

	

Kernel-based ARchitecture for safetY-critical cONtrol

KARYON
FP7-288195

D4.6 - Cooperative Diagnostics

Work Package WP4

Due Date M37 Submission Date 2014-11-17

Main Author(s) Olaf Landsiedel (CTHA)

Contributors Salvo Tomaselli (CTHA), Elad M. Schiller (CTHA)

Version 1.0 Status Final

Dissemination
Level

Public Nature Report

Keywords Distributed Diagnostics, Debugging Distributed Systems, Tracing, Deterministic Replay

Reviewers António Casimiro (FCUL), Elad M. Schiller (CTHA)

Part of the Seventh

Framework Programme

Funded by the EC – DG INFSO

KARY N

KARYON ‐ FP7‐288195
D4.6 ‐ Cooperative Diagnostics

© 2014 KARYON Project 2/25

KARY N

Version	history	

Rev Date Author Comments

V0.1 2014-09-14 Olaf Landsiedel (CTHA) Initial Structure

V0.2 2014-09-29 Olaf Landsiedel (CTHA) First draft

V0.2 2014-10-14 Olaf Landsiedel (CTHA) Text complete (missing: clean-up,
figures)

V0.3 2014-10-16 Olaf Landsiedel (CTHA) Clean-up: Figures, references, citations

V0.4 2014-10-17 Olaf Landsiedel (CTHA) Review

V0.5 2014-10-30 Olaf Landsiedel (CTHA) Review II

V1.0 2014-11-04 António Casimiro (FCUL) Final review

V1.1 2014-11-17 António Casimiro (FCUL) Small update and delivery.

KARYON ‐ FP7‐288195
D4.6 ‐ Cooperative Diagnostics

© 2014 KARYON Project 3/25

KARY N

Glossary	of	Acronyms	

AUTOSAR AUTomotive Open System Architecture

CPS Cyber Physical System

CPU Central Processing Unit

ECU Engine Control Unit

IoT Internet of Things

KARYON Kernel-based ARchitecture for safetY-critical cONtrol

MCU Microcontroller Unit

LibReplay Library for Logging and Replay of distributed, embedded applications

OS Operating System

TinyOS Tiny Operating System (for WSNs)

Tx.y Task belonging to work package x, with serial number y

WP Work Package

WPx Work Package with serial number x

WSN Wireless Sensor Network

KARYON ‐ FP7‐288195
D4.6 ‐ Cooperative Diagnostics

© 2014 KARYON Project 4/25

KARY N

Executive	Summary	

Collaborative vehicles demand for thorough testing and evaluation, as their operation is inherently
safety critical. However, diagnosing and debugging such cooperative systems during deployment
is challenging, due to the concurrent nature of distributed systems, the interaction between the
different vehicles, and the limited insight that any deployed system offers.

In KARYON we address this challenge by designing LibReplay; providing lightweight,
distributed logging and deterministic replay. LibReplay enables logging of events on deployed
Cyber-Physical Systems at minimal intrusion and their cycle accurate and deterministic replay in
controlled environments such as system simulators. In this report we present the design and
architecture of LibReplay, discuss the underlying motivations for its design, and present our
research-prototype implementation. Additionally, we report insights into its flexibility and discuss
performance results.

Editor note: All marked text (in yellow) corresponds to text that has been left unchanged with
respect to the preliminary version of this deliverable (D4.3 – First report on Cooperative
Diagnostics).

KARYON ‐ FP7‐288195
D4.6 ‐ Cooperative Diagnostics

© 2014 KARYON Project 5/25

KARY N

Table	of	Contents	

1. Introduction .. 8

1.1 Motivation and Background .. 8

1.2 Purpose and Scope .. 9

1.3 Relation to Other Work ... 10

2. LibReplay Design Overview and Challenges .. 11

2.1 Design Challenges.. 11

2.2 Design Overview .. 12

3. Architecture... 14

3.1 Distributed Logging for Deterministic Replay ... 14

3.2 Collection: Analysing and Sorting Logs .. 16

3.3 Deterministic Replay in System Simulation ... 17

4. Implementation and Evaluation .. 18

4.1 Prototype Implementation .. 18

4.2 Example: Diagnosing Split‐Phase Faults .. 19

4.3 MCU and Memory Efficiency of LibReplay .. 19

4.4 LibReplay and Traditional Approaches to Logging .. 20

5. Discussion .. 21

5.1 Benefits ... 21

5.2 Limitations ... 22

6. Conclusions and Next Steps .. 23

References ... 24

KARYON ‐ FP7‐288195
D4.6 ‐ Cooperative Diagnostics

© 2014 KARYON Project 6/25

KARY N

List of Figures

Figure 1: System Overview of Distributed Debugging with LibReplay. We depict LibReplay

connected to three cooperative applications, which run on top of the safety kernel and

communication middleware. Additionally, we depict the data handling pipeline of LibReplay

(lower part) for collection, processing and replay / analysis of traces. 12

Figure 2: Architecture Overview: LibReplay consists of three key elements: (1) logging elements

on the individual nodes (on the left); (2) processing (in the middle); and (3) replay, e.g., with a

system simulator (on the right). .. 14

Figure 3: We log function calls to and from the code of interest, such as a malfunctioning

routing protocol. For replay, we feed the logs back to the code of interest. Replay in a full‐

system simulator provides us with well‐established debugging tools such as stepping through

code, breakpoints and watchpoints. ... 15

Figure 4: Sample application without logging elements. We depict a simple TinyOS application

(named BlinkToRadio) that uses three resources: Timers, radio transmission, and radio

receive modules. ... 16

Figure 5: Sample application (same application as on the left) with logging enabled. We note

that the software components of the application remain unmodified. LibReplay merely hooks

into the points of interaction of the software components, e.g., function calls from one

component to another. ... 16

Figure 6: Dependency graph of the events traced on two nodes (based on logical clocks). 17

Figure 7: Example Screenshot of a sample replay environment: the full system simulator

"Cooja". ... 18

Figure 8: Logging has only small impact on program execution. A low‐priority background

process transfers log to the storage, e.g., the serial. .. 19

Figure 9: The RAM footprint of LibReplay mainly depends on the size of the logging buffers.

