that a delay or crash has happened. This information about the violation 
of a timing bound will be used in the evaluation of safety rules. 

The Timing Failure Detector does not apply to functions with a single implementation. 

4.2.4 Local	LoS	Evaluator	

The role of the Local LoS Evaluator is to evaluate and assess the data validity and timeliness 
information of the monitored components against the Rules Database. Based on this assessment, 
the Local LoS Evaluator determines the maximum LoS at which each cooperative functionality 
is able to safely perform from the perspective of the local node. This result is then made available 
to the Safety Manager (discussed on section 4.2.5) and to the Cooperative LoS Evaluator 
(discussed on section 4.3.1). 

4.2.5 Safety	Manager	

The Safety Manager supplements the operation of the Local LoS Evaluator by also considering 
the output of the Cooperative LoS Evaluator in the production of the Effective LoS of a 
cooperative functionality. Another job of the Safety Manager is the reconfiguration and selection 
of components whenever the LoS of a cooperative functionality changes. 
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The way to produce the Effective LoS from the inputs received from the Local LoS and the 
Cooperative LoS is not necessarily fixed by the Safety Manager. The idea is that this may be 
configured according to the specific functionality. One possible way of performing this 
configuration is by defining rules for this purpose. These rules will define the function that will 
be performed for determining the effective LoS, that is, we will have that Effective LoS = 
Function(Local LoS, Cooperative LoS). For example, the function could be Min(Local 
LoS, Cooperative LoS), where the Effective LoS would be the lowest value between the two 
inputs of the Safety Manager.  

The reconfiguration of components is necessary to change their performance level in response to 
the LoS change of any cooperative functionality. The information about which components are 
affected by a change in the LoS will come from the Rules DB. The Safety Manager is only 
responsible for propagating these changes to the respective components. 

Therefore, periodically, the Safety Manager makes available the Effective LoS of all cooperative 
functionalities and reconfigures and selects the respective components, whenever required. The 
actual reconfiguration and adjustment mechanisms are executed within each component, and the 
Safety Manager just has the responsibility of triggering these changes on the right components. 

4.3 External	related	components	

This section describes other components, external to the Safety Kernel, that play an important 
role in its operation. These descriptions are deliberately not detailed, rather consisting of the 
knowledge the Safety Kernel has of these components. 

4.3.1 Cooperative	LoS	Evaluator	

For each cooperative functionality, the Cooperative LoS Evaluator has the purpose of exchanging 
data with similar components of other participating nodes and, eventually provide information to 
the Safety Manager about the LoS of other vehicles. 

The operation of the Cooperative LoS Evaluator and the algorithms it uses to exchange 
information with other vehicles is not dealt as part of the Safety Kernel. In fact, it is possible that 
a different Cooperative LoS Evaluator is defined for each cooperative functionality. At each 
periodic execution, this component may influence the output of the Safety Manager. Since this 
component is defined as a complex component (because it is not possible to guarantee in design 
time that communication with other vehicles is always possible), the solutions concerning what it 
does are varied and depend on what may be more desirable for some functionality. 

A possible approach for the operation of the Cooperative LoS Evaluator is to have it producing a 
Cooperative LoS based on an agreement between the participating nodes. This LoS would 
correspond to the lowest Local LoS that is possible at every participating node. In this case, this 
LoS would become the Cooperative LoS for the cooperative functionality at every participating 
node. For this to become effective, the Safety Manager will need to perform the function 
Min(Local LoS, Cooperative LoS), so that the agreed LoS becomes an upper bound for 
the Effective LoS at each node. 

It is also possible to consider that some cooperative functionalities will not require an agreement 
on the LoS, in which case the Cooperative LoS Evaluator does not have to produce any value. In 
that way it will not influence the Effective LoS at each node. In this case, cooperation is achieved 
just by the exchange of other information relevant for the functionality, without relying on any 
assumption about a consistent execution of the functionality (in the same LoS) by the involved 
vehicles. This has necessarily to be reflected in the control algorithms.  
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It can be added that, because the Cooperative LoS Evaluator is application dependent, it could in 
fact have multiple modes of operation. For instance, its behaviour could change in accordance 
with the availability of a communication channel with other nodes. This component may also 
decide to remain silent and not produce any value. This could happen, for instance, when an 
agreement could not be achieved. This can be exploited for setting safety rules involving the 
timeliness or the validity of information provided by the Cooperative LoS Evaluator, forcing the 
LoS to be reduced in case these safety rules are not satisfied. 

Although the Cooperative LoS Evaluator plays an important role towards safety, it cannot be part 
of the Safety Kernel mainly due to the uncertainty in the communication with other nodes. 
Therefore, it is located above the hybridization line, outside the Safety Kernel.  

4.3.2 Operating	System	support	

Communication between functional components and the Safety Kernel is handled by the 
Operating System (OS). As such, the interfaces required by the Safety Kernel (described in 
Section 4.4) shall be provided by the OS, which ensures that the primitives composing these 
interfaces are provided in READ–WRITE pairs constituting an information flow channel with 
one writer and one or more readers. In each pair of READ–WRITE primitives, one of the 
primitives is intended to be used by one of the Safety Kernel components, whereas the other one 
shall be used by a software component external to the Safety Kernel (either a functional 
component or the Cooperative LoS Evaluator). Both types of primitive should be non-blocking, 
atomic, and the OS should provide the following guarantees: 

 READ calls: the value that is read is the one written in the last invocation of the 
corresponding WRITE call; until overwritten, a value can be read multiple times and/or 
by multiple readers; 

 WRITE calls: the provided value overwrites the value previously provided by the same 
writer. 

The way these information flow channels are implemented is abstracted by the OS, and should be 
transparent to the remaining components. It is the responsibility of the OS to ensure, by whichever 
means necessary, that READs are consistent with the latest WRITE. 

The OS must also provide scheduling mechanisms which allow temporal predictability of the 
interaction flows we here describe. Hence, it is assumed that internal communication, i.e. inside 
one vehicle, is based on a real-time network (e.g. CAN) and is, therefore, reliable and time 
bounded. These requirements are described in detail in Section 4.5. 

4.4 Interfaces	

In order to build the components described in Section 4.2, some interfaces must be defined and 
implemented, in order to allow interaction between cooperative functionalities and the Safety 
Kernel. These interfaces are depicted in Figure 3. 
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Figure 3: Interfaces between the Safety Kernel and external related components. 
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in runtime, send this data to the Safety Kernel, so that when it executes it can determine the LoS 
at which the cooperative functionalities are able to perform. 

The primitives used to support these operations are the following: 

 WRITE_VALIDITY_DATA – This primitive, to be used by the applications, allows 
any component to send its validity data to be checked and evaluated by the Safety Kernel; 

 READ_VALIDITY_DATA – This primitive, to be used by the Safety Kernel’s Local 
LoS Evaluator, allows the Local LoS Evaluator to read the data sent by components using 
the previous primitive. 

One example of a workflow is pictured in Figure 4. In this diagram and in those which follow, 
the grey dashed arrows inside the Operating System represent the provided communication 
channel, as described in Section 4.3.2. 

 

Figure 4: Interaction with the Data Validity Interface. 
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the Write Validity Data (1) interface to send its own validity data to the Safety Kernel.  
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Each functional component above the hybridization line must, periodically, and at a predefined 
minimal rate, send a heartbeat informing the Safety Kernel that progress is being made and that 
its planned schedule is being fulfilled. For each of these components, the TFD component must 
be able to check if any heartbeat has been sent, and if it is valid for the defined timeout or if, in 
the other hand, its time validity has expired. 

 WRITE_TFD_DATA – This primitive, to be used by the components, allows them to 
inform the Safety Kernel about their progress. The time elapsed since the last call should 
be reset after this call; 

 READ_TFD_DATA – This primitive, to be used by the Safety Kernel’s Timing Failure 
Detector, allows the TFD component to, for each component, know if the time elapsed 
since the last WRITE_TFD_DATA call is greater or lower than the predefined period. 

One example of a workflow is pictured in Figure 5. 

 

Figure 5: Interaction with the Timing Failure Detector Interface. 

As pictured, each component above the hybridization line uses the Write TFD (1) data interface 
to send a heartbeat to the TFD. Components under the hybridization line (which are proven to be 
timely safe) do not need to be monitored. For each component above the hybridization line, the 
TFD component calls the Read TFD Data (2) interface to check their progress. 
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4.4.3 Cooperative	LoS	Interface	

This interface implements the mechanism used to support the LoS management by the Safety 
Manager and both Local and Cooperative LoS Evaluators. 

It allows the Local LoS evaluator to send the Local Maximum LoS to both the Safety Manager 
and the Cooperative LoS Evaluator and, also for the latter to inform the Safety Manager of the 
Cooperative LoS. 

 WRITE_LOCAL_MAXIMUM_LOS – This primitive is used by the Local LoS 
Evaluator to make available the information of the maximum LoS to the Safety Manager 
and to the Cooperative LoS Evaluator that is possible at the node; 

 READ_LOCAL_MAXIMUM_LOS – This primitive is used by both the Safety 
Manager and the Cooperative LoS Evaluator to read the LoS written using the previous 
primitive; 

 WRITE_COOPERATIVE_LOS – This primitive is used by the Cooperative LoS 
Evaluator to inform the Safety Manager of the Cooperative LoS; 

 READ_COOPERATIVE_LOS – This primitive is used by the Safety Manager to read 
the Cooperative LoS written by the Cooperative LoS Evaluator using the previous 
primitive. Since the Cooperative LoS Evaluator is not proven timely safe, this primitive 
must also allow the Safety Manager to know if the available Cooperative LoS is still valid 
or not (i.e. that the time elapsed since it was written is lower than a predefined 
delta/timeout). 

 

Figure 6: Interaction with the Cooperative LoS Interface. 
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In this interaction, the Local LoS evaluator uses the Write Local Maximum LoS interface (1) to 
inform the Cooperative LoS Evaluator of the local capabilities that are possible to offer by the 
functional components. This is read by both the Cooperative LoS Evaluator with the Read Local 
Maximum LoS (2) interface. 

The Cooperative LoS Evaluator uses the Write Agreed LoS interface (3) to inform the Safety 
Manager of the Cooperative LoS and the latter calls the Read Agreed LoS interface (4) to read 
that LoS value. By using the validity period of this port, the Safety Manager is able to know if 
this value is fresh, and whether it is still valid, or not. 

4.4.4 Data	Component	Multiplexing	Interface	

This interface supports the functioning of the Data Component Multiplexer. It allows the different 
implementations of the same function to make their output values reach the Data Component 
Multiplexer. Other functions that receive the output from that function may then read the 
appropriate value, which has been previously selected by the Data Component Multiplexer. The 
Data Component Multiplexing interface abstracts this whole process, both to the component 
providing output (which we will call Component A for the description of this interface) and to the 
component seeking input (Component B). The Data Component Multiplexing interface consists 
of the following primitives: 

 WRITE_APP_OUTPUT_DATA – This primitive, to be used by the applications, 
allows each implementation of Component A to communicate its output value to 
whichever other functions may need it (including Function B). The value is provided 
along with a data validity measure, and reflects the output of Function A at a given LoS. 

 READ_APP_OUTPUT_DATA – This primitive, to be used the Safety Kernel’s 
Component Data Multiplexer, allows the Component Data Multiplexer to read the values 
provided by different implementations of a Function A - i.e., the outputs of Function A 
for the various LoS. 

 WRITE_APP_INPUT_DATA – This primitive, to be used by the SK’s Component 
Data Multiplexer, allows the Component Data Multiplexer to communicate (to whichever 
functions may need, including Function B) the appropriate value to be considered as the 
output Function A. This value is selected by the Component Data Multiplexer among the 
outputs provided by the implementations of Function A at different LoS. 

 READ_APP_INPUT_DATA – This primitive, to be used by the applications, allows the 
implementation(s) of Function B to read the output provided by Function A when needed. 
In case Function B has multiple implementations (for different LoS), some of them may 
not use the output from Function A at all. Through this primitive, an implementation of 
Function B may read the output from Function A without needing to know about the 
variety of implementations of Function A. 

The workflow for the use of the Data Component Multiplexing interface is pictured in Figure 7. 
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Figure 7: Interaction with the Data Component Multiplexing Interface. 
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Figure 8: Interaction with the Mode Switch Interface. 

This interaction is performed between the Safety Manager and the different functional 
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windows of activity to fulfill the demand expected for each component’s workload. The policy 
according to which each component schedules its workload (the local scheduler of each 
component) must be known, so as to determine the minimum guarantee each component should 
receive. In the event that local scheduling inside a component above the hybridization line diverts, 
in execution time, from what was assumed in design time, the temporal properties of other 
components (which get their designated window of activity in any case) are not affected. 

Naturally, we cannot have a schedule which covers the whole of the system’s lifetime. We can 
instead have a schedule which covers a bounded time interval and is subsequently repeated. The 
length of the schedule, which is consequently its period, must be defined to provide a minimum 
periodic guarantee to each component; each component’s minimum periodic guarantee should be 
such that the timing requirements of the component’s workload are fulfilled. Different 
components may require that their minimum guarantees are specified in relation to different 
periods. For this reason, the length of the schedule should be the least common multiple of these 
periods (or a multiple thereof). 

As mentioned above, the local scheduling policy of each component is, in general, only relevant 
to determine the minimum guarantee each component should receive. However, when dealing 
with components below the hybridization line, the local scheduler’s policy must also be certifiably 
deterministic and predictable; in the case of the Safety Kernel, we need to make sure that, after 
determining the timing requirements of each module, the scheduling policy guarantees them. 
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5. Development	of	Safety	Kernel	in	Terms	of	SEooC	
Since the focus of the KARYON is the Safety Kernel, and this is not an “item” in the sense of 
ISO 26262 because it is only an element of the architecture and is not related to a specific vehicle 
model, the SEooC (Safety Element out of Context) approach has been considered appropriate for 
the analysis. On the other hand, the analysis result achieved by SEooC approach can be extended 
to similar cases easily, which means a higher efficiency of the effort in context of reusability.  