ROM remains constant independent of buffer size. ... 19

Figure 10: The overall memory footprint of LibReplay is small when compared to the

application itself (default setting, 300 bytes buffer). .. 20

Figure 11: The memory footprint of LibReplay is similar to traditional logging systems. The

footprint of TinyLTS is taken from its publication [8] , as the source code is not available to us.

 ... 20

Figure 12: Average MCU duty‐cycle in a CTP network of 25 nodes. We distinguish leaf nodes

and forwarders. For LibReplay we also distinguish between logging and the background (BG)

process. ... 20

KARYON ‐ FP7‐288195
D4.6 ‐ Cooperative Diagnostics

© 2014 KARYON Project 7/25

KARY N

List of Tables

Table 1: LibReplay logging example: Without (left) and with (right) logging of the Receive

interface. Adding logging to applications requires merely few changes to the wiring of TinyOS

applications. LibReplay provides common logging components, such as the ReceiveLogC

component used in this example to log the Receive interface. ... 15

KARYON ‐ FP7‐288195
D4.6 ‐ Cooperative Diagnostics

© 2014 KARYON Project 8/25

KARY N

1. Introduction	
The KARYON project (Kernel-based ARchitecture for safetY-critical cONtrol) focuses on the
predictable and safe coordination of smart vehicles that autonomously cooperate and interact in
an open and inherently uncertain environment. For example, cooperating on common driving
tasks such as cooperative road trains, lane change, and virtual traffic lights, KARYON aims to
provide safer, greener, and more efficient transportation. Similarly, KARYON provides a
platform allowing UAVs to interact and cooperate on common tasks such surveillance of natural
disasters.

Diagnostics in any distributed Cyber-Physical System is challenging: Failures are often prompted
by a particular, complex concatenation of events. Moreover, dynamic interactions between
individual nodes and with the environment make it time-consuming to track and reproduce a fault.
We introduce LibReplay to ease diagnostics in distributed Cyber-Physical Systems; it provides:

1. lightweight and flexible logging and

2. deterministic replay.

LibReplay logs function calls to and from the application or another code of interest. It enables
deterministic replay of execution traces a controlled environment such as a full-system simulator.
This allows the user to benefit from well- established debugging tools such as stepping through
code, breakpoints, or watchpoints.

In this report, we discuss the refined design and architecture of LibReplay. In our previous report
“D4.3 – First report on Cooperative Diagnostics” we discussed our initial results. Thus, while
motivations and goals are consistent with the previous report, we significantly deepen our
discussion of the architectural design and evaluation.

1.1 Motivation	and	Background	

Vehicular systems, both in automotive and aviation, are inherently safety critical. Any of their
safety critical components is required to be highly fault-tolerant in operation. A vehicle comprises
numerous mechanical, hydraulic, software and hardware components as sub-systems. And
throughout the recent years we saw an increasing amount of embedded software and hardware in
vehicular systems. A modern vehicle contains up-to 100 embedded, microprocessor-based
electronic control units (ECUs) and close to 100 million lines of software code [1] . The on-going
development towards autonomous and, as a next step, cooperative vehicles (as focused on in this
project), will significantly increase both the numbers of ECUs and the code complexity in the
coming years.

All safety critical systems, ranging from advanced convenience to safety features, must be
designed to be fault tolerant. Thus, they must be able tolerate faults in order to ensure the safety
of the vehicle, its drivers and passengers, as well as the surroundings including other vehicles and
pedestrians.

Commonly, a thorough safety analysis is conducted systematically during the design phase of a
vehicle. Thus, well before the vehicle is put into operation, an offline analysis is conducted to
evaluate and analyse the impact and likelihood of possible faults and their consequences. The
goal is to identify faults that can lead to undesirable consequences and implement the required
counter measures to ensure safety. Commonly, such counter measures are either fail-safe or fail-
operational: Fail-safe denotes that a system shuts-down into a safe state after a failure is detected,
i.e., it stops being available while not causing any harmful, undesired consequences. In contrast,
fail-operational denotes that a system continues to provide a certain, often degraded, level of
service in presence of failure while still providing the required safety.

KARYON ‐ FP7‐288195
D4.6 ‐ Cooperative Diagnostics

© 2014 KARYON Project 9/25

KARY N

Independent of the counter measures taken in the presence of failures, a key requirement is that a
system must be able to detect that a failure is present in the first place. Moreover, this detection
must deterministically happen within a specified amount of time (denoted as detection latency).
This upper bound on the latency is required to ensure that the vehicle (or individual components)
can safely transition from normal operation to a fail-safe or fail-operational stage. This is a key
requirement, as vehicles need to maintain a safe behaviour also during this transitional phase.
Additionally, not all faults can be detected by the system. The term detection coverage denotes
the faults that can be detected by the system and for which fail-safe or fail-operational mitigation
strategies are implemented.

In KARYON, the safety kernel supervises the failure states of the individual components. It
controls the overall level of service that a vehicle can provide based on the status of its own
components and the status of nearby vehicles. Thus, in this aspect, KARYON and its safety kernel
strongly differ from the state of the art, where safety decisions merely depend on the status of
local components. KARYON, in contrast, provides cooperative services and thus decisions and
actions inherently require consensus on planned activities between vehicles. Thus, the failure of
a component on one vehicle directly impacts the status and quality of the information and
strategies a vehicle receives from other vehicles.

1.2 Purpose	and	Scope	

The cooperative nature of KARYON is a fundamental shift when compared to today’s vehicles
that each operate on their own. Due to this cooperative nature, KARYON demands for new
approaches for diagnosing the cooperation and interaction of smart vehicles: As vehicles in
KARYON interact and communicate to agree on actions to execute in consensus, any system to
diagnose and debug the well being of the deployed system must inherently cover all participating
units. Thus, we cannot employ traditional diagnostics systems that commonly track a number of
components in one vehicle.