The development of a SEooC involves making assumptions on the prerequisites of the 
corresponding phase in product development and each information on requirements or design 
prerequisites is pre-determined in the status "assumed" [14]. In order to well identify the 
requirements and assumption to develop the Safety Kernel SEooC in a high level of abstraction, 
the Concept Phase of ISO 26262 is applied. The starting point has been the definition of a general 
architecture as an abstract item for cooperative driving functions, including all the fundamental 
elements usually considered to perform such functionality, namely for sensing, data processing, 
decision making, navigation, HMI, security elements, actuator control, etc. The architecture 
considered includes data exchange with infrastructures, assuming the availability of the ITS 
services according to ETSI standards. It has to be pointed out that the architecture so defined does 
not include the LoS concept and the Safety Kernel, which, according to ISO 26262, shall be 
considered as safety measures and therefore shall not be taken into account for the subsequent 
Hazard Analysis and Risk Assessment. 

With the above analysis, although related to few but significant enough, critical situations (e.g. 
intersection crossing, platooning, roundabout merging), the various hazardous events were 
assessed to determine severity, controllability and time exposure. The result was what had been 
expected, i.e. that in the case of input data failure, the hazardous events had to be classified ASIL 
D, and that the safe state had to be driver’s takeover in a short time. This preliminary analysis 
lead to the trivial conclusion that the architecture elements involved in cooperative driving shall 
be realized at ASIL D and that cooperative driving implies frequent switching between automated 
and manual driving. However, it should be noted that a higher ASIL (ASIL E) has been recently 
proposed for cooperative driving functions.  

Of course this conclusion is not satisfactory for reasons of cost and market acceptance. Switching 
from automated driving to manual mode for every failure, requires the driver to stay highly 
conscious such that it makes no sense for him/her concerning the level of comfort. In addition, 
several switching between these modes cause the product seem unreliable to user’s eyes. 
Therefore, it is decided to consider input data failures introducing a scale with various levels, 
according to the intuition that has been the base of KARYON proposal regarding LoS and data 
validity concepts. In fact, the idea of LoS was clicked first in order to manage the operating modes 
according to operational conditions, but in continue it got extended to deal also with failures and 
so the safety mechanism.  

This failure data severity scale enabled the introduction of several safe states, which can be 
associated to different automation and performance levels, and have the capability to limit the 
need of stringent ASIL requirements for all the parts of the architecture. 

According to the above concept, the safety mechanisms to address data failures have been 
identified in the shape of functional architecture elements that include some of the functions that 
are in the focus of KARYON, namely the Safety Manager, LoS Evaluation and Timing Failure 
Detection.  
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This section describes the application of the ISO26262 Concept Phase in which the Safety Kernel 
is derived from a preliminary architecture, so that at the end the initial assumptions together with 
the resulting requirements form the SEooC fundamental assumptions and requirements1.  

5.1 Abstract	Item	Definition	

An item is a system or array of systems that implement a function at vehicle level. Since the 
KARYON architecture is not in context of a particular vehicle, an abstract item is needed to be 
defined. In this part of the approach the aim is to perform the item definition according to ISO 
26262-3 such that the item be abstract from a specific vehicle, but also generalizable to different 
cooperative functions.  

In the item definition the boundary of the item is defined, its interactions with the environment 
and also its dependencies are clarified such that an adequate understanding of the item be available 
to support subsequent activities. For this purpose, the functional view of the abstract item is 
illustrated in Figure 9. In this figure, the abstract item is displayed as a gray block containing 
internal functions which have interactions with external ones.  

 

Figure 9: Abstract Item Preliminary Architecture 

                                                       
1 The presentation of the approach in this section is supported by the diagrams in which the SysML as a semi‐formal language is 
utilized to model and illustrate the corresponding concepts, requirements, elements and their relation.  
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It’s obvious that this preliminary architecture does not contain the Safety Kernel. Table 2 supports 
the definition of the architecture by supplying more detailed information for each function. In 
concern of the Safety Kernel SEooC, these definitions and specifications are considered as 
assumptions external to SEooC. 

Table 2: Primary functions description. The starred* links are bidirectional. 

Function / 
Element  Name 

Type  Input  Output  Task 

Environment 
Modeling 

Internal 
Function 

B*, I, L, 
D, T 

B*, E, K 

All the information collected by onboard 
sensors or received via communication 
with other vehicles and infrastructure are 
centralized here. It provides the necessary 
view to each function.  
The update rate of information coming 
from external resources shall be compliant 
with ITS standards. No assumption for 
ASIL of data is defined. 

Communication 
Internal 
Function 

A*, B*, D, 
F*, G*, 
U*,  

A*, C, F*, 
G*, U* 

It's responsible for setting up the 
communication with other vehicles and 
infrastructure. Atomic commitment is 
required to interact with external systems. 
This feature is necessary for 
synchronization of high level information as 
planned trajectory. Redundant 
communication channels are assumed to 
available for some critical functions to 
assure an adequate ASIL for specific 
information relevant to cooperative 
functionalities. ASIL of this function 
depends on application. 

Driver Intention 
Estimation and 

Trajectory 
Prediction 

Internal 
Function 

E N, O 

Since there could exist some vehicles not 
cooperating, this function estimates those 
vehicles intention and their possible 
trajectory. 

Security 
Management 

Internal 
Function 

A*, F*, 
G* 

A*, F*, 
G* 

Monitors the incoming communication to 
avoid malicious attacks. It could include 
cryptographic for authentication of ITS and 
also other peers. The level of security will 
be variant.   

Collision Risk 
Assessment 

Internal 
Function 

C, D, E, 
N 

Collision 
Risk 
Model 

Using the information collected by 
Environment model and also trajectories 
intended by other vehicles, this function 
assesses the collision risk and provides 
the model to the Decision Making unit. This 
function shall be provided with ASIL D. 

Data Fusion 
Internal 
Function 

B*, L, T B* 

Receives the data from different resources 
and combines them to have high level 
usable reliable information. It considers the 
data quality to achieve a result with 
acceptable confidence. 

Decision 
Making 

Internal 
Function 

    
It's responsible for negotiation with other 
vehicles and design of a trajectory to be 
followed by the vehicle. 

Trajectory 
Planning 

Internal 
Function 

E, P, 
selected 
primitive, 
LoP, 

D 

Regarding the selected primitive and 
considering the environment model, LoP 
and other vehicles trajectory, produces and 
updates a trajectory that shall be followed 
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Collision 
risk 
model, 
Driver 
setting 

by the vehicles. It also negotiates with 
other vehicles to agree on the proposed 
trajectory. This function shall be provided 
with ASIL D. 

Primitives 
Priority 

Manager 

Internal 
Function 

U*, E, P, 
LoP,  
Collision 
risk 
model, 
feasible 
primitives
, Driver 
settings 

U*, 
selected 
primitive 

Among the different feasible primitives, it 
selects the one with highest priority 
regarding the collision risk model, LoP and 
also parameters given in design time or 
settings by the driver. It negotiates with 
other cooperative vehicles to agree on the 
primitives to be executed by each of them. 

LoP Evaluator 
Internal 
Function 

E LoP 

Evaluates all the available information to 
calculate the Level of Performance (LoP). 
LoP includes levels of both Controllability 
of the vehicle and Determinability of 
information. This function shall be provided 
with ASIL D. 

Candidate 
Driving 

Primitive 
Selector 

Internal 
Function 

Q, R, T, 
LoP 

Feasible 
primitives

Since there are specific requirements for 
different driving primitives regarding 
information availability this function is 
required to filter the unfeasible primitives. 

On-board 
diagnostics 

Internal 
Function 

S T 

On-board Diagnostics monitors the on-
board sensors and systems to detect any 
malfunction. It receives the feedbacks 
about systems malfunctions and also data 
quality. 

Knowledge 
Base 

Internal 
Function 

  Q, R 
This function includes the functional 
related rules as algorithms for cooperative 
functions and also their requirements. 

Remote 
Sensing 

Interface 
Function 

A* A* 

It includes the infrastructure and other 
vehicles which share their captured 
information. For those information it's 
assumed that there's a remote sensor 
interacting via wireless communication. 

Peer Planner 
Interface 
Function 

F*, G* F*, G* 
The other vehicles function which is 
responsible for negotiating on driving 
primitives and trajectories to be followed. 

On-board 
Sensing 

Interface 
Function 

  L 
The onboard sensors are installed on the 
vehicle. They would provide data quality 
index as well as data itself. 

Actuators and 
Vehicle 
Systems 

Interface 
Function 

D   

It's responsible for interpreting and 
executing the commands given as 
trajectory. 

HMI 
Interface 
Function 

D, O, K H, I, J 

Human Machine Interface. Interacts driver 
intention and displays the environment 
model captured by the vehicle and 
trajectories to be followed. 

Navigation 
System 

Interface 
Function 

H P 
Using the destination given by the driver 
and his preferences, it plans a path to be 
followed. 

The data exchanged between so-called functional elements, are better described in Table 3.  
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Table 3: Primary functions interactions. The starred* links are bidirectional. 

Link 
Name  Source   Destination  Data / Information 

A* Remote Sensing  Communication 

Local map, vehicles and their 
status, obstacles, road 
conditions, road obstructions, 
etc. 
 
Including event-driven 
communication 

B* 
Environment 
Modeling::DataFusi
on 

 Communication Local Dynamic Map 

C Communication  Collision Risk 
Assessment 

Other Vehicles Planned 
Trajectories 

D 
Decision 
Making::Trajectory 
Planning 

 Environment Model 
 Collision Risk 

Assessment 
 Actuators and 

Vehicle Systems 
 HMI 
 Communication 

Ego Trajectory 

E 
Environment 
Modeling 

 Driver Intention 
Estimation and 
Trajectory 
Prediction 

 Collision risk 
assessment 

 Decision 
Making::Trajectory 
Planning 

 Decision 
Making::LoP 
Evaluator 

 Decision 
Making::Primitives 
Priority Manager 

A view of the environment model 
specific to each 
function/application 

F* Peer Planner  Communication Selected Primitive to negotiate 

G* Peer Planner  Communication Intended Trajectory to negotiate 

H HMI  Navigation System Driver Intended destination 

I HMI  Environment 
Modeling 

Driver settings 
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J HMI 

 Decision 
Making::Trajectory 
Planning 

 Primitives priority 
manager 

 Candidate driving 
primitive selector 

Driver settings 

K 
Environment 
Modeling  HMI Scenario 

L On-board Sensing  Data Fusion 
Quality / Confidence of 
Information 

N 

Driver Intention 
Estimation and 
Trajectory 
Prediction 

 Collision Risk 
Assessment 

Predicted / Estimated Trajectory 
of other vehicles 

O 

Driver Intention 
Estimation and 
Trajectory 
Prediction 

 HMI 
Predicted / Estimated Trajectory 
of other vehicles 

P Navigation System 

 Decision 
Making::Primitives 
Priority Manager 

 Decision 
Making::Trajectory 
Planning 

Path to be followed by the 
vehicle 

Q Knowledge Base 

 Decision 
Making::Candidate 
Driving Primitive 
Selector 

Cooperative driving algorithms 
parameters and requirements 

R Knowledge Base 

 Decision 
Making::Candidate 
Driving Primitive 
Selector 

Automatic driving algorithms 
parameters and requirements 

S On-board Sensing  On-board 
Diagnostics 

Sensors statues 

T 
On-board 
diagnostics 

 Date Fusion 
 Decision 

Making::Candidate 
Driving Primitive 
Selector 

Onboard sensors and systems 
statues 

U* 
Decision 
Making::Primitives 
Priority Manager 

 Communication 
Negotiation for the primitive to 
select 

Selected 
Primitive 

Decision 
Making::Primitives 
Priority Manager 

 Decision 
Making::Trajectory 
Planning 

Selected primitive 

LoP 
Decision 
Making::LoP 
Evaluator 

 Decision 
Making::Candidate 
Driving Primitive 
Selector 

Level of Performance 
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 Decision 
Making::Primitives 
Priority Manager 

 Decision 
Making::Trajectory 
Planner 

According to ISO 26262 Concept Phase, the next step after item definition is the initiation of the 
safety lifecycle. The main objective of this part is to distinguish between a new item development 
and modification of an existing one. However, since the KARYON project concerns a completely 
new development, referring to ISO 26262 part 3-6.4.1.1 there is no much things to do in this part 
and the development shall continue with the Hazard Analysis and Risk Assessment (HARA). 

5.2 Hazard	Analysis	and	Risk	Assessment	

The Hazard Analysis and Risk Assessment (HARA) is a process dedicated to identification of the 
malfunctions resulting in hazards. In order to avoid unreasonable risks, the hazards are classified 
to formulate safety goals for mitigation or prevention of hazardous events. During HARA all of 
such failures shall be identified and mitigated, but here in KARYON the novelty of the work 
relates to communication and cooperation. So only some samples of the failures which affect the 
concerning functionalities are analyzed.  

In Table 4 some scenarios are defined in which specific failures can cause identified hazardous 
events. Applying the requirements of ISO 26262-3 clause 7-HARA, for each case the ASIL is 
determined, and then the safety goal and safe state are defined. 

Table 4: Hazard Analysis and Risk Assessment (HARA). Three of the safety goals are 
numbered for later references. 
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Maneuver/ 
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(E
0
E4
)

A
SI
L 

Safety Goal  Safe State 

h
ig
h
 

Platooning 
V2V Short Range 
Communication 
with Latency 

Tailing vehicle 
loses 
synchronization 
with leading 
vehicles 

S3  C3  E4  D

Increase forehead 
distance and 
inform other 
vehicles to stop 
platooning 
operation (1) 

Switch to 
Adaptive 
Cruise 
Control 

lo
w
  Joining 

Platoon 

V2V Short Range 
Communication 
with Latency 

Joining vehicle 
loses 
synchronization 
with platooning 
vehicles 

S1  C2  E4  A

Keep the current 
lane and stop 
platoon joining 
operation 

Switch to 
Adaptive 
Cruise 
Control 

m
ed
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Joining 
Platoon 
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Communication 
with Latency 

Joining vehicle 
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Cruise 
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platoon joining 
operation 
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Adaptive 
Cruise 
Control 
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h
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h
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Onboard 
Distance Sensors 
Failure (e.g. 
LIDAR) 

The safe 
forehead 
distance is not 
respected 
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Adaptive 
Cruise 
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operation 
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w
  Entering 

Roundabout 

Missing/Interrup
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Communication 

Entering critical 
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S2  C1  E4  A

Decelerate before 
entering to 
roundabout and 
stop automated 
driving (3) 

Switch to 
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ted V2I 
Communication 
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region 
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Decelerate before 
entering to 
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driving 
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Roundabout 
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Interrupted V2I 
Communication 
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S3  C3  E4  D

Decelerate before 
entering to 
roundabout and 
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driving 

Switch to 
Manual Mode 

As it was expected the HARA results proves that the failures of communication while running a 
cooperative function, can lead to an ASIL D hazardous events.  