To debug distributed and cooperative functionalities we require new approaches to diagnostics.
We address these challenge, with a new, distributed diagnostics system, denoted LibReplay. Its
key contribution is to provide a global, unified view on the individual components of the vehicles
of interest even in presence of

 failure of components or parts of them, and

 failure of the wireless communication between vehicles.

Diagnostics in distributed CPSs is challenging:

1. CPS are distributed and deeply embedded into a non-deterministic environment.

2. The non-determinism of both the wireless network and the physical environment in which
the nodes are embedded makes it time-consuming to track and reproduce faults and bugs.

3. These are often prompted by a particular, complex concatenation of events.

Source-level debugging capabilities as we are used to in sequential programming would
significantly ease the debugging process. However, the distributed and embedded nature prevents
us from pausing program execution on a node to examine its state. Large-scale distributed systems
on the Internet solve this issue by employing logging and replay capabilities. These log all
interaction between the code of interest and the system itself, e.g., function calls to and from a
part of an application that is suspected to malfunction. Next, they replay the execution of the code
of interest accordingly to the logged function calls and their parameters. As a result, the local
replay can be debugged using well-established debugging tools such as GDB and allows for
stepping through code, breakpoints, and watchpoints. While this technique is well known in large-
scale distributed Systems, we see limited application in the area of Cyber Physical Systems due
to the resource limitations of embedded and networked devices.

KARYON ‐ FP7‐288195
D4.6 ‐ Cooperative Diagnostics

© 2014 KARYON Project 10/25

KARY N

This work closes this gap and provides LibReplay: lightweight, distributed logging and
deterministic, source-level replay. LibReplay allows diagnosing of distributed CPS applications
and protocols with source-level debuggers. We achieve this by replaying execution traces in a
full-system simulator or testbed.

Our architecture for distributed diagnostics shall be readily available as a tool to collect the global
view from individual components. Collecting traces from each component of interest and
streaming these out, it provides

 an online view on the components of interest across multiple vehicles, and

 the cycle-accurate replay of the traces after collecting them from multiple vehicles.

1.3 Relation	to	Other	Work		

Debugging large-scale distributed systems has received significant attention in the recent years
with the raise of cloud computing and peer-to-peer networking. A common approach is to collect
traces of events and to use their logical relationship in the system to build globally consistent
snapshots and to enable replay [2] [3] [4] [5] . However, these mainly target Internet based
applications and their resource requirements make them not suited for resource constrained,
embedded systems such as ECUs in vehicles. Nonetheless, their design motivated our work and
we carefully designed LibReplay to adapt them for the use in resource constrained, embedded
systems and to ensure minimal intrusion.

In the context of distributed applications in resource constrained, embedded systems logging and
tracing are two common approaches for diagnostics. Logging tools [6] [7] [8] record execution
details. Commonly, they store the log in the flash memory for off-line collection or feed them to
a host system, for example, via the serial port. In practice, diagnostics and bug hunting with such
logging tools often follows an iterative approach: (a) adding or refining logging statements, (b)
re-executing the system until the bug is triggered, and (c) analysing the log and spotting bug
appearances. The developers have to repeat these steps until they understand the bug causes, try
to fix them and then check whether all bugs were removed by again repeating these steps.
Moreover, the non-deterministic and dynamic nature of the wireless network and interactions with
the physical environment make it time consuming to reproduce a bug sufficiently often for this
repetitive approach. In contrast, LibReplay logs function calls and their parameters to and from
the code of interest, such as a malfunctioning routing protocol. As a result, LibReplay collects
sufficient information to replay program execution deterministically allowing one to employ
source-level debuggers for bug hunting. In our experience, this limits the need for repeated testing,
and in most cases a single logging run is sufficient to fix the bug in replay debugging, because
much of log analyses and bug spotting is carried out off-line using an iterative debugger that
replays the log.

Tracing tools [9] [10] [11] [12] [13] follow a different approach: They trace the program execution
by logging function calls. For example, tracing logs each function and its parameters that a packet
takes on its path through the protocol stack from the application to the radio driver. A key
challenge is that tracing program execution leads to large traces when compared to traditional
logging [14] . Some approaches [11] [13] address this challenge with additional hardware on the
nodes. For example, Minerva [11] connects a dedicated debugging-board to the JTAG adapter of
the sensor node. Controlling multiple debugging-boards over Ethernet, Minerva can examine
network-wide state. LibReplay, in contrast, merely logs function calls and their parameters to and
from the code of interest, limiting its intrusiveness while not requiring additional hardware. In
this work, we argue that tracing all the function calls is costly and we show that it is not necessary
to trace them entirely if the state of a node at a given time can be restored and replayed
deterministically.

KARYON ‐ FP7‐288195
D4.6 ‐ Cooperative Diagnostics

© 2014 KARYON Project 11/25

KARY N

2. LibReplay	Design	Overview	and	Challenges	
Due to their safety critical nature, Cyber-Physical Systems such as collaborative cars or smart
grids demand for thorough testing and evaluation. However, diagnosing such systems once
deployed is challenging, due to (1) the interactive and concurrent nature of distributed systems
and (2) the limited insight that any deployed system offers.

Addressing these challenges, we introduce LibReplay for lightweight, distributed logging and
deterministic replay of deployed Cyber-Physical Systems. LibReplay enables:

 Lightweight, distributed logging and

 Deterministic, source-level replay

As a key contribution, LibReplay enables debugging of deployed, distributed applications and
protocols with source-level debuggers, such as GDB [15] . We achieve this by replaying execution
traces cycle-accurate and deterministically in controlled environments such as test-beds and
system simulators, e.g., Cooja [16] , MspSim [17] Avrora[18] , or QEMU [19] . As a result,
LibReplay offers deep insights into real-world deployments and allows diagnostics and testing in
realistic settings.

2.1 Design	Challenges	

Diagnosing distributed, cyber physical systems is challenging due to three key reasons:

1. They are inherently distributed and deeply embedded into a non-deterministic
environment.

2. The non-determinism of both the wireless network and the physical environment in
which the nodes are embedded makes it time-consuming to track and reproduce bugs.