5.3 Functional	Safety	Concept	

The safety goals and safe states are the root requirements for deriving other functional safety 
requirements. For each safety goal at least one functional safety requirement shall be specified 
which then shall be assigned to item elements.  

In this section the starting point consists 3 of the safety goals resulted from HARA which are 
numbered in Table 4. 

5.3.1 Functional	Requirements	

The safety goal and safety states are the root of functional requirements derivation. At least one 
functional safety requirement shall be specified for each safety goal but it’s a one-to-many 
relationship meaning that a functional safety requirement can be valid for several safety goals.  

In the following figures the requirement diagrams are presented in which the fault tolerant time 
interval, operating mode and other functional safety requirement are derived from safety goals 
and safe states. Then the functional safety requirements are assigned to the preliminary 
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architecture elements and also the new elements that should be contained in the architecture 
satisfying those requirements. 

Figure 10 corresponds to the safety goal “increase forehead distance and inform other vehicles to 
stop platooning operation” that should be followed by transition to Adaptive Cruise Control as 
safe state. 

 

Figure 10: Functional safety requirements specification and assignment for safety goal 1 

Figure 11 corresponds to the safety goal “slight deceleration and inform other vehicles to stop 
platooning operation” that should be followed by transition to Adaptive Cruise Control as safe 
state. 

req [SysML Requirements] KARYON Architecture Req. [Functional Requirement after HARA 1]     

: LoS Evaluator

: Safety Manager

: Timing Failure Detector

Safe State - Degradation Concept
Switch to Adaptive Cruise Control

Warning
The driver shall be informed of proceeding

Stop Platooning

Increase forehead distance

The quality of date shall be 
measured to verify if it satisfies 
the details and precision 
required by platooning.

HMI

Functional View::HMI

Fault Tolerant Time Interval
is 0.1 sec.

Inform other vehicles 
to stop platooning

The malfunction shall be 
detected.

Operating Mode
Fault occurs during platooning 
or joining platoon.

: Candidate Driving
Primitive Selector

The timing failures shall be 
considered. It shall include 
communication malfunction 
too.

Safety Goal
Increase forehead distance and inform other 
vehicles to stop platooning operation
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Existing Functions
Safety Mechanism Functions

Legend
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«satisfy»
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Figure 11: Functional safety requirements specification and assignment for safety goal 2  

Figure 12 corresponds to the safety goal “decelerate before entering to roundabout and stop 
automated driving” that should be followed by transition to manual mode as safe state. 

 

Figure 12: Functional safety requirements specification and assignment for safety goal 3 

req [SysML Requirements] KARYON Architecture Req. [Functional Requirement after HARA 2]     

: LoS Evaluator

: Safety Manager

: Timing Failure
Detector

Safe State - Degradation Concept
Switch to Adaptive Cruise Control

Warning
The driver shall be informed of proceeding

Stop Platooning

Increase forehead 
distance

The quality of date shall be measured 
to verify if it satisfies the details and 
precision required by platooning.

HMI

Functional View::
HMI

Fault Tolerant Time Interval
is 0.1 sec.

Inform other vehicles to stop 
platooning

The malfunction shall be detected.

Operating Mode
Fault occurs during platooning or joining platoon.

: Candidate Driving
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The timing failures shall be considered. It shall 
include onboard sensors corruption too.
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Having an abstract view over mentioned safety goals and requirement diagrams a unique general 
solution is provided as safety mechanism. This solution contains the warning and degradation 
concept and introduces the Level of Service (LoS) as a fundamental concept in KARYON 
approach. 

 

Figure 13: Overall functional safety requirements diagram introducing Safety Kernel 
functions and Level of Service (LoS) concept  

 

req [SysML Requirements] KARYON Architecture Req. [Functional Requirement after HARA General]     

Multiple level of operation/service 
shall be available.

A mechanism is required to 
detect the appropriate level of 
service

A mechanism is required to harmonize 
the level of service among vehicles

: LoS Evaluator

: Safety Manager

: Timing Failure
Detector

The quality of data shall be 
considered.

The timing failures shall be 
considered.
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5.3.2 The	Architecture	Containing	Safety	Mechanism	

Satisfying the functional safety requirements already defined, the safety mechanism is introduced. 
The safety mechanism is an extension to the preliminary architecture provided in abstract item 
definition.  

In KARYON architecture, the functional elements that should take the responsibility of so-called 
requirements satisfaction are: timing failure detection, LoS evaluator and safety manager. These 
functions together compose the Safety Kernel. Figure 14 illustrates how they interact with each 
other and also with existing item elements to satisfy the corresponding functional safety 
requirements. 

 

 

Figure 14: Safety mechanism as an extension to the preliminary architecture 

Table 5 provides a brief description of each Safety Kernel function and also those primary 
functions whom their operation is modified in the new architecture.  
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Table 5: Safety Kernel functions. The starred* functions and I/O are added as part of safety 
mechanism and safety channel. 

Function / 
Element  
Name 

Type  Input  Output  Task 

LoP 
Evaluator 

Internal 
Function 

E, Cooperative 
LoS* 

LoP 

Evaluates all the available 
information to calculate the 
Level of Performance (LoP). 
LoP includes levels of both 
Controllability of the vehicle and 
Determinability of information. 
This function shall be provided 
with ASIL D. 

Candidate 
Driving 
Primitive 
Selector 

Internal 
Function 

Q, R, T, LoP, 
Driver settings, 
Cooperative 
LoS* 

Feasible 
Primitives 

Since there are specific 
requirement for different driving 
primitives regarding information 
availability this function is 
required to filter the unfeasible 
primitives. 

Safety 
Manager* 

Internal 
Safety 
Mechanism 
Function 

Other Vehicles 
Local LoS*, 
Ego Local LoS*

Local LoS*, 
Cooperative 
LoS* 

Collects the local LoS of other 
vehicles and decides on 
acceptable LoS. The output is 
called Cooperative LoS that 
shall be used as basic 
parameter of decision making. 

LoS 
Evaluator* 

Internal 
Safety 
Mechanism 
Function 

Data Quality 
Index (Z)*, Y*, 
X*, T2 

Ego Local 
LoS* 

Evaluates the local Level of 
Service which belongs to the 
vehicle independent of other 
vehicles. It's just based on on-
board systems state and 
sensors data quality. This 
function shall be provided with 
ASIL D. 

Timing 
Failure 
Detector* 

Internal 
Safety 
Mechanism 
Function 

W*, V* Y* 

Monitors data arrival times such 
as data received from 
communication or onboard 
sensors. It detects the failures 
according to rules defined in 
knowledge base. 

The data exchanged between new functional elements are better described in Table 6.  

Table 6: Safety mechanism functions interactions. The starred* links are bidirectional. 

Link Name  Source   Destination  Data / Information 

Cooperative 
LoS 

Safety Manger 
 Candidate driving 

primitive selector 
 LoP evaluator 

The cooperative level of service 
calculated on the basis of local 
level of service of ego and other 
vehicles 

Local LoS* 
Safety Manager 
  Communication 

Local level of service calculated 
on the basis of quality indexes 
applying the Safety Kernel rules 

Data Quality 
Index 

Data Fusion  LoS evaluator 
The indexes that determine how 
much the data forming 
environment model are precise 
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T2 
On-board 
diagnostics  LoS evaluator 

Status of onboard systems and 
sensors 

V 
Safety Kernel 
rules 

 Timing failure 
detector 

Safety Kernel rules in concern of 
timing failures 

W 
All the real time 
functions 

 Timing failure 
detector 

Heartbeat of real time functions 

X 
Safety Kernel 
rules  LoS evaluator 

Safety Kernel rules in concern 
LoS evaluation 

Y 
Timing Failure 
Detector  LoS evaluator Timing failures 

In addition, in order to have a better measurement and demonstration of the effectiveness of the 
Safety Kernel mechanism in mitigating faults, a FTA analysis is performed. FTA is a deductive 
top-down approach in which an undesired state of the system is analysed by combining a series 
of lower level events using Boolean logic. For such purpose: 

 The top event shall be defined which is the violation of a safety goal. 

 The basic events shall be identified which are the source of the failures. They could refer 
to internal faults, or external ones propagated through inputs. 

 The loops in the system shall be eliminated by removing backward flows. 

 The “and” and “or” gates shall be specified which determine how the faults coming from 
different paths should be combined. 

In our case, the top event is defined as “The safe forehead distance is not respected” which is 
violation of an ASIL D safety goal. The basic faults are introduced for both on-board and remote 
sensors in addition to the communication function. The failures caused by other faults in the 
system has been out of scope of this approach and so are not modelled. The analysis is performed 
using a specific ASIL Decomposition tool by 4S Group. This tool demonstrates the fault 
propagation through the system, but also calculates the ASIL for each element in the faults route 
according to ISO262626 ASIL decomposition rules. 

The result of the analysis has not been far from the expectation. The Safety Kernel functions are 
assigned ASIL D. The on-board sensing is assigned ASIL C and it’s in accordance with the fact 
that the vehicle shall be able to operate safely even in the absence of remote information. In 
compliance with this rational, the communication and remote sensors are assigned QM as 
expected. The “Data Fusion” which is a critical function is assigned ASIL C too. 

5.4 Safety	Kernel	SEooC	Concept	

A SEooC is based on assumptions. These assumptions define the purpose, functionality and 
external interfaces of the SEooC. Then while integrating the SEooC in the context of the actual 
item, the validity of those assumptions must be established [21]. The aim so far has been to derive 
Safety Kernel functional aspects based on some primitive assumptions. The following concludes 
those initial assumptions and their results from SEooC point of view. 

Purpose and functionality: A part of the assumptions relate to the functionality of the SEooC. 
As it’s been described the Safety Kernel is purposed as a safety mechanism that mitigates hazards 
caused by the failures corresponding to cooperative driving functions.  
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Functional requirements: To define a SEooC in a high level of abstraction it’s necessary to 
introduce its functional requirements. The functional requirements of the Safety Kernel SEooC 
are in fact those requirements that are identified in Section 5.3.1. Figure 10 to Figure 13 illustrate 
the reasoning process of derivation of those requirements starting from the safety goals. In 
addition three functions (safety manager, LoS evaluator, and timing failure detector) are 
introduced which satisfy those requirements. Figure 14 and Figure 15 display these functions and 
their interactions composing Safety Kernel.
 

Assumptions external to SEooC: Another set of the assumptions required to define a SEooC, 
consists those requirements and assumptions made on the elements which are out of the boundary 
of the SEooC but have interactions with it. In this approach, a major set of the assumptions 
external to Safety Kernel SEooC is given by abstract item definition in Section 5.1. Table 2, Table 
3, Table 5 and Table 6 in addition to Figure 14 provide the description of functional elements 
external to Safety Kernel functions. For a better understanding of the Safety Kernel SEooC scope, 
Figure 15 illustrates its boundary and interfaces with external elements. 

 

Figure 15: Safety Kernel boundary, interactions and interfaces. The description of the labeled 
interactions is available in Table 5 and Table 6. 
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6. Components	design	and	configuration	
This section focusses on the design and the implementation of an engine that performs the run-
time verification of safety requirements expressed in safety rules. This engine is one of the main 
components the Safety Kernel and hence has to perform the verification in a timely and efficient 
way. In addition, we also devised a solution that deals with scalability issues and may thus be 
useful for complex systems, involving a large number of safety rules. This section explains how 
the safety rules can be expressed using the XML notation, how they are parsed and stored in 
memory and what is the algorithm performed by the safety manager engine to evaluate safety 
based on collected safety information. 

6.1 Architecture	overview	

Figure 16 gives an overview of the Safety Kernel components. At start-up the XML Parser reads 
the local configuration, builds a Safety Rules repository and initializes Run-time Safety 
Information (RSI) structures. Therefore, the configuration file includes both safety rules and unit 
definitions. A unit corresponds to a Safety Kernel input (collected data), output (adjustment data 
– typically a component performance level) or locally calculated values (for instance, the 
acceptable LoS for some function).  

 

Figure 16: Safety Kernel components. 

A safety rule is a Boolean expression involving combinations of static values (bounds) and unit 
identifiers. A safety rule is meaningful for a specific LoS of some function. For instance, function 
2 can only be safely executed in LoS 1 when data validity V0 is greater than 50 and data validity 
V1 is greater than 70. This is expressed as: 

1ሻܵܮଶሺܨ → ܸ  50 ∧ ଵܸ  70 

The Input Data Manager receives data inputs from the external (nominal system) components 
and updates the RSI. The Timing Failure Detector (TFD) is responsible for checking if certain 
data inputs have been received from external components within predefined temporal bounds. 
This TFD executes periodically, during each execution round of the Safety Kernel. When the TFD 
detects a timing failure (i.e., some data, which might be just a heartbeat, has not been timely 
produced at the Safety Kernel interface), it stores this information in the RSI unit corresponding 
to the untimely data. The Data Component Multiplexer selects, from two or more data inputs 
(collected from nominal components), one that is forwarded to its output. This is useful, for 
instance, when the nominal function has two components providing the same data (e.g., a front 
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distance value), one providing data with high validity, but taking an uncertain amount of time to 
produce this data, and the other providing data with lower validity, but always in a timely way. 
The Data Component Multiplexer selects, among the two values, the better one, if timely 
produced, and the lower validity one, otherwise. Finally, the Safety Manager is the central 
component as it evaluates at run-time if Safety Rules are satisfied given the RSI data. 

6.2 Design	and	Implementation	

In this section, we start by describing how the Run-time Safety Information and the Safety Rules 
are represented in memory. Then we explain the solution for parsing and storing safety rules. We 
continue by addressing the unit types and the three main Safety Kernel modules: The Timing 
Failure Detector, the Safety Manager and the Data Component Multiplexer. 

6.2.1 Data	Structures	

Data structures must be simple to provide code robustness, but they are designed as well with the 
aim of reducing the computation time during the rule evaluation phase. The Run-time Safety 
Information (RSI) repository is initialized during system bootstrap and is updated at run-time with 
collected safety-related information. The RSI size depends on the number of units (inputs, outputs 
and internal variables) declared in the configuration file. As this size is not changed at run-time, 
we use a single dimension array to store the units. Each unit structure contains several fields, 
including a pointer to related safety rules, which set requirements on this unit, a timeliness status, 
which may be relevant for units with timeliness constraints, a data validity value, a level value 
that may be used to store performance levels or levels of service (this is clarified ahead in the 
text), and some other attributes. 

The safety rules are also built at bootstrap from the configuration file. We note that one possible 
design approach would be to simply hard code the safety rules within the Safety Kernel, thus 
avoiding the need for specifying them in a configuration file, and consequently processing them 
at bootstrap. However, we decided to follow an approach that provides some additional flexibility 
and leads to a generic Safety Kernel implementation. Safety rules can be updated without the need 
for recompiling the code and loading it on the board, which is particularly advantageous during 
the development process. And the Safety Kernel core is totally independent of the specific 
application, which can facilitate verification and validation activities. 

 

Figure 17: Basic safety rule definition. 
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Given that safety rules need to be checked in every execution cycle, within a limited amount of 
time, a fundamental requirement is to devise a solution for storing them in memory, such that 
safety management is efficient and scalable, as well as time bounded. This is particularly 
necessary if dealing with complex systems, in which the number of safety rules will tend to be 
very high. The concrete number will depend on the amount of functionalities that may be 
performed by an autonomous vehicle, on the number of system variables that may have to be 
checked in run-time, and on the number of levels of service considered for each functionality. We 
addressed this requirement by adopting a tree-based data organization, where the root node for 
each safety rule contains the associated LoS and a pointer to the top child node of the tree. This 
tree is created during the XML Parsing. This kind of structure allows for efficient rule parsing at 
run-time, using the algorithm described in Section 6.2.5. 

The tree corresponding to the basic rule example from Section 6.1 is shown in Figure 17 (left). 
Three different types of nodes can be used in the tree: test nodes, unit id nodes and value nodes. 
Test nodes store Boolean operations, like AND, OR, EQUAL, DIFF or SUP, among others. Each 
unit id node contains the index of a unit in the RSI array. According to the way a unit id is defined 
in the configuration, it contains either a data validity value or a level of service/performance level 
value. In the example, the two units (ids 0 and 1) will contain data validity values. Different rule 
trees can refer to a single unit when there are multiple constrains (safety rules) related to a certain 
safety-related variable. When this happens, the several rule trees are level-sorted (from the higher 
to the lower level, as defined in the root node) in a linked list to which the unit will point. Finally, 
value nodes contain constants (bounds) against which the unit values will be checked. 

6.2.2 XML	Parsing	

A lot of XML Parsers are described in the literature and many of them are available for free. These 
parsers usually offer a large range of functionalities and may be not portable to RTEMS 
environments. As a consequence, we chose to develop our light XML Parser with only some basic 
features. Its architecture is similar to the open mark-up parser available in the GLib library 
(Gnome low-level C library) [3]. 

The XML Parser is a simple context-based parser. In each context there are two call-back 
functions that are used for opening and closing mark-up tags. During the parsing, these functions 
are called to initialize the RSI array and the safety rule trees. Context switching is performed 
inside the call-back function according to the parsed XML tag. 

Figure 17 (right) shows an XML configuration file implementing the basic safety rule example 
given in Section 6.1. A configuration file admits four context levels. The configuration context is 
the default one, while the system context is used to initialize global system parameters. For 
instance, in this example the Safety Kernel period is set to 200 ms. The purpose of the unit context 
is to define a new unit. Finally, the rule context is used to build a safety rule tree associated to a 
given unit. Note that besides the output unit with id 2 (which allows to set the performance level 
of some application component), two additional units are created (ids 0 and 1) to store data 
validity values. The output unit will hold the value 1 when the (only) rule evaluates to true, and 0 
otherwise. A node stack allows to internally store the nodes and assemble the tree. 

6.2.3 Unit	inputs	and	outputs	

The Safety Kernel asynchronously receives the unit inputs through an External Component 
Interface (ECI). If an input update is sent by the same component before the previous input is 
processed, the old one is overwritten since the Safety Kernel keeps the more up-to-date 
information from a component. 

The Safety Kernel runs periodically the Time Failure Detector (TFD), the Safety Manager (SM) 
and the Data Component Multiplexer (DCM) to update the output units. When all outputs have 
been processed, the Safety Kernel returns back these values to the ECI. The Safety Kernel can 
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periodically send these output values or not depending on the sending mode configured for each 
output 

The Safety Kernel is not event-triggered but time-triggered. In other words, the Safety Kernel 
manages two independent processes: the first one to receive the inputs and keep the more up-to-
date values and the second one to check the unit timeliness, evaluate the rules and send the 
outputs. So in the worst case scenario, a period of X milliseconds (where X is the Safety Kernel 
period) can elapse between the reception of a validity update and the output of the corresponding 
LoS update. 

The Safety Kernel uses different message types to implement unit inputs and outputs. For 
example, components located above the hybridization line are considered as not proven safe, 
which means their liveliness and timeliness have to be periodically verified by the TFD module. 
These components can send a HEARTBEAT message or the VALIDITY message (containing a 
data validity value) to signal the Safety Kernel that they are still alive. The HEARTBEAT message 
has been introduced due to the fact that some components may not be designed to periodically 
produce a certain output and its corresponding validity information. 

The different message types are depicted in the figure below: 

 

Figure 18: Message types. 

Input messages: 

 CONFIG: Used to remotely send a configuration content to the Safety Kernel at runtime. 
This might be the startup configuration if no local file was previously found. Note that 
this message is intended just for testing purposes. In run-time, a production system will 
never change the Safety Kernel configuration. 

 HEARTBEAT: Used by a component above the hybridization line to signal the Safety 
Kernel that it is alive. 

 VALIDITY: Used by a component above or below the hybridization line to provide a 
data validity value. 
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 LEVEL: Exclusively used by the Cooperative LoS Evaluator, which is above the 
hybridization line, as a means to indicate the agreed cooperative LoS. If this is not done 
within a defined amount of time, the Safety Kernel will consider that there was a failure 
of the Cooperative LoS Evaluator, and will always decide to execute all functionalities in 
the lowest LoS. 

 DATA: Used by a multi-component source to send a data value to the Safety Kernel. 

Output messages: 

 INIT: Used to inform the ECI that the Safety Kernel has just started but no local 
configuration has been found. This message will be periodically sent (every second by 
default) until a remote configuration is received through the CONFIG message. This 
message is only relevant when testing the Safety Kernel. 

 LEVEL: Used to indicate the required performance level of a nominal system component 
situated below the hybridization line. This kind of packet is also used to let the 
Cooperativel LoS Evaluator know about the level of service that was calculated inside 
the Safety Kernel. This LoS is usually broadcast to the other cooperative vehicles 
(through wireless network), and received by the respective Cooperative LoS Evaluators, 
which will decide the cooperative LoS value. 

 DATA: Used to send back to the ECI the data issued by the selected component source. 

 DEBUG: Used by the Safety Kernel to send a runtime warning message to the ECI. This 
message type can be used as well to provide the execution times at the end of the 
benchmarking phase. As the name indicates, the message is only relevant for testing 
purposes. 

6.2.4 Timing	Failure	Detector	

We can distinguish two types of input units according to their position in relation to the 
hybridization line. The ones below the line are enjoy real-time properties and thus always produce 
their output in a timely way. On the other hand, the execution time of components above the 
hybridization line will not necessarily satisfy timing requirements. For each of these latter units, 
the Safety Kernel keeps track of the inter-arrival time between consecutive input values. When 
an input value is received by the kernel, it is automatically time-stamped in the RSI array. A 
timeout will be associated to each of these units, so that a timing failure will be detected when the 
inter-arrival time exceeds this timeout. 

At every Safety Kernel cycle, the RSI array is scanned and for each timeout-defined unit. The 
Timing Failure Detector checks whether the value was received within this timeout. If not, the 
input unit is set to “non-timely”. At the next cycle, the TFD will repeat the same verification and 
may change the input unit status to “timely” if a value was received before the timeout exceeded. 

If the component producing the input value is very unstable, the corresponding unit status may 
continually change over time. In order to avoid this “flapping” phenomena, the Safety Kernel 
introduced two configuration attributes: the minimum number of required successes and the 
maximum number of tolerated failures, which have to be observed in a row, and which necessary 
to respectively declare the input unit as “timely” or “non-timely”. Both attributes can be globally 
defined for all timeout-defined values or separately defined for each unit.     

6.2.5 Safety	Manager	

At run-time the Safety Manager will periodically scan the RSI array. For each unit with at least 
one defined rule (some units, like units 0 and 1 from the example, do not have any associated 
rule), the Safety Manager evaluates them starting with the rule with the highest level. The 
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rationale is to first evaluate if the conditions to perform some function at the highest level of 
service are satisfied. When they are not, then other safety rules will be checked. Therefore, the 
evaluation stops when a rule is satisfied or when the end of the rule list is reached. In the latter 
case, this means that the function has to be executed at the lowest LoS (level 0). At the end of the 
process, the Safety Manager updates the level field of internal units (those holding the acceptable 
LoS for some function) and of output units (holding the performance level of specific 
components). The rule evaluation functions are the following: 

 

 1: function LEVEL(rule_list) 
 2:   for all rule in rule_list do 
 3:     node_list ← rule.root 
 4:     if AND(node_list) then 
 5:       return rule.level 
 6:     end if 
 7:   end for 
 8:   return 0 
 9: end function 
10: 
11: function AND(node_list) 
12:   for all node in node_list do 
13:     if  ¬EVAL(node) then 
14:       return false 
15:     end if 
16:   end for 
17:   return true 
18: end function 
19: 
20: function EVAL(node) 
21:   switch node.type do 
22:     case test 
23:       return TEST(node) 
24:     end case 
25:     case unit 
26:       return UNIT(node) 
27:     end case 

28:     case value 
29:       return true 
30:     end case 
31:   end switch 
32: end function 
33: 
34: function TEST(node) 
35:   node_list ← node.test.childs 
36:   switch node.test.type do 
37:     case sup 
38:       if ¬AND(node_list) then 
39:         return false 
40:       end if 
41:       return COMPARE(node) > 0 
42:     end case 
43:     … 
44:   end switch 
45: end function 
46: 
47: function UNIT(node) 
48:   id ← node.unit.id 
49:   unit ← unit_array[id] 
50:   return unit.status 
51: end function 

 

The level function (line 1) evaluates the unit rule list. The and function is first called, as the top-
level node is always an AND in any rule tree. This first node gathers all conditions required for 
the rule to be satisfied. The eval function (line 20) evaluates a node according to its type. In the 
test function (line 34) we only show the SUP operator (line 37). First we check the timeliness 
status of both operands by recursively calling the and function. If the evaluation returns true, we 
compare the values of both operands (line 41). The unit function (line 47) is called to evaluate a 
unit and returns its timeliness status. 

6.2.6 Data	Multiplexer	Component	

As explained in section 4, the DCM is a special component aimed to select and forward data from 
an input multi-component to an output component. The selected data source is timely received 
and is issued from the component implementation having the greatest performance level.  

Among the available implementations, only one is proven-safe (below the hybridization line) and 
has the weakest performance level. Other implementations with higher performance levels are all 
located above the hybridization line and consequently might suffer failure or latency.  

In the example shown in Figure 19, C1 is a multi-component with three implementations C1, C1’ 
and C1’’. C1 is proven-safe while C1’ and C1’’ may provide data in a non-timely way. Let’s 
assume that the performance level of C1’’ is greater than C1’. Finally C2 is the output component 
where data must be forwarded. 
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Figure 19: Example with multi‐components. 

In a concrete way, C1, C1’, C1’’ and C2 are all defined as units. In the Safety Kernel 
configuration, we define timeouts for C1’ and C1’’ (values can be different) and we configure C2 
as an output unit from a multi-component depending of three sources, C1, C1’ and C1’’ with 
respectively 1, 2 and 3 as performance levels. These performance levels are arbitrary set and only 
aim to assign a priority to each unit source. 

At each Safety Kernel cycle, the Data Component Multiplexer is started and scans the RSI array. 
For each output multi-component unit (i.e. C2 in our example), the DCM logs the timely input 
unit with the greatest performance level. When all units have been scanned, the DCM returns the 
data value from the selected unit to the ECI. Consequently, the Safety Manager forwards at each 
cycle as many data values as output multi-component units. 

In this example, the performance levels of each input units C1, C1’ and C1’’ are static and 
hardcoded in the configuration. Consequently the selection can only change according to the 
timeliness of each input unit. In some situation, it could be interesting to update at runtime the 
level of service of the input units and that way, give priority to a component implementation. The 
Data Component Multiplexer provides such a functionality through the Safety Manager. Based 
on safety rules, the SM can update the performance level of the input unit in the same manner it 
updates any performance level or level of service. When the DCM scans the RSI array, it will use 
this new performance values to make the selection.   

Let’s come back to our example and now imagine that the performance of C1’ depends on a sensor 
validity V1. If this validity is greater than 0.7, we give priority to C1’ rather to C1’’. Otherwise 
C1’’ must be used. The solution consists in building the following rule: 

4ሻܮ1ᇱሺܲܥ → ܸ1  70	
 ݁ݏ݅ݓݎ݄݁ݐ	2ሻܮ1ᇱሺܲܥ

We set the performance level 2 as the default value for C1’’. The performance level of C1’’ is 3 
and remains static over time. So if both data values from C1’ and C1’’ are timely received, the 
data source is selected by the Safety Kernel as follows: 

ܸ1  70 ⇒ ⇒ (3ܮሺܲ′′1ܥ	˄	4ሻܮ1ᇱሺܲܥ 	 ݀݁ݐ݈ܿ݁݁ݏ	ݏ1ᇱ݅ܥ	݉ݎ݂	ܽݐܽܦ
ܸ1  70 ⇒ ⇒ (3ܮሺܲ′′1ܥ	˄	2ሻܮ1ᇱሺܲܥ   ݀݁ݐ݈ܿ݁݁ݏ	ݏ1ᇱᇱ݅ܥ	݉ݎ݂	ܽݐܽܦ
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6.3 Safety	Kernel	deployment	

Two versions of the Safety Kernel are currently available: a non-real-time version for Unix/Linux 
environments and a real-time version built over the RTEMS operating system. On both versions, 
the Safety Kernel communicates with an External Component Interface (ECI) through UDP and 
RAW sockets, on dedicated physical links. 