3. Bugs are often prompted by a particular, complex concatenation of events.

For example, in KARYON, a set of cooperative vehicles interacts over wireless communication
channels to achieve consensus on the next actions to execute. Each vehicle senses, processes
information, communicates, and actuates driven by its computing infrastructure. In parallel, the
other vehicles do the same. Thus, it is prohibitively difficult to examine the state of one individual
vehicle without impacting the other vehicles. Moreover, as a distributed system, it is mandatory
to evaluate all vehicles participating in a cooperative activity, as only a global view on the
distributed system can provide the required insights.

Any deployed system is difficult to diagnose, as diagnostics often require physical access to the
system of interest. Moreover, diagnostics should not impact the normal operations of a vehicle.
In distributed systems, such as cooperative vehicles, this is even more challenging: for diagnostics
we require a global view on all participating units. Thus, we need to be able to extract information
from all participating vehicles simultaneously, even in the presence of failed components and
unreliable wireless communication.

Source-level debugging capabilities as we are used to in sequential programming, i.e., local and
non-distributed applications, would significantly ease the debugging process. For example,
stepping through code, breakpoints, and watchpoints are well-established tools to debug
sequential code. However, the above-discussed distributed and embedded nature prevents us from
pausing program execution on a node to examine its state. After detailing on the key challenges,
we next give an overview on LibReplay, our architecture addressing these challenges.

KARYON ‐ FP7‐288195
D4.6 ‐ Cooperative Diagnostics

© 2014 KARYON Project 12/25

KARY N

2.2 Design	Overview		

Addressing the above challenges, we develop LibReplay, an architecture providing lightweight,
distributed logging and deterministic, source-level replay. It (1) logs events on deployed Cyber-
Physical Systems, such as cooperative vehicles, and (2) allows their deterministic and cycle-
accurate replay in controlled environments such as test-beds and system simulators.

Thus, LibReplay allows debugging of deployed, distributed applications and protocols in Cyber
Physical Systems with source-level debuggers, such as GDB. We achieve this by replaying
execution traces in a full-system simulator.

Figure 1: System Overview of Distributed Debugging with LibReplay. We depict LibReplay
connected to three cooperative applications, which run on top of the safety kernel and

communication middleware. Additionally, we depict the data handling pipeline of
LibReplay (lower part) for collection, processing and replay / analysis of traces.

1. Minimal intrusive tracing and logging with logical clocks: We trace and log incoming
and outgoing events on each component of interest. Amending each event with a logical
timestamp (and local timestamp when required), we can later replay execution in a cycle
accurate manner even in presence of timer failures or limited connectivity of the wireless
coordination system. To avoid any impact of the logging on the safety of the system, the
small run-time overhead of our logging can either be included in the safety and real-time
analysis or the logging can be executed by dedicated hardware. Moreover, it employs a
two-phase logging to minimize the side effects of logging on program execution. We log
all calls to and from the code region of interest and their timestamps. LibReplay buffers
log data in RAM to avoid the overhead during the logging process. Later a deferred
background-process transfers the buffers to flash or the serial port for storage.

2. Consistent Global View based on Traces: Utilizing the logical timestamps of each
recorded event, we next order the traces of all components into a consistent global view.
We can either do this in (near) real-time, by collecting a feed of the events from each
components or off-line after traces from all components have been collected.

3. Deterministic Replay of Traces: Utilizing the ordered trace, we feed it into either a test-
bed or a system simulator. Such a cycle-accurate replay in a controlled setting allows us
to stop the replay where required and examine the state of individual components without
impact on the overall execution. This strongly simplifies detecting the root cause of any

Safety Kernel

Coop.
App 1

Coop.
App 2

Coop.
App N

Communication Middleware
Dis.
Diag.

Collection
Replay &
Analysis

Processing

G
en

er
ic
In
te
rf
ac
e

KARYON ‐ FP7‐288195
D4.6 ‐ Cooperative Diagnostics

© 2014 KARYON Project 13/25

KARY N

failure or bug. Please note that for two independent events that happen in parallel, for
example, on two different nodes, LibReplay cannot distinguish which one happens first.
However, as these events are independent and hence did not impact each other, the order
of their replay does not impact the overall result.

To illustrate the feasibility and low overhead of our architecture, we present a prototype
implementation of LibReplay and discuss evaluation results. We show our results on wireless
sensor networks, as their embedded nature and wireless communication strongly mimics the
requirements of cooperative vehicles. Also, for these have publicly accessible, large-scale real-
world test-beds available, ranging up to 400 wireless nodes [20] [21] [22] . Nonetheless, the
design and implementation of LibReplay is generic and can be readily integrated into other
platforms such as AUTOSAR [23] .

KARYON ‐ FP7‐288195
D4.6 ‐ Cooperative Diagnostics

© 2014 KARYON Project 14/25

KARY N

3. Architecture		
After discussing challenges for distributed diagnostics and the underlying design idea of
LibReplay in the previous section, we now detail on the its architecture. With LibReplay, we log
function calls to and from a user-specified code-region of interest, such as a malfunctioning
routing protocol. In the replay, we feed the calls back to the code of interest in the same order as
they were logged on the real system (see Figure 2). Thus, in the replay every event happens in the
same order as on the real system and with the same function parameters. Using cycle-accurate
simulation of the entire system, each event will also take the same number of cycles as on the real
system. Thus, a complete log that includes all functions to the code of interest generates a
complete replay with all local states equaling to the ones of the real-system. Moreover, LibReplay
inherently also intercepts calls from the code of interest to the internal clock system. Thus, any
call to read the local clock results in us replaying the same value the code read in on the real-
system (and not the local time of the simulation). We note that due to the run-to-completion
semantics, e.g., tasks in TinyOS, of many OSs for CPS and IoT we do not have to log the OS
scheduler itself. Moreover, LibReplay does not focus on low-level parts of the system that interact
with interrupts such as device drivers.

It consists of three building blocks (see Figure 2):

1. A logging element on each node: For each system component of interest, this logging
element is responsible for the minimal intrusive tracing and logging with logical clocks.

2. A collection system that collects and combines the traces to a consistent, global view.
This system can either be operated in real-time, assuming that a connection to each
logging element is available through which the traces can be collected. Alternatively, the
system can operate “off-line” once the traces from all nodes have been collected.

3. A replay environment, which feeds the traces to each node in a test-bed or in a system
simulator.

In the following we discuss each of them.

Figure 2: Architecture Overview: LibReplay consists of three key elements: (1) logging
elements on the individual nodes (on the left); (2) processing (in the middle); and (3) replay,

e.g., with a system simulator (on the right).

3.1 Distributed	Logging	for	Deterministic	Replay 	

The first building block of LibReplay is its lightweight, flexible logging-architecture. Thus, all
nodes are equipped with lightweight instrumentation to allow them to record events of interest.
To limit the overhead, we only record the events that are of interest to a particular application.
For example, when we are debugging a communication protocol, we log in- and outputs such as
messages and function calls corresponding to communication. This information is sufficient to
deterministically replay any code in a simulator or test-bed for debugging. Overall, it has three
design goals:

1. Log 3. Replay 2. Processing

via serial or flash

Full System Simulator
Sor ng & Valida on

Deployed sensor network

KARYON ‐ FP7‐288195
D4.6 ‐ Cooperative Diagnostics

© 2014 KARYON Project 15/25

KARY N

 To reduce the overhead of logging to limit potential side effects on program execution.
 To provide distributed logging of events across multiple nodes.
 To ease integration into user-defined applications and components.

Figure 3: We log function calls to and from the code of interest, such as a malfunctioning
routing protocol. For replay, we feed the logs back to the code of interest. Replay in a full‐

system simulator provides us with well‐established debugging tools such as stepping through
code, breakpoints and watchpoints.

Deferred logging to limit side effects on applications: Whenever a function to or from the code-
region of interest is called, LibReplay logs the function, its parameters, the return value, and a
logical timestamp, i.e., an event sequence-number. To limit run-time overhead, LibReplay
employs a two-phase approach to logging: As a first step, any log data is merely buffered in RAM
and the execution can continue with only minimal delay. As second step, a deferred, background
process -- only scheduled if no other process is to be scheduled -- handles the storage itself: it
moves the log buffers to flash or the serial port for storage.

Distributed logging of events across multiple nodes: When testing and debugging distributed
systems, we experienced it as essential that we can trace events and messages across multiple
nodes. For example, we often needed to trace how a single message travels through the network
and which state changes it triggered along its path, such as timeouts and re-transmissions. To trace
events across multiple nodes, LibReplay adds a logical timestamp to each outgoing radio message,
which is send by the code of interest. Optionally, LibReplay can also re-use sequence numbers
and source addresses that most protocols already provide to identify messages and their order
uniquely. This avoids overhead, as no additional timestamps need to be added to messages.

Easy to integrate into user-defined applications and components: When designing LibReplay, we
put a special focus on its ease and flexibility of use. For example, LibReplay can be easily
integrated into own applications and tailored by adding own logging interfaces. LibReplay places
a logging component between each interface of the code of interest and the OS (see Table 1).
LibReplay provides logging components for common interfaces of TinyOS, such as
ReceiveLogC (see Table 1). It logs the data flow to and from the Receive interface. Logging
components are kept simple to reduce run-time complexity and to ease their adaption to user-
defined interfaces.

Table 1: LibReplay logging example: Without (left) and with (right) logging of the Receive
interface. Adding logging to applications requires merely few changes to the wiring of TinyOS
applications. LibReplay provides common logging components, such as the ReceiveLogC

component used in this example to log the Receive interface.

Unmodified Application Logging Replay

[...]

App.Receive -> AMReceiverC;

[...]

Without Logging

[...]
components new ReceiveLogC() as Log;
App.Receive -> Log;
Log.Receive -> AMReceiverC;
[...]

With Logging

KARYON ‐ FP7‐288195
D4.6 ‐ Cooperative Diagnostics

© 2014 KARYON Project 16/25

KARY N

Thus, we can recreate the exact program execution in a controlled environment, which allows for
easy analysis for the program flow and detecting bugs: For example, we can step through the
execution of a distributed system or evaluate the values of individual variables.

While LibReplay is designed for minimal intrusive logging, a certain overhead of the logging
cannot be avoided. Thus, for hard real-time certain logging operations will be part of the time
critical program execution. LibReplay addresses this with two options: (1) as the logging
overhead is very limited, the additional CPU cycles of our logging can be directly included in any
safety and deadline analysis and, as a result, become part of the verified design. (2) When
requested, LibReplay can utilize dedicated hardware support for the logging to avoid any
overhead. The KARYON project partner SP is working on such a hardware assisted monitoring
and its integration into the safety kernel. Both design choices can also be combined on a per ECU
level. To realize our logging we rely on three key elements on a node. These can be either provided
by hardware or in software and is transparent to the architecture of LibReplay.

Figure 4: Sample application without
logging elements. We depict a simple

TinyOS application (named
BlinkToRadio) that uses three

resources: Timers, radio
transmission, and radio receive

modules.

Figure 5: Sample application (same application
as on the left) with logging enabled. We note

that the software components of the application
remain unmodified. LibReplay merely hooks into

the points of interaction of the software
components, e.g., function calls from one

component to another.

3.2 Collection:	Analysing	and	Sorting	Logs

Once all events are collected from the individual nodes via their debugging ports, we utilize their
logical timestamps to construct a globally ordered view on the system (see Figure 6). Since all
the events carry a sequence number that is locally unique, sorting the local events of a node is
immediate. Events such as radio events have (or can have) a received counterpart on the other
nodes. These events are used to obtain a global order of events.

KARYON ‐ FP7‐288195
D4.6 ‐ Cooperative Diagnostics

© 2014 KARYON Project 17/25

KARY N

Figure 6: Dependency graph of the events traced on two nodes (based on logical clocks).