The ECI is a C library that may be used in the implementation of nominal system components, 
which facilitates the use of native primitives from the Safety Kernel API to send/receive messages 
to/from the Safety Kernel. In the default configuration, there is a single ECI. 

 

Figure 20: Single External Component Interface. 

In some situations, it could be interesting to have several ECIs all connected through sockets with 
the Safety Kernel. Every ECI is able to send any kind of message to the Safety Kernel. The routing 
between the Safety Kernel and the right ECI is statically defined in the configuration. 

 

Figure 21: Multiple External Component Interfaces. 

An ECI is associated with a set of components so that each LoS or DATA message to these 
components will be automatically routed to the associated ECI. Special messages as INIT or 
DEBUG are always routed to the default ECI. 
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6.4 Configuring	the	Safety	Kernel	

The Safety Kernel uses a configuration file in XML format. The file is loaded at kernel start-up. 
The running configuration can be updated in runtime using a special API primitive but, as 
explained, this is only possible for testing purposes. The XML main structure is the following: 

  
 1 <?xml version="1.0"?> 
 2 <config> 
 3   <!-- System definition --> 
 4   <system> 
 5     ... 
 6   </system> 
 7   <!-- Interface definition --> 
 8   <interface id="0"> 
 9     ... 
10   </interface> 
11   <!-- Unit definition --> 
12   <unit id="0"> 
13     ... 
14   </unit> 
15   ...  
16 </config> 

The system and interface sections are both optional and are used respectively to define the main 
system attributes and configure the Safety Kernel interfaces. The unit section allows to set up the 
component units and the safety rules. Each unit has an ID and refers to an input, output or any 
locally calculated value (a local LoS for instance). 

6.4.1 System	definition	

This section contains four optional system attributes: FAILURE, SUCCESS, PERIOD and 
BENCHMARK. SUCCESS and FAILURE correspond, respectively, to the minimum number of 
required successes and the maximum number of tolerated failures in a row, as explained in Section 
6.2.5. As both attributes are declared in the system section, they affect all timeout-defined units.  

 
 1 <system> 
 2   <failure>2</failure> 
 3   <success>3</success> 
 4   <period>200</period> 
 5   <benchmark>100<benchmark> 
 6 </system> 

The PERIOD attribute defines the TFD period and consequently the output sending frequency. 
This period must be large enough to not overload the kernel and make the ECI handle properly 
the kernel outputs. On the other hand, it must be small enough so that the Safety Kernel could 
produce a quick response to any input change (default period is 100ms).  

The BENCHMARK attribute defines the number of benchmarking cycles to be run when a new 
configuration is sent to the Safety Kernel or read locally. If the attribute is 0 (default value), no 
benchmarking is performed. When the benchmarking cycles are achieved, the Safety Kernel runs 
back in a normal way. 
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6.4.2 Benchmarking	

During a benchmarking cycle, the Safety Kernel measures the execution time of the Time Failure 
Detector (TFD), the Safety Manager (SM), which evaluates the rules and, finally, the Data 
Component Multiplexer (DCM), which selects the data source from the multi-components. The 
measures are taken regardless of the unit values (validity or LoS). All rules of all units are 
evaluated since the Safety Manager does not stop the evaluation when a first rule is evaluated to 
true. So the results are a good estimate of the worst case scenario execution.  

The benchmarking returns the mean and deviation values calculated over the cycles. A cycle 
corresponds to the Safety Kernel period. Therefore, a benchmarking phase of 100 cycles will last 
about 10 seconds if the Safety Kernel period is 100ms.  

The mean value is useful if a large configuration file, with a big number of rules, is used and if it 
is necessary to adjust the Safety Kernel period in the most accurate way. For instance, if the mean 
value is about 12ms and the Safety Kernel period is set to 10ms, there is a risk of overloading the 
Safety Kernel and loose synchronization. In this case, the period should be increased to a higher 
value (20ms or 30ms).  

The deviation value provides an idea about how stable is the system. This value should be greater 
if the Safety Kernel is run on a non-real-time operating system. The smallest values should be 
obtained on real-time architectures (RTEMS). 

6.4.3 Interface	definition	

Using this section of the configuration file, IP and port of the default interface (ID 0) can be 
changed or new interfaces (with ID > 0) can be added. These new interfaces are aimed to make 
communication with the Safety Kernel directly with some remote components having their own 
interface. 

 
 1 <!-- Default interface --> 
 2 <interface id="0"> 
 3   <port>6000</port> 
 4 </interface> 
 5 ... 
 6 <!-- New interface --> 
 7 <interface id="1"> 
 8   <ip>192.168.128.200</ip> 
 9   <port>6000</port> 
10 </interface> 

In the configuration above, the default interface has IP 192.168.128.100 and UDP port 6000 while 
a new interface is created with IP 192.168.128.200 and port 6000. 

6.4.4 Unit	definition	

A basic unit definition can contain three different parts, each one optional: first the definition of 
the unit attributes, secondly the safety rules and thirdly the multi-components sources. Each unit 
is associated with an ID. For input and output units, this ID is written into the ID field of the 
packet header exchanged with the ECI. 

 
 1 <unit id="2"> 
 2   <!-- Unit attributes --> 
 3   <mode>update</mode> 
 4   ...  
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 5   <!-- Rule definition --> 
 6   <rule level="4"> 
 7     ... 
 8   </rule> 
 9   ... 
10   <!-- Multi-component definition --> 
11   <from id="4" level="2"/> 
12   ... 
13 </unit> 

Some units correspond to components above the hybridization line. These components are not 
proven safe so they are required to periodically send HEARTBEAT, VALIDITY, LEVEL or DATA 
packets to the Safety Kernel to prove they behave properly.  

HEARTBEAT or VALIDITY messages are used by components above the hybridization line 
sending a data validity value while HEARTBEAT or LEVEL are used in the same way by 
components sending a level of service (e.g. Cooperative LoS Evaluator). Finally, implementations 
of a multi- component function will use DATA packets to send back the selected output. 

6.4.5 Non	proven	safe	components	

For such components, a TIMEOUT attribute defines the maximum period of time in milliseconds 
between the receptions of two consecutive packets. If not specified, the time-out is equal to 0 by 
default and the component is considered as proven safe.  

The configured timeout must be a bit greater than the packet sending period in order to tolerate 
slight transmission delays. For instance, a timeout of 220ms should be set for an external 
component designed to send a heartbeat every 200ms.  

 
 1 <unit id="0"> 
 2   <timeout>400</timeout> 
 3   <failure>2</failure> 
 4   <success>3</success> 
 5 </unit> 

The meaning of FAILURE and SUCCESS is similar to the attributes defined in the system section 
except that they have priority over the previous ones and are only valid for the associated unit. 

6.4.6 Sending	mode	

For every unit which is a proven safe component, the Safety Kernel will update the units’ level 
of service or performance level. By default, this level is not sent to the ECI as an output. The 
MODE attribute allows to force the sending. There are three available modes:  

 REGULAR: The level is periodically sent to the ECI. The sending period is the same as 
the Safety Kernel one.  

 UPDATE: The level is only sent to the ECI if it is different from the previous value.  

 SILENT: No output (default value). The result is only computed for a local usage and 
remain available in another unit rule. 

6.4.7 Rule	definition	

A rule is identified by a unit ID and a level. This level value becomes the unit level of service or 
performance level if the rule is evaluated to true. The rules are evaluated from the highest to the 
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lowest LoS but it is not necessary to declare them in this order, given that rules are automatically 
sorted in memory.  

As soon as a rule is evaluated to true, the unit is set to the corresponding level and the next rules 
with lower levels are not evaluated. If neither of the rules is true, the unit level is set to 0. A rule 
contains an evaluation tree with four different node types: TEST, VALIDITY, LEVEL and VALUE.  

 TEST node: This node runs a Boolean test between different sub-node operands. Each 
operand might be a test node or a terminal node. Below the different test operations:  

o AND: All sub-nodes must be evaluated to true. This operator is used as default 
one between the first-level nodes.  

o OR: At least one sub-node must be evaluated to true.  

o SUP: True if the first operand is greater than the second one.  

o SUPE: True if the first operand is greater or equal to the second one.  

o INF: True if the first operand is lower than the second one.  

o INFE: True if the first operand is lower of equal to the second one.  

o EQUAL: True if the first operand is equal to the second one.  

o DIFF: True if the first operand is different from the second one.  

 VALIDITY node: The evaluation of this node returns the latest data validity timely 
received by this unit through the VALIDITY packet.  

 LEVEL node: The evaluation of this node returns the current level of the unit. This value 
comes from three different sources:  

o The latest level of service timely received by this unit through the LEVEL packet.  

o The latest rule evaluated to true for this unit. In this case, the level can be either 
a level of service or a performance level.  

o The level of service of the latest selected output from a multi-component 
function.  

 VALUE node: Evaluation returns the static value of the node.  

To illustrate the rule creation, we show below a basic LoS rule definition for a functionality. The 
level of service of the functionality is 1 if the validity of the component 0 is greater than 50. 
Otherwise the level of service is 0 (default value). 

 
 1 <unit id="1"> 
 2   <rule level="1"> 
 3     <test type="sup"> 
 4       <validity id="0"\> 
 5       <value>50</value> 
 6     </test>  
 7   </rule> 
 8 </unit> 

6.4.8 Multi‐component	definition	

A multi-component definition is a list of component sources introduced by the FROM attribute. 
Each source has an associated performance level and is supposed to periodically send to the Safety 
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Kernel a data input. Among all sources which sent timely these data, the Safety Kernel will select 
the one with the highest PL and will send it back to the ECI.  

At least one source must be timely received by the Safety Kernel otherwise a warning message 
will be sent to the ECI saying that none of the sources is timely. 

 
 1 <system> 
 2   <period>200</period> 
 3 </system> 
 4 <unit id="2"> 
 5   <from id="3" level="0"/> 
 6   <from id="4" level="1"/> 
 7   <mode>regular</mode> 
 8 </unit> 
 9 <unit id="4"> 
10   <timeout>200</timeout> 
11 </unit> 

In the above example, the multi-component function is composed by two sources: component 3 
with performance level 0 and component 4 with performance level 1. Component 4 is not proven 
safe and must send its result with a maximum period of 200ms. The Safety Kernel will forward 
the selected data to the ECI (ID 2) every 200ms (Safety Kernel period).  

Every 200ms, the PL of component 2 will be updated with the PL of the selected source (0 or 1). 
As the REGULAR mode is enabled for component 2, this PL will be periodically sent to the ECI 
(ID 2).  

There is a special case in which both safety rules and multi-component sources are defined in a 
unit. The rules have always priority to update the unit level, which means the selected data will 
be periodically sent to the ECI but the component PL will not be updated with the source PL. 

6.4.9 Interface	attribute	

In the unit section, the interface attribute defines the remote interface to be used by some units to 
send their LoS updates or selected data. 

 
 1 <unit id="3"> 
 2   <interface>2</interface> 
 3   ... 

 4 </unit> 

Even if all units are configured to communicate with a new interface with ID > 0, INIT and 
DEBUG messages will be still sent to the default interface (ID 0). So creating the default interface 
within the ECI code is not mandatory but in this case INIT and DEBUG messages might not be 
handled properly.  

Moreover the interface attribute is only used to define the output interface for an unit but this 
latter unit can receive any message (CONFIG, HEARTBEAT, VALIDITY, LEVEL or DATA) from 
any interface (default or not). 
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6.5 Use	case	example	

 

Figure 22: Example functions. 

We consider an application in which two cooperative functions are implemented. These functions 
use two sensors, S1 and S2, and five functional components, from C1 to C5. Both sensors provide 
a data validity value associated to the sensor data they produce, which is sent to the Safety Kernel 
(V1 and V2). C4 is a multi-component with two implementations, C4’ and C4”, corresponding, 
respectively, to performance levels PL1 and PL0. 

According to the execution timeliness of C4’, called	ܧ ܶସିଵ, the Data Component Multiplexer 
will forward the selected value from C4 to C5. Finally, C1 is a component below the hybridization 
line able to execute with three different performance levels (from PL2 to PL0). We also consider 
that the safety rules for both functions are the following (the bounds have to be defined at design-
time, and it must be proven that the functions will be safely performed in each LoS when the 
safety rules are met): 

3ሻܵܮሺܨܥ → ܸ1  80 ∧ ܧ ܶସ_ଵ ൏ 3ሻܵܮሺܨܥ ସܦ → ܸ1  80 ∧ ܸ2  70 
2ሻܵܮሺܨܥ → ܸ1  60 ∧ ܧ ܶସ_ଵ ൏ 2ሻܵܮሺܨܥ ସܦ → ܸ1  80 
1ሻܵܮሺܨܥ → ܸ1  1ሻܵܮሺܨܥ 60 → ܸ1  60 
0ሻܵܮሺܨܥ ݁ݏ݅ݓݎ݄݁ݐ	0ሻܵܮሺܨܥ ݁ݏ݅ݓݎ݄݁ݐ

 

Table 7 shows the performance levels of C1 and C4 in dependence of the LoS of both functions. 
All invalid combinations have been removed.  

Table 7: Performance levels for each combination of LoS. 