To obtain a partial global ordering of events, every event is treated as a node of a dependency
graph. Events that are only local (e.g. timer events) depend on their predecessor in the event log
of the node, while others can depend on events on nearby nodes. One event on a node can only
be replayed if the events it depends on have been replayed as well. To generate the dependencies,
events are scanned to find the matching events on other nodes. Lost sent messages don't have a
corresponding receive event, so they are automatically considered as local events instead.
Additionally, we use the recorded output to determine deviations from the replay, which indicate
subtle system bugs such as buffer overflows etc.

3.3 Deterministic	Replay	in	System	Simulation

The final element of LibReplay is the replay of logs in system simulators. For replay, it
replaces each logging component with its counterpart replay‐component. Similar to the

logging components, we have one replay component per interface and LibReplay provides
these for the common interfaces in TinyOS. Compared to the logging components, the data
flow is now reversed: Replay components feed events to the application (see Figure 3: We

log function calls to and from the code of interest, such as a malfunctioning routing protocol.
For replay, we feed the logs back to the code of interest. Replay in a full‐system simulator

provides us with well‐established debugging tools such as stepping through code,
breakpoints and watchpoints.

). Utilizing the advanced debugging capabilities of modern system simulators that allow
monitoring of individual variables and stepping through code fragments. Note that when
performing such tasks on the deployed systems directly, they cause high overhead and significant
side effects. Additionally, we use the recorded output to detect deviations between the log and the
replay, which can indicate subtle system bugs such as buffer overflows, etc. Note that the main
replay-target of LibReplay are full-system simulators, as these can replay multiple nodes, and we
can analyse their interaction. However, LibReplay can also replay the execution on a real node
and we can connect and debug via JTAG, for example.

KARYON ‐ FP7‐288195
D4.6 ‐ Cooperative Diagnostics

© 2014 KARYON Project 18/25

KARY N

4. Implementation	and	Evaluation	
In this section we discuss implementation details, sketch on a first case study of how LibReplay
can be used to detect common bugs in distributed systems, and present results from our
performance evaluation. We begin with a set of micro benchmarks to determine MCU and
memory efficiency. Next, we compare LibReplay to the state of art and show that its overhead is
similar to today's approaches to logging while these commonly do log sufficient information to
provide replay capabilities.

4.1 Prototype	Implementation	

We implement LibReplay in TinyOS 2.1.2 [24] , an operating system for Wireless Sensor
Networks (WSNs) and evaluate using TelosB sensor nodes. In our research prototype we utilize
the software driven solution for logging (see Section 3.1). This approach supports rapid
prototyping and evaluation for two key reasons: (1) we do not rely on any dedicated hardware
and can use off-shelf micro-controllers and (2) these off the shelf microcontroller are common in
the testbeds we have access to.

As noted above, we utilize a Wireless Sensor Network for this initial evaluation, as its test-beds
are readily available for large-scale testing. For example, we have access to multiple test-beds
such as Twist [11] at TU Berlin, Germany, with 90 nodes, Indriya [21] at National University of
Singapore, Singapore, with 140 nodes and KansaiGenie [22] at Ohio State University, Ohio, with
about 400 nodes.

Figure 7: Example Screenshot of a sample replay environment: the full system simulator
"Cooja".

KARYON ‐ FP7‐288195
D4.6 ‐ Cooperative Diagnostics

© 2014 KARYON Project 19/25

KARY N

4.2 Example:	Diagnosing	Split‐Phase	Faults

Most long operations in TinyOS are implemented as split-phase, when, for example, a command
to initialise a device is sent from the application to the lower layer, and then an event is sent back
to signal that the initialisation is complete. The authors of [9] use LEACH [25] as a case study to
explain how their tracer helped in finding an implementation error. LEACH is a TDMA-based
dynamic clustering protocol. In the example the problem was caused on the cluster head by a
timer event trying to send a debug message while another component was sending the information
about the cluster to a node requesting access. The bug was caused by the fact that in the timer
event, the type of the message was set, although the send itself would fail, the message itself was
sent with a different type (because there is only one buffer for the messages, and the original
content had been modified by an interleaving event) and acknowledged and ignored by the
receiver, which had no function associated with that type of message. With our implementation
the log on the non-head node would show no activity, since the wrapper is placed at high level
and the message would be discarded before reaching it, and the head node would show an
interleaving of a timer between send and sendDone, and also carry enough information to show
that the buffer's content was altered.

4.3 MCU	and	Memory	Efficiency	of	LibReplay

In LibReplay, logging consists of two steps: the fast logging itself to an in-memory buffer and a
second low-priority background process that handles the heavy lifting to external storage. As a
result, the logging itself has only minimal impact on the program execution (see Figure 8). The
RAM footprint of LibReplay strongly depends on the buffer size chosen (see Figure 9). ROM is
stable independent of the buffer size chosen. For the following, we use the default value of 300
bytes for the buffer. Our experience shows that this is sufficient for most application scenarios,
and it is similar to the default setting in the state of the art. Nonetheless, when compared to the
overall memory footprint of the application, the footprint of LibReplay stays small (see Figure
10) leaving sufficient space for complex applications.

Figure 8: Logging has only small impact on
program execution. A low‐priority

background process transfers log to the
storage, e.g., the serial.

Figure 9: The RAM footprint of LibReplay
mainly depends on the size of the logging

buffers. ROM remains constant independent
of buffer size.

KARYON ‐ FP7‐288195
D4.6 ‐ Cooperative Diagnostics

© 2014 KARYON Project 20/25

KARY N

Figure 10: The overall memory footprint of LibReplay is small when compared to the
application itself (default setting, 300 bytes buffer).

4.4 LibReplay	and	Traditional	Approaches	to	Logging

We compare the efficiency of LibReplay to traditional logging approaches: printf, TinyLTS [8] ,
and the customized logging layer of the Collection Tree Protocol (CTP) [7] . To our best
knowledge, the source code of TinyLTS has not been released. Thus, we rely, where appropriate,
on the numbers published in the corresponding paper. Our results show that both the memory
footprint and the MCU load of logging with LibReplay is comparable to these traditional
approaches to logging (see Figure 11 and Figure 12). We note that these, in contrast to LibReplay
commonly do not log sufficient information to enable replay debugging.