CFA  CFB C1 C4 
 LoS3 LoS3 PL2 PL1 
LoS1 LoS3 PL2 PL0 
LoS3 LoS2 PL1 PL1 
LoS2 LoS1 PL1 PL1 
LoS1 LoS1 PL1 PL0 
LoS0 LoS0 PL0 PL0 

 

Given the information provided in Table 7, it is possible to define a set of expressions that can be 
used to calculate these performance levels. The expressions are the following: 

2ሻܮ1ሺܲܥ → ܵܮ_ܨܥ ൌ 3 
1ሻܮ1ሺܲܥ → ܵܮ_ܨܥ  0
0ሻܮ1ሺܲܥ ݁ݏ݅ݓݎ݄݁ݐ
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Given all the above expressions, required to determine the feasible LoS for each function and the 
corresponding component performance levels, it is possible to create an XML configuration file. 
An identifier must be first assigned to each unit (e.g., ID0 for S1, ID1 for S2, ...), and this allows 
the proper references to be made in the configuration file. Note that there are no IDs for C2 ad C3 
as they are not involved in any expressions. A subset of the resulting configuration file is 
presented below. 

 
 1 <?xml version="1.0"?> 
 2 <config> 
 3   <!-- C1 component --> 
 4   <unit id="2"> 
 5     <mode>update</mode> 
 6     <rule level="2"> 
 7       <test type="equal"> 
 8         <level id="7"/> 
 9         <value>3</value> 
10       </test> 
11     </rule> 
12     <rule level="1"> 
13       <test type="sup"> 
14         <level id="7"/> 
15         <value>0</value> 
16       </test> 
17     </rule> 
18   </unit> 
19   ... 
20   <!-- Function A --> 
21   <unit id="6"> 
22     <rule level="3"> 
23       <test type="sup"> 
24         <validity id="0"/> 
25         <value>80</value> 
26       </test> 
27       <test type="equal"> 
28         <level id="5"/> 
29         <value>1</value> 
30       </test> 
31     </rule> 
32     <rule level="2"> 
33       <test type="sup"> 
34         <validity id="0"/> 
35         <value>60</value> 
36       </test> 
37       <test type="equal"> 
38         <level id="5"/> 
39         <value>1</value> 

40       </test> 
41     </rule> 
42     <rule level="1"> 
43       <test type="sup"> 
44         <validity id="0"/> 
45         <value>60</value> 
46       </test> 
47     </rule> 
48   </unit> 
49   <!-- Function B --> 
50   <unit id="7"> 
51     <rule level="3"> 
52       <test type="sup"> 
53         <validity id="0"/> 
54         <value>80</value> 
55       </test> 
56       <test type="sup"> 
57         <validity id="1"/> 
58         <value>70</value> 
59       </test> 
60     </rule> 
61     <rule level="2"> 
62       <test type="sup"> 
63         <validity id="0"/> 
64         <value>80</value> 
65       </test> 
66     </rule> 
67     <rule level="1"> 
68       <test type="sup"> 
69         <validity id="0"/> 
70         <value>60</value> 
71       </test> 
72     </rule> 
73   </unit> 
74 </config> 
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7. Performance	analysis	and	evaluation	
The objective of the performance analysis provided in this section is to determine the ability of 
the Safety Kernel to scale with the system dimension. In particular, we will study how the number 
of inputs/outputs and the complexity of the safety rules could affect the execution time of the 
different modules of the Safety Kernel. To achieve this goal, we follow two approaches: a formal 
analysis and a benchmarking test. The former allows deriving a complexity measure for the Safety 
Kernel execution time in the worst case scenario where all rules are evaluated. The latter is aimed 
at obtaining execution time measures from a running Safety Kernel. 

7.1 Formal	analysis	

We define	 ௌܶ as the maximum execution time of the Safety Kernel process. This process is 
powered by two threads: a Listener Thread is activated for every incoming packet and a Periodic 
Thread runs once at every kernel period. Given that ܶ ௦௧	௧ௗ  and ܶ ௗ	௧ௗ represent, 
respectively, the maximum execution time assumed for the listener thread and the periodic thread, 
and that ܰ௧௦ represents the total number of input messages received during one execution 
period, ௌܶ will be given by: 

ௌܶ ൌ ܰ௧௦ ൈ ܶ௦௧	௧ௗ  ܶௗ	௧ௗ 

There are different types of incoming packets: heartbeat, data validity, multicomponent data or 
cooperative level of service. Therefore, the worst case execution time for the listener thread 
corresponds to the longest processing time, out of the processing times for each message type.  
We also take into consideration the time necessary to read a packet from the network, represented 
by ܶ௧௪	ௗ. ܶ௦௧	௧ௗ can thus be expressed as: 

ܶ௦௧	௧ௗ ൌ ܶ௧௪	ௗ

 ሺݔܽ݉ ܶ௧௧	ௗ, ௩ܶௗ௧௬	ௗ, ௗܶ௧	ௗ, ܶௌ	ௗሻ 

All handling times are fixed so the complexity of ܶ௦௧	௧ௗ	is ܱሺ1ሻ. 

The periodic thread runs 3 functions in sequence: the Timing Failure Detector, the Safety 
Manager and the Data Component Multiplexer. Therefore, we have: 

ܶௗ	௧ௗ ൌ 	 ்ܶி  ௌܶெ  ܶெ 

TFD and DCM functions scan the unit array to respectively find out the update values untimely 
received and the component data value to be forwarded. Complexities of ்ܶி and ܶெ are both 
ܱሺ ௨ܰ௧௦ሻ. 

The Safety Manager is the more complex process as it evaluates for each unit the safety rules and 
determines the new level of service or performance level. 

ௌܶெ ൌ 	 ௨ܰ௧௦ ൈ ܰ௨௦		௨௧ 	ൈ ܰௗ௦		௨ 	ൈ ܶௗ	௩ 

The time to evaluate one rule node ( ܶௗ	௩) is steady whatever the node type. So the 
complexity of ௌܶெ is ܱሺ ܰௗ௦ሻ. 

Let’s come back to the ௌܶ formula. In normal situations, ܰ௧௦ corresponds to the number of 
input units, since each unit is supposed to send one update value during the Safety Kernel period. 

ௌܶ ൌ 	 ܰ௧௦ ൈ ܶ௦௧	௧ௗ 	 ܶௗ	௧ௗ	 

Given the previous results, the complexity of ௌܶ is ܱሺ ௨ܰ௧௦, ܰௗ௦ሻ.  
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7.2 Benchmarking	test	

One of the objectives of performing a real benchmarking test is to get some insight on which of 
number of units or number of nodes has more weight on the Safety Kernel execution time. 

We choose to measure two execution times: first ܶ, which is to the necessary time to parse 
a XML configuration and create the safety rules, and secondly ܶௗ	௧ௗ, which 
corresponds to the execution of the three main Safety Kernel modules: the Timing Failure 
Detector, the Safety Manager and the Data Component Multiplexer. 

The measurement system is intrusive as we use timer start/stop functions embedded in the kernel 
code. However, this intrusiveness is deemed as insignificant. All measures are taken while 
running the Safety Kernel on a FPGA board, on top of RTEMS. The board is the same that is used 
in the KARYON demonstrators, implemented in the scope of WP5.  

We built three types of configurations as depicted in Figure 23. 

 

Figure 23: Benchmarking configurations. 

Each configuration involves a single input unit and one or more output units. The number of units, 
rules and nodes is a function of N, which goes from 1 to 10. Configuration 1 implements one 
output unit with ܰଶ rules, configuration 2 implements N output units with N rules in each unit 
and configuration 3 implements ܰଶ output units with only one rule in each unit. Whatever the 
configuration, each rule is always built with three nodes. As a result, the number of rules and 
nodes is the same in each configuration for a given value of N. The tables presented in Figure 24 
provide all the values. 

 

Figure 24: Number of units, rules and nodes in each configuration. 
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7.2.1 Configuration	parsing	time	

The results presented in Figure 25 illustrate the time to parse the XML file for each of the three 
considered cases. The presented time values correspond to the time taken to build all the safety 
rules in the safety rules repository. The configuration loading time (file access time or network 
transmission time) is not considered. 

 

Figure 25: Configuration parsing time. 

 

The configuration parsing is time consuming. In configuration 3, the parsing time reaches 1.5s for 
101 units and 300 nodes. The difference between configuration 3 and the two other configurations 
can be explained by the greater number of units. Despite being a time consuming process, it is 
executed only once, at bootstrap, and is thus not significant from the perspective of concluding 
about scalability or ability of the Safety Kernel to perform timely and efficiently.  

7.2.2 Periodic	execution	time	

Execution times are mean values calculated from 100 experiments. Each time, we consider the 
worst case scenario where all rules of all units are evaluated. The time values for TFD, SM and 
DCM are separately measured. In Figure 26, Figure 27 and Figure 28 we show the obtained 
results. Each figure corresponds to one of the configurations.  
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Figure 26: Execution time (configuration 1). 

 

 

Figure 27: Execution time (configuration 2). 
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Figure 28: Execution time (configuration 3). 

 

TFD and DCM execution times only depend on the number of units and are marginal compared 
to the SM execution time. This is quite normal because the SM handles the evaluation of the 
safety rules, which is the most complex task in the Safety Kernel. 

The number of units has a weak influence on the complexity of ௌܶ, which can be approached by 
 .ሻ. For instance, the evaluation time for 100 rules and 300 nodes is lower than 10ms࢙ࢋࢊࡺሺࡻ
Given that this time corresponds to the worst case scenario, it remains below the default Safety 
Kernel period (100ms or 200ms), as we are considering in the KARYON demonstrations. 

To conclude, this analysis showed the strong correlation between the Safety Kernel execution 
time and the total number of nodes created in the safety rules. It also showed that the overall 
execution time is quite small, and sufficiently small to allow this particular instantiation of the 
Safety Kernel to be integrated and used in demonstrations. 

It is important to note that the implementation makes use of an FPGA board, in which a LEON3 
soft-processor (SPARC v8 arch) is programmed and is running the RTEMS as the operating 
system and the Safety Kernel as the application. Therefore, the obtained results could be very 
significantly improved (possible 2 or 3 orders of magnitude) if using a physical (not soft) 
processor. Nevertheless, the intended objectives were achieved, as it is possible to use the Safety 
Kernel with this implementation, with the advantage that a development board was used and could 
have served to test different solutions (e.g., using different soft-processors). 
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8. Conclusions	
In this deliverable we provided a comprehensive collection of information that is relevant to 
understand the need for a Safety Kernel, to understand its role and the proposed architecture. The 
deliverable goes into details about the definition of this Safety Kernel, in terms that should allow 
others to continue from here, implementing and improve the ideas, possibly, and hopefully, to 
realise new cooperative systems. It also provides details on a concrete implementation of the 
ideas, explaining how the implementation can be used and, in this way, illustrating the feasibility 
of the concept.  

Despite being, in its essence, a simple component, the Safety Kernel plays a fundamental role in 
the KARYON architectural pattern. From the initial rough idea expressed in the DoW of what a 
Safety Kernel could be, a simple component responsible for managing the system safety, to what 
we have today, a well-defined part of the system whose role and interactions with the rest of the 
system are well-understood, many concepts had to be clarified and many issues had to be 
addressed. The work on the definition of the Safety Kernel was not isolated. On the contrary, it 
was done in a strictly closed connection with the work on the definition of the generic architectural 
pattern, with the work on the definition of an abstract sensor model, with the work on the 
definition of what a safety analysis means for cooperative systems with multiple levels of service, 
with the work on the definition of requirements for use cases in the automotive and avionic 
domains and, finally, with the work on the development of the use case demonstrators. 

We believe that the results we achieved, not only the Safety Kernel definition, but the whole 
KARYON approach, are valuable as enablers for future research and development initiatives 
focused on autonomous and cooperative applications. Our focus was on the automotive and 
avionic domains, but the approach as a much larger reach. We believe that it may be applied for 
the development of any control system in which it is necessary to balance the achievable 
performance with the required safety, while using cost-effective components and dependability 
solutions. 
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Annex	A Functional	Safety	for	Cooperative	Systems	

 

Josef Nilsson, Carl Bergenhem, Jan Jacobson, Rolf Johansson and Jonny Vinter, “Functional 
Safety for Cooperative Systems”.  In proceedings of SAE International Congress 2013. 
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� 
Abstract— In both avionic and automotive systems, it might 

become very costly and/or restricting the functional performance, 
to prove functions safe in all operational conditions and for 100% 
of the mission time. This is especially true if the quality of sensor 
data and of communication data may vary very much. One way 
to solve this trade-off paradox is to leave part of the safety 
assessment from design-time to run-time. This paper proposes a 
general architectural pattern for this, and also how to instantiate 
this pattern in Integrated Modular Avionics (IMA) for the 
avionic domain, and in AUTOSAR for the automotive domain. 
The solutions imply some extensions of ARINC 653 and of 
AUTOSAR respectively, but they are not in conflict with the 
existing concepts. The proposed solutions are also fully in-line 
what is prescribed by the standards for functional safety of the 
two domains. 
 

Index Terms—Safety Integrity, IMA, AUTOSAR,  
 

I. INTRODUCTION 

n both the industry fields of Avionics and of Automotive, 
there has been established a norm of having integrated, 

rather than federated, Electrical/Electronic (E/E) architectures. 
In the avionic field this is called Integrated Modular Avionics 
(IMA) [6] and is today often following the ARINC 653 
specifications [7], and in the automotive field it is the 
AUTOSAR specifications constituting the state-of-practice. 

One advantage with an integrated architecture is that it is 
possible to increase the number of vehicle functions and still 
decrease the number of computing nodes, often called LRUs 
(Line Replaceable Units) or ECUs (Electronic Control Units). 
Different functions may be realized by architectural elements 
(sensors, actuators, computing components, communication 
components, etc.) that may be shared among several functions. 
However, in the transition from a federated to an integrated 
pattern, the way to ensure functional safety has become more 
complex. Instead of directly transfer the safety arguing 
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responsibility to a node supplier, the integrated pattern calls 
for a component-based approach in both the design itself and 
in the safety case generation. Furthermore, achieving 
functional safety is a goal that often is in conflict with high 
performance and low cost. 

In this paper we outline an architectural pattern that is 
possible to apply for both IMA and AUTOSAR, and that helps 
to resolve the paradox of getting functional safety together 
with low cost and high functional performance.  

II. ARGUING SAFETY 

The problem how to prove that a solution is functionally 
safe, is defined specifically by applicable standards in each 
domain. For road vehicles, functional safety is defined by ISO 
26262 [10], and the instruction how to apply component-based 
safety arguing is so far limited to what is stated as Safety 
Element out of Context (SEooC) in the informative part 10 of 
the standard. For the avionic domain there are several 
applicable standards. The IMA perspective is found in 
RTCA/D0-297: “Integrated Modular Avionics (IMA) 
Development Guidance and Certification Considerations”. 
This standard refers to other standards such as SAE 
International's Aerospace Recommended Practice (ARP) 4754 
on “Certification Considerations for Highly-Integrated or 
Complex Aircraft Systems”, and SAE ARP 4761 on 
“Guidelines and Methods for Conducting the Safety 
Assessment Process on Civil Airborne Systems and 
Equipment”. These in turn refer to RTCA/DO-178: “Software 
Considerations in Airborne Systems and Equipment 
Certification”.  

On a high level, one can say that arguing safety is similar in 
the two domains. They both rely on a Hazard Analysis & and 
Risk Assessment (HARA) of the vehicle functions, resulting 
in required risk reduction by means of safety integrity levels 
for the realizing architectural components. In the automotive 
domain the safety integrity levels are called Automotive 
Safety Integrity Level (ASIL) [10], and in the avionic domain 
they are called Development Assurance Level (DAL) [12]. 
The default alternative is to use a fault avoidance 
argumentation based on the fact that all used components, 
each conform to the required safety integrity level. This can be 
combined with a fault-tolerance argumentation based on 
introducing redundancy and hence lower the required integrity 
level of the components. To integrate components having 
different integrity levels on the same platform, freedom of 
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interference has to be shown. This is a major concern in 
RTCA/DO-297.   

III. DETERMINE THE REQUIRED RISK REDUCTION (SAFETY 

INTEGRITY LEVEL SAFETY) 

In both domains, the determination of safety integrity level 
is based on a severity classification of the possible failures of 
the vehicle function under consideration. In the avionic 
domain this directly leads to one of the Development 
Assurance Levels in the interval between A (required by a 
catastrophic failure) and E (when there is no safety effect 
required). In the automotive domain the severity classification 
of the vehicle function has to be evaluated together with 
assumptions on how often such a failure is critical among the 
driving scenarios, and with an assumption how well the driver 
can compensate for the failure. These three factors together, 
lead to an Automotive Safety Integrity Level in the range 
between ASIL D (highest requirement on risk reduction) and 
QM (no requirement on risk reduction). 

In both domains, a high requirement on risk reduction 
implies a high safety integrity level requirement (formulated 
by DAL or by ASIL) on the used components. It is needed to 
show that the vehicle and its components fulfill all 
requirements on safety integrity levels. This assessment is 
completely done in design-time, and shows that the vehicle 
always is functional safe with respect to the complete scope of 
the functions considered in the Hazard Analysis. 

IV. EXTENDING THE ARCHITECTURAL PATTERN 

Building vehicles where the complete scope of all functions 
are proven safe in all operational conditions and for 100% of 
the mission time, might become very costly and/or restricting 
the functional performance. One way to solve this trade-off 
paradox is to leave part of the safety assessment from design-
time to run-time. By letting the architecture itself in run-time 
measure the provided safety integrity levels from the 
components, it can enable adjustment of the different 
functions such that their required safety integrity levels are 
met. Let each vehicle function have a number of predefined 
levels of performance (levels of service), for which the 
resulting hazard analyses are different. If we then in run-time 
can measure for which levels of service/performance the 
safety integrity requirements are fulfilled, the vehicle can be 
proven safe once we can guarantee that all functions always 
are forced to a level of service/performance that is considered 
safe. What we need for this is an architectural pattern enabling 
the complete measuring of the safety integrity levels of the 
architectural elements, and a way to ensure that all functions 
operates on a level of service/performance that can be proven 
safe.  

This paper shows the general architectural pattern, and also 
outlines how it can be instantiated into the state-of-practice in 
the integrated architecture of the domains of automotive 
(AUTOSAR) and of avionics (IMA realized by ARINC 653), 
respectively. 

A. Design-Time vs. Run-Time 
Even if the strategy proposed in this paper is that there is a 

run-time check of what safety integrity levels that are met in 
order to match with the appropriate performance level, all 
possible results have to be assessed in design-time. In both the 
avionic and the automotive domain, a complete functional 
assessment has to be done in design-time according to the 
respective reference life-cycles. The solution presented in this 
paper is fully aligned with this. When we say that we leave 
part of the safety assessment to run-time, this implies that all 
the possible alternatives for performance levels and also the 
mechanisms to determine the right levels, all are assessed in 
design time. 

 

B. Relation to functional safety standards of today 
In both DO178 and in ISO26262, there is a concept of 

integrity levels (DAL / ASIL), to allocate requirements on the 
reference life cycle in order to argue sufficiently absence of 
systematic design faults. When we suggest having several 
levels of performance implying different required safety 
integrity levels on the output of some components, this implies 
that the DAL/ASIL applicable for the design of each 
component will be the highest safety integrity level among the 
possible ones. The concept of adjusting the levels of 
performance to the run-time available safety integrity levels is 
hence not primarily applicable to handle systematic design 
faults, but to take care of the varying quality of data due to the 
varying amount of redundancy sources and of varying quality 
of sensors and communication links.  

Especially from the software design point of view, we 
assume that what is prescribed as needed to argue for the 
highest applicable safety integrity level, still must be 
implemented as well in the application components as in the 
platform software (ARINC653/AUTOSAR). This requirement 
of design according to the highest safety integrity level is of 
course applicable to the redundancy mechanisms checking the 
quality of data, and to the platform mechanisms determining 
the appropriate level of service/performance. This is further 
elaborated in the section below: A general pattern. 

The consequence of having a number of different levels of 
performance is that the Hazard Analysis and Risk Assessment 
has to be done completely for each considered level. The 
stages prescribed in ARP4754 or ISO26262 part 3 thus have to 
be done not only for the functions, but for each level of 
performance for each function. Furthermore, each transition 
between two levels of performance has to be considered, as 
elaborated below in the section: Scalability and timing. 

Regarding the safety standards applicable today in the 
domains of avionic and automotive, we conclude that they are 
fully in-line with both the concept of several levels of 
performance, and with the architectural pattern we outline in 
this paper.  
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C. Relation to existing patterns for mixed criticality 
Mixed criticality [5] is the concept of allowing applications 

with different levels of criticality (safety integrity) to co-exist 
on the same system. In both ARINC 653 and in AUTOSAR 
there are mechanisms to deal with this problem. The assumed 
problem to deal with is to guarantee freedom of interference 
between application components designed to different levels 
of safety integrity. The solutions in both ARINC 653 and in 
AUTOSAR are to provide mechanisms for handling time and 
space partitioning.  

However, when introducing several levels of performance, 
each implying different requirements on safety integrity levels 
of the output of some components, this is not the classical 
problem of mixed criticality. Even if we have a mixture of 
different levels of safety integrity among the components co-
existing on the same platform, their requirements on the safety 
integrity of the absence of systematic design faults are all on 
the same level (the highest among alternatives). Hence we do 
not need to prove freedom of interference between 
components designed according to different DAL or ASIL, 
because that is not the case. All components used for a certain 
function are designed according to the safety integrity level 
that is applicable for the highest level of performance. 

The mechanisms for enabling time and space partitioning 
are of course still important when arguing safety, even in our 
proposed pattern, but they are not affected by the introduction 
of several levels of performance with different safety integrity 
level requirements on some data signals. 
 

D. Scalability and timing 
Given the fundamental idea of leaving part of the safety 

assessment for the run-time, raises potential issues of 
scalability and timing.  

Scalability issues stem from the fact that some system 
resources will be required for performing the run-time safety 
assessment. For instance, it will be necessary to collect 
measurements of available integrity levels, and it will be 
necessary to store information (defined in design time) 
concerning the safety integrity requirements for each level of 
service. This has essentially practical implications (availability 
of enough memory and computing power), which could limit 
the applicability of the approach. Fortunately, the effective 
requirements grow linearly with the number of components 
for which integrity has to be assessed, which is also limited by 
the available resources. In fact, the additional resources 
required for assessing safety in run-time are necessarily a very 
small fraction of the resources required by the components 
itself.  

Timing issues are more important in this context because it 
is necessary to argue about functional safety, for which they 
have to be considered. As mentioned before, in design time it 
is necessary to assess, for each function, that it will perform 
safe in each possible performance level. But this is not 
enough. Given that, for each function, there will be run-time 
changes of the performance level, the analysis must take into 
account the time that it takes to complete these changes. For 

instance, if in run-time it is detected that some component is 
not performing with the required integrity level, then it will be 
necessary to change the performance level of all the functions 
that are affected by this integrity degradation, and this has to 
be done within some limited amount of time. Otherwise, the 
functions would continue to perform in some inadequate level 
for an uncertain amount of time, clearly outside the safety 
analysis performed in design time. 

The general pattern must hence provide the means to 
address these timeliness requirements. In addition, it is 
necessary to discuss the implications of the (bounded) amount 
of time that is necessary to change the performance level of 
some function. A sufficient condition for ensuring timely 
detection of changes in the safety integrity levels, and 
consequent timely change of performance level, is that it is 
possible to perform a timing analysis of all the involved 
system components, deriving upper execution bounds. In 
particular, this includes the component responsible for 
performing the safety assessment, which is always involved in 
the process. If some function has to be performed with some 
minimal performance level, then it must also be possible to 
perform such timing analysis for all the implied components. 
The time that will be necessary to switch among different 
performance levels will typically be close the execution 
periods of the system components.  In comparison with the 
typical latency of physical processes (such as braking, 
deviating from an obstacle, etc), these periods are much 
smaller. This means that the safety analysis will be, for the 
relevant part, still valid. In any case, the time that it takes to 
perform a change in the performance level can also be 
considered in the design of the functions, so that this is 
accounted in safety margins. 

V. A GENERAL PATTERN 

Each vehicle function is realized by a set of interconnected 
sensors, actuators and software components. The software 
components have an interface making them possible to be 
allocated on any platform node. The outputs of every sensor, 
and of every software component, are duplets consisting of 
both the nominal output and of an attribute stating the 
estimation of the corresponding safety integrity level. All 
redundancy mechanisms in the architecture such as: sensor 
fusion, voting, consistency checking, etc., are evaluating the 
consistency of the nominal values and calculates a resulting 
determination of the safety integrity level value. All safety 
integrity level values of a computing node are checked by a 
safety manager that is part of the platform specification. The 
safety manager compares in run-time that each provided safety 
integrity level of every output value, is high enough for the 
current scope of vehicle functions. If some of the provided 
safety integrity levels are too low, the safety manager tells the 
application mode managers to change to a level where the 
respective functions are considered safe. If all provided safety 
integrity levels are high enough for a higher level of 
service/performance than the actual for some functions, the 
safety manager tells the application mode managers to change 
accordingly. 
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Fig. 1.  The figure of a general architecture pattern. Each 
software component communicates via ports with signals. 
Each signal is a duplet with a nominal value (V) and a safety 
integrity level attribute (I). The safety manager checks all 
safety integrity level values, and decides what function modes 
that are safe. The mode manager tells each software 
component about the mode decisions 

 

A. Derivation of the Safety Integrity Attributes 
As argued before, the extension of safety assessment from 

design-time to run-time allows for relaxing overly restrictive 
assumptions about the required integrity status of the overall 
complex control systems. However, it requires the continuous 
monitoring and evaluation of the integrity attribute during run-
time. Fig.1 shows that for every signal generated by a 
component, there is a complementary output that provides an 
integrity level attribute. Roughly, this attribute represents a 
measure for the integrity of the respective signal produced by 
a component.  When checking against allocated safety 
requirements, this estimation needs to be done against the 
defined discrete levels of the applicable standard. For both the 
standards we have five levels to consider. However, when 
deriving the safety integrity attributes we may use more fine-
grained estimations.   In this paper we call such a more fine-
grained value, the Validity of a signal. 

 
The assumed structure of a complex component comprises 

the acquisition and computational components from a sensor 
that captures a real-world entity to the component that outputs 
an application relevant data element (signal). The architectural 
element outputs the nominal signal (V) together with an 
integrity attribute (I) that enables the safety assessment at run 

time.  To generate the integrity attribute, the component needs 
a self-assessment mechanism. Further, a nominal value 
affected by a failure may pass a filter to mitigate or mask the 
effect. We therefore distinguish between a detection 
mechanism and a filter mechanism. The checking mechanism 
detects a failure without affecting the respective signal. It 
modifies the integrity attribute only. The filter is a general 
abstraction of a component that mitigates or eliminates the 
effect of a failure. Typically, detectors and filters are 
integrated in a fault-tolerance mechanism. We separate the 
aspects of awareness and treatment because these are different 
concerns and the separation allows for more freedom of 
design.  e.g. omitting a filter completely in the component for 
handling the failure in a subsequent stage. Fig. 2 depicts this 
general structure of such an element. 

The run-time assessment mechanisms are based on the 
specification and quantification of design-time assumptions. 
During design-time an engineer has to answer questions like 
"which failure types are affecting the components and what is 
their impact?", "How are these failures detected and how good 
the detection mechanisms need to be?" and " How is the data 
conditioned and filtered to compensate the effects of 
failures?".  Based on these assumptions the engineer adjusts 
the quality of the component's outgoing data at run-time to the 
integrity requirements. In our approach, these engineering 
assumptions are quantified to allow a comprehensible 
assessment. Assumptions are quantified in a failure model, a 
quantification of the detection capabilities and the filter 
characteristics. This is particularly needed when such a 
component is used in a larger setting or will be reused in 
another design. As an example we examine a typical 
component where the input data is provided by a sensor.  

 
We distinguish two flows of information in Fig.3. The 

lower part generates the nominal data output while the upper 
part is devoted to the calculation of the integrity attribute. In 
this paper we will focus on the definition and transformation 
of the parameters defining the integrity attribute. 