Figure 11: The memory footprint of
LibReplay is similar to traditional logging
systems. The footprint of TinyLTS is taken
from its publication [8] , as the source code

is not available to us.

Figure 12: Average MCU duty‐cycle in a CTP
network of 25 nodes. We distinguish leaf
nodes and forwarders. For LibReplay we
also distinguish between logging and the

background (BG) process.

KARYON ‐ FP7‐288195
D4.6 ‐ Cooperative Diagnostics

© 2014 KARYON Project 21/25

KARY N

5. Discussion	
After introducing the design of LibReplay and evaluating its performance and overhead, we next
reflect on our design choices and the performance results. Please note that the results discussed
below are based on our initial prototype implementation. Our next step is to focus both on adding
new functionally as well as improve the performance of the system design.

5.1 Benefits	

The evaluation results underline key benefits of LibReplay and its architecture:

 Lightweight Logging: Our design choice to buffer the traces and using a low-priority
background task to collect them, results in a very small overhead in terms of MCU cycles
during each event. This is key to unsure a minimal intrusive logging and tracing of events.
As a result, LibReplay can record hundreds of events per second even on very small,
embedded systems.

 Flexible Logging: The design of LibReplay allows developers to target their tracing to
components of interest. Additionally, it allows to dynamically turn tracing on and off as
well as to re-target tracing at run-time. Thus, this keeps both the logging overhead as well
as its data stream limited and controllable. Moreover, it allows developers to flexibility
adept tracing to new insights they learned during an on-going analysis without requiring
physical access to any of the components.

 Deterministic Replay and Global View: Achieving a global, consistent view – as provided
by LibReplay – onto a dynamic, distributed system such as cooperate vehicles is a key
requirement for effective diagnostics and failure detection.

 Online and offline tracing: Depending on whether an online connection to each vehicle
is available or not, tracing and collection with LibReplay can be done both online and
offline. As this is transparent to the replay systems, a single system design provides both.

 Detecting timing faults: Basing on logical timestamps and not hardware timers,
LibReplay can be also used to detect low-level failures such as of timer faults. Assume
that a communication sub-system on one node suffers from a timing fault and, for
example, sent out a message too late. In this case, this will trigger a timeout on another
node, which is recorded by LibReplay just as the late message transmission (and its
corresponding reception). Thus, when constructing the global view onto the system, we
can trace and detect that the message was send too late, i.e., after the reception took place
after the timeout.

 Detecting crashes: If a crash is caused by the code that we are logging, replaying the log
that led to the crash will in most cases also trigger the crash in the test-bed or full-system
simulation environment. As a result, we can track the execution that led to the bug in the
simulation environment enabling us to detect its cause. If the bug is triggered from the
outside, for example, by voltage fluctuation, or by code that we are not tracking, the
replay in LibReplay detect that log and replay do not match and we signal this with an
error message.

 Detecting value errors: In the replay of LibReplay, we can track any variable of interest.
Thus, when enabling the logging in LibReplay we merely have to select which software
components we are interested in. During the replay, we can then track any variable within
these software components. This design as the following key benefit: The user does not
have to select the variable during logging time. This is very practical, as an error observed
can often be connected to some software modules but not to individual variables. During
the replay, the user flexibility selects variables of interests and then uses the powerful

KARYON ‐ FP7‐288195
D4.6 ‐ Cooperative Diagnostics

© 2014 KARYON Project 22/25

KARY N

debugging utilities of modern system simulators to track values, define breakpoints, and
assertions.

 In TinyOS, modules are the natural integration points for logging. They encapsulate local
state, and state changes are only triggered via their interfaces. Nonetheless, the design of
LibReplay is generic and is not bound to TinyOS. For example, instead of interfaces we
can log traditional function calls to and from a block of code. This, for example, matches
the design of other common OS in CPS and IoT such as AUTOSAR [23] , Contiki [26]
or FreeRTOS.

5.2 Limitations	

Albeit LibReplay is designed to be minimal intrusive, any tracing inherently causes a certain
overhead. Due its careful design, i.e., relying on buffering and a low-priority background process
for collection, we efficiently limit this overhead to a couple of MCU cycles. Independent of any
optimizations, when relying on a software-based solution, a certain overhead cannot be avoided,
as we have to log the event. LibReplay addresses this with two options: (1) as the logging
overhead is very limited, the additional CPU cycles of our logging can be directly included in any
safety and deadline analysis and, as a result, become part of the verified design. (2) When
requested, LibReplay can utilize dedicated hardware support for the logging to avoid any
overhead, similar to related approaches [11] [13] . Also, the KARYON project partner SP is
working on such hardware assisted monitoring.

KARYON ‐ FP7‐288195
D4.6 ‐ Cooperative Diagnostics

© 2014 KARYON Project 23/25

KARY N

6. Conclusions	and	Next	Steps	
In this work package we designed and developed LibReplay, a lightweight architecture for
distributed logging and deterministic replay in sensor networks. LibReplay enables (1) event
logging with small intrusion of the system, and (2) deterministic event replay in controlled
environments such as system simulators. As a result, we can exploit the debugging capabilities of
modern system simulators.

LibReplay simplifies bug hunting in deployed sensor networks and provides a debugging
experience similar to debugging (local and non-distributed) sequential programs. We discuss the
architecture of LibReplay and our research-prototype implementation. Our performance
evaluation show that the efficiency of LibReplay is similar to the state of the art, which commonly
does not log sufficient information to provide replay capabilities. Overall, LibReplay offers deep
insights into real-world deployments and allows debugging and testing in realistic settings.

Future directions include extending LibReplay with snapshot capabilities [27] [28] This will
increase the flexibility when debugging long-running applications: We take a snapshot of the state
of the code of interest and begin logging afterwards.