 
We are considering a data centric failure model [2] which 

specifies failures in terms of how they affect the data e.g. 
according to an anticipated signal behaviour. The starting 
point is the identification of relevant sensor failures. Sensors 
deliver continuous values that may be affected by e.g. noise, 
offsets, spikes and outliers. A detailed discussion about sensor 
failure modes is given in [3]. An assessment vector quantifies 
for each failure type a number that characterizes the 
anticipated severity and the occurrence probability of this 
failure. This is comparable to a risk priority number in the 
FMEA (Failure Mode and Effects Analysis) scheme [4]. 
Different from FMEA, we provide a scheme that allows 
combining multiple failure types and using this for run time 
assessment, while FMEA maps multiple failure types to the 
static worst case risk priority number.  
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For describing the detector and filter characteristics we 
provide transformation matrices that modify the assessment 
vector for the respective stages. In case of a detector, the 
matrix specifies the ratio of correctly detected failures versus 
the wrongly and not detected failures. This statically sets the 
upper and lower bounds for the integrity attribute and modifies 
the assessment vector accordingly. The filter matrix defines 
the impact that the filter may have on the signal, i.e. the degree 
of suppressing a faulty signal. A filter that operates as a failure 
masking mechanism will raise the lower bound for the validity 
because it eliminates faulty values. Applied to the assessment 
vector it modifies the respective elements related to the 
affected failure types.  The assessment vector finally holds for 
each failure type an element that describes which effect this 
specific failure will have on the final integrity attribute. It 
should be noted that this number includes the capabilities of 
the detector and filter with respect to the particular failure. The 
integration stage collapses the vector representation to a single 
scalar integrity attribute. This stage uses a selection vector that 
holds weights for each failure type and therefore allows a 
further restriction to relevant failure types. E.g. for long term 
navigation, single outliers of a localization sensor may not be 
as relevant as a constant offset failure. However, outliers may 
have a high impact on the validity because of their amplitude. 
Thus, an outlier would decrease the integrity attribute to an 
inacceptable low level although it would not be relevant. 
Another application may need a high validity of differential 
positions. Here, constant offsets would not play a major role. 
The selection vector can adjust these different application 
needs. In the end, we obtain what we call the system validity, 
a measure of how good the detection and filter mechanisms 
will deal with failures. 

  
So far, all the information that is captured in the assessment 

vector, the transformation matrices and the selection vector is 
available at design time and quantifies of the engineering 
assumptions about relevant failure types, their impact, the 
quality of the detection mechanism and the power of the filter 
in suppressing the effect of failures.  

 
In the conventional approach, the outcome of this analysis 

would be compared to a required integrity and in the case of a 
match, the design would be accepted. This implies that the 
assumptions about the failures, the detection and filter 
capabilities are worst-case assumptions and require a 
substantial amount of resources to keep the bounds. If the 
design does not fulfill the static worst-case requirements, the 

design needs to be changed. This may require substantial 
redundant resources or more expensive components even 
though the actual operation would not even come close to the 
worst-case bounds in by far the most cases. In the proposed 
architectural pattern, the numerical representation of the 
integrity is exploited to detect at run time whether the 
component will meet the integrity requirements. If the 
dynamically derived integrity attribute falls below a certain 
threshold, we are able provide the countermeasures on a 
higher level, i.e. on the level of provided services that may 
need to be degraded (see also the example in the next section 
B).  

At run time, the detector will provide a result for each 
failure that it is able to detect. These outcomes are stored in a 
vector with the same dimension as the assessment vector. The 
elements of the assessment vector are applied as weights to 
this vector to form the validity vector. The validity vector 
represents the actual estimated validity as a result of the 
detector stage. It is transferred to the filter stage where a 
similar calculation is performed. The final validity vector 
holds a dynamic estimate about the validity of the generated 
nominal data item with respect to each failure type.  Finally, 
this vector is converted into a single scalar number which 
represents the integrity attribute. The details of the assignment 
of values and the operations defined by the failure algebra are 
beyond the scope of this paper. They are provided in [5].  

 

B. Relating the validity estimation to the Integrity Attributes 
In a safety-critical system, the hazard analysis will result in a 
set of functional failures that should not occur. In the coming 
phases these restrictions are broken down to what failures 
should not occur for the elements in the chosen architecture. 
Still, all these failures are restricted by the safety integrity 
level attributes telling how sure one have to be that these 
failures will not occur. The question is how sure we can be at 
run-time about the absence of these failures, if we cannot 
guarantee at design-time that this will always hold. We now 
will show, how the dynamic validity can be exploited to 
quantify these requirements. Let us first use a simple data 
centric model of failure. Failures may be specified in terms of 
its amplitude, e.g. the error exceeds ±5% of the true value or 
in duration e.g. that they will not last for more than 10ms.  
According to the goal of our architectural pattern, we enable 
the dynamic change of the Level of Service (LoS) to maintain 

a required level of safety.  For the information generated by a 
component that contributes to a function we need specifying 

Fig. 2.  Estimating the signal quality by a checking mechanism. 

Fig. 3.  Computational chain for a sensor processing component. 
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different levels of confidence that the data value is within 
certain bounds.  Fig. 4 illustrates this. 

 

 
 

a.) A complex component has to meet several safety 
requirements 

 

 
 

b.) Example of defining 4 thresholds for different safety 
integrity levels in the automotive and avionics terminology 

 
Fig. 4 Example of a complex component used in applications 
running in multiple integrity levels 

 
The complex component provides a nominal output that is 
subject of multiple safety requirements ranging from the 
highest ASIL D to QM. Integrity attributes are provided at 
separate outputs. They are represented as an integrity attribute 
vector that holds for each failure the confidence that it does 
not exceed the predefined bounds. Considering the thresholds 
in Fig. 4b, we model failure classes that e.g. do not deviate 
more than ±2%, ±5%, ±10%, ±20% and ±30% from the true 
value for ASIL D, C, B, A, and QM respectively. The integrity 
attribute vector holds the respective confidence values that 
these values are indeed within the specified bounds. If the 
confidence drops below a certain value in the most demanding 
safety class, this confidence value may well be within the 
bounds of a lower one. This would be reflected by the 
integrity attribute of the respective failure class. In this case, 
that the integrity attribute is too low, it may be necessary to 
switch to another level of service. 
 
The notion of validity that was introduced before can be 
mapped to this more safety centric perspective. Given that the 
requirements of the safety integrity level concerning the error 
of the nominal value are specified, the validity calculus allows 
defining the failure characteristics through the computational 
chain. The failure model will be adapted to the thresholds of 
the amplitudes. Consider that the failure may not exceed  ±2% 
of the true value and we want to be sure about this at a certain 
confidence level. This affects the choice of the sensor, the 
detector and the filter. The validity calculus allows to quantify 
these effects. At the sensor, an assessment vector represents 
the sensor characteristics for each failure type in terms of 
amplitude and of occurrence probability. If the requirements 
specify a very low margin on the amplitude of failure, noise, 

small offsets and drift have to be considered. We have to 
consult the failure model to see which failures are effective in 
such tight bounds. This will be analysed statically for each 
deviation addressed in the example above. In the end, we will 
have the design-time assurance that at run-time, under all 
anticipated conditions, the output of the component will have 
the integrity level indicated in the respective integrity attribute 
vector. If the safety requirements are very high, as it is e.g. 
required for ASIL D, the quality of the sensor and the 
mechanisms to mask a failure to always be within the bounds 
must be very high. I.e. we may need massive redundancy of 
expensive components. The problem is, that even a less 
expensive sensor will deliver results within tight bounds most 
of the time with sufficient probability. Detection and filters 
will detect or suppress failures sufficiently most of the time 
with sufficient probability. Thus the probability of a failure at 
run time will meet the ASIL D requirements most of the time 
but violations may happen. Conventional systems usually do 
not use the mechanisms to assess the integrity level at run-
time. Instead they guarantee by design time analysis that such 
violations will never happen.  
 

In contrast, our system explores the safety-cost-performance 
trade-off by offering multiple levels of service. Without 
sacrificing safety, we may run a function with a lower 
integrity attribute at a lower level of service. Prerequisite for 
this is the run-time assessment. The run-time integrity attribute 
output will give us, for each of the bounds specified in the 
example above, the confidence that the actual nominal value 
really is within the respective bounds. Thus, the design-time 
analysis is the basis to derive the run time values. The quality 
of detection and filter mechanisms are included in this 
assessment. A detector, for example, is characterized by the 
probability to deliver false {positives, negatives} and true 
{positives, negatives}. It is clear that for guaranteeing a very 
high confidence in the checked data, these values must be 
adequate. An ideal detector with no false positives and 
negatives will detect each failure correctly and therefore will 
transform the integrity attribute of a nominal value to "0" in 
case of a failure detected and "1" if no failure is detected. Real 
detectors, of course, will have weaker bounds. For a filter we 
similarly specify the ability to mask a failure. Details of these 
calculations are presented in [5]. As a consequence of the 
quantitative representation of engineering assumptions and the 
tight interplay between design time assurance and run time 
assessment, we can adjust the needed confidence according to 
the needs of the safety requirements. If such a dynamic value, 
represented in the integrity attribute, is not sufficient for a 
function running in a certain assurance level we have to switch 
to a lower level of service. 

VI. INSTANTIATION IN AUTOSAR 

AUTOSAR is a de facto standard in the automotive domain 
enabling an integrated architecture. It defines how to specify 
application software components (SWC) that are reallocatable. 
All software component inputs and outputs are as data 
elements through ports. Our suggested pattern implies that 
each data element should consist of a duplet: the existing 



  
 

7 

nominal data element, complemented by an ASIL attribute. It 
is the responsibility of each SWC to compute the 
corresponding ASIL values. If there is no redundancy 
implemented, this means that the input ASIL values are 
inherited for the output values. Otherwise, ASIL 
decomposition is applied according to the algebra as defined 
in the ISO26262 standard. We furthermore propose a new 
basic software module (BSW): Safety Manager. This is in line 
with existing managers among the BSWs today. This new 
safety manager will compare the computed ASIL value of 
each signal with the required ones, that are stored for each 
function level of performance/service. In AUTOSAR today, 
all data elements are already connected to the run-time 
environment (RTE), constituting the interface for the BSW. 
Our pattern hence implies that the RTE will be extended with 
the requirement to connect all ASIL values to the Safety 
Manager.  

The concept of modes is on three hierarchical levels in 
AUTOSAR: Vehicle Modes, Application Modes and BSW 
Modes, see Fig. 5. It’s only the BSW modes that are 
standardized in the AUTOSAR set of specifications. It is 
assumed that different applications have implemented modes 
in their definitions. The control of these modes is within the 
application implementation, i.e. it is implemented by 
application software components (not in the platform). On an 
even higher level than application modes, there is Vehicles 
modes, which are global for the entire vehicle. As seen in the 
Fig. 5 there might be influences between modes on all these 
levels. 

 

 
Fig. 5 How the different kinds of modes in AUTOSAR may 

influence each other. 
 
We assume that the existing concept of application modes 

can be used for forcing all applicable SWCs to a mode 
corresponding to the level of service/performance as 
considered the highest and still safe by the Safety Manager. 
This is one extra connection between a SWC and the RTE, but 
it is in-line with the existing pattern and hence considered as 
an attractive extension of AUTOSAR. 

 As we don’t consider checking spatial and temporal 
interference between SWCs, the normal BSW mode managers 
as specified by the AUTOSAR standards such as: ECU State 

Manager, BSW Mode Manager, Communication Manager and 
Watchdog Manager are not of importance here. The 
application mode managers are implemented as ordinary 
software components and communicate with other software 
components via RTE.  

VII. INSTANTIATION IN IMA 

Currently, in the avionic domain IMA is considered to be 
implemented by means of the ARINC 653 specification [7], 
which determines that applications are functionally separated 
in logical containers, called partitions. One goal of partitioning 
is to ensure the containment of faults in the domain in which 
they occur. Partitioning in logical containers implies non-
interference of applications’ execution in the time domain and 
the usage of separated memory and input/output addressing 
spaces [8]. 
 Application software components are hosted in partitions. 
All software components inputs and outputs are as data 
elements, using the inter-partition communication services 
provided by the ARINC 653 Application Executive (APEX) 
application programming interface primitives. In particular, 
we propose to take advantage of the sampling ports services to 
extend the software component port values with a DAL 
attribute, as illustrated in Fig. 6.  
 
 

 
 

Fig. 6 Instantiation in IMA/ARINC 653 platforms 
 
 The Safety Manager will also be hosted in a partition and it 
will monitor the DAL attributes of all software component 
signals [9]. This can be easily achieved by platform 
configuration, allowing inter-partition communication services 
to deliver the components’ nominal output and DAL duplets 
both to the destination components and to the Safety Manager, 
which for will read the DAL attribute, as illustrated in Fig 6.  
 A similar approach can be followed when the Safety 
Manager needs to change the performance/service level and 
set a new application mode. This action, which may also take 
advantage of inter-partition communication services, is also 
illustrated in Fig. 6. The Safety Manager sets the highest 
possible safe level of service/performance and the components 
change to the corresponding mode. 

Vehicle Modes 

BSW Modes 

Application Modes 



  
 

8 

 With this approach the instantiation of the general 
architecture pattern in IMA/ARINC 653 platforms does not 
require any modification or extension of the platform itself; 
only a platform configuration action is needed. 

VIII. CONCLUSION 

This paper summarizes how to apply a new architectural 
pattern as an extension to existing state-of-practice in the 
domains of avionics (IMA) and of automotive (AUTOSAR). 
The pattern is applicable to solve the problem when it is hard 
to show in design-time that a high safety integrity is met under 
all circumstances and for 100% of the mission. By introducing 
different levels of service/performance each having different 
implications on needed safety integrity, high performance 
most of the time can be combined with guaranteed functional 
safety all of the time.  

The pattern constitutes that every signal value that is the 
candidate for different requirements on safety integrity levels, 
should be evaluated by a redundancy mechanism capable to 
calculate a run-time estimation of the actual provided safety 
integrity level. 

Furthermore, the pattern implies the introduction of a Safety 
manager taking care of checking the safety integrity level 
attribute of every system signal. The safety manager compares 
during run-time all currently provided safety integrity levels 
with those derived from the break-down of the hazard analyses 
of the different levels of performance/service of the vehicle 
functions. As a result of the comparison, the safety manager 
enforces all functions to operate in the highest 
performance/service level that is still safe, by means of 
application mode managers. 
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