KARYON ‐ FP7‐288195
D4.6 ‐ Cooperative Diagnostics

© 2014 KARYON Project 24/25

KARY N

References	
[1] R.N. Charette, "This Car Runs on Code", in IEEE Spectrum, Feb. 2009,

http://spectrum.ieee.org/green-tech/advanced-cars/this-car-runs-on-code

[2] D. Geels, G, Altekar, S. Shenker, and I. Stoica: “Replay debugging for distributed
applications”, in Proceedings of the Annual Conference on USENIX ’06 Annual
Technical Conference. ATEC ’06 (2006)

[3] D. Geels, G. Altekar, P. Maniatis, T. Roscoe, and I. Stoica, “Friday: global
comprehension for distributed replay”, in Proceedings of the 4th USENIX conference on
Networked systems design and implementation. NSDI’07 (2007)

[4] D. Dao, J. Albrecht, C. Killian, and A. Vahdat, “Live debugging of distributed systems”,
in Proceedings of the 18th International Conference on Compiler Construction: Held as
Part of the Joint European Conferences on Theory and Practice of Software, ETAPS
2009. CC ’09 (2009)

[5] X. Liu, Z. Guo, X. Wang, F. Chen, X. Lian, J. Tang, M. Wu, M.F. Kaashoek, and Z.
Zhang, “D3s: debugging deployed distributed systems”, in Proceedings of the 5th
USENIX Symposium on Networked Systems Design and Implementation. NSDI’08
(2008)

[6] W. Dong, H. Chao, J. Wang, C. Chen, J. Bu and X. Xu, “Dynamic Logging with Dylog
for Networked Embedded Systems”, in Proceedings of the IEEE International
Conference on Sensing, Communication, and Networking (SECON). (2014)

[7] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss and P. Levis, “Collection Tree Protocol”,
in Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems.
SenSys ’09 (2009)

[8] R. Sauter, O. Saukh, O. Frietsch and P. J. Marron, “TinyLTS: Efficient Network-Wide
Logging and Tracing System for TinyOS”, in Proceedings of the IEEE International
Conference on Computer Communications (INFOCOM). (2011)

[9] V. Sundaram, P. Eugster, and X. Zhang, “Efficient diagnostic tracing for wireless sensor
networks”, in Proceedings of the 8th ACM Conference on Embedded Networked Sensor
Systems. SenSys ’10 (2010)

[10] T. Sookoor, T. Hnat, P. Hooimeijer, W. Weimer, and K. Whitehouse, “Macrodebugging:
global views of distributed program execution”, in Proceedings of the 7th ACM
Conference on Embedded Networked Sensor Systems. SenSys ’09 (2009)

[11] P. Sommer and B. Kusy, “Minerva: Distributed Tracing and Debugging in Wireless
Sensor Networks”, in Proceedings of the 11th ACM Conference on Embedded
Networked Sensor Systems. SenSys ’13 (2013)

[12] L. Wan and Q. Cao, “Towards Instruction Level Record and Replay of Sensor Network
Applications”, in Proceedings of the IEEE International Symposium on Modeling,
Analysis Simulation of Computer and Telecommunication Systems (MASCOTS), 2013

[13] M. Tancreti, M. S. Hossain, S. Bagchi and V. Raghunathan, “Aveksha: A Hardware-
software Approach for Non-intrusive Tracing and Profiling of Wireless Embedded
Systems”, in Proceedings of the 9th ACM Conference on Embedded Networked Sensor
Systems. SenSys ’11 (2011)

[14] V. Sundaram, P. Eugster and X. Zhang, “Prius: Generic Hybrid Trace Compression for
Wireless Sensor Networks”, in Proceedings of the 10th ACM Conference on Embedded
Networked Sensor Systems. SenSys ’12 (2012)

KARYON ‐ FP7‐288195
D4.6 ‐ Cooperative Diagnostics

© 2014 KARYON Project 25/25

KARY N

[15] M. R. Stallmanand C. Support, “Debugging with GDB: The GNU source-level debugger,
GDB version 4.16”, Free Software Foundation. (1996)

[16] F. Österlind, A. Dunkels, J. Eriksson, N. Finne and T. Voigt, “Cross-Level Sensor
Network Simulation with COOJA”, in Proceedings of the IEEE Conference on Local
Computer Networks (LCN). (2006)

[17] J. Eriksson, F. Österlind, N. Finne, N. Tsiftes, A. Dunkels, and T. Voigt, R. Sauter and
P. J. Marron, “Towards Interoperability Testing for Wireless Sensor Networks with
COOJA/MSPSim”, in the Proceedings of the European Conference on Wireless Sensor
Networks (EWSN). (2009)

[18] B. L. Titzer, D. K. Lee, and J. Palsberg, “Avrora: Scalable Sensor Network Simulation
with Precise Timing”, in Proc.~of the ACM/IEEE International Conference on
Information Processing in Sensor Networks (IPSN). (2005)

[19] F. Bellard, “QEMU, a Fast and Portable Dynamic Translator”, in Proceedings of the
Annual Conference on USENIX Annual Technical Conference (ATEC). (2005)

[20] V. Handziski, A. Köpke, A. Willig, and A. Wolisz, “TWIST: a Scalable and
Recongurable Testbed for Wireless Indoor Experiments with Sensor Networks”, in
RealMAN: Proc. of the Int. Workshop on Multi-hop Ad Hoc Networks: from Theory to
Reality, 2006.

[21] M. Doddavenkatappa, M. C. Chan, and A. Ananda. “Indriya: A Low-Cost, 3D Wireless
Sensor Network Testbed”, in TridentCom: Proc. of the ICST Conf. on Testbeds and
Research Infrastructures for the Development of Networks and Communities, 2011.

[22] E. Ertin, A. Arora, R. Ramnath, V. Naik, S. Bapat, V. Kulathumani, M. Sridharan, H.
Zhang, H. Cao, and M. Nesterenko. “Kansei: a testbed for sensing at scale”,
in Proceedings of the 5th international conference on Information processing in sensor
networks (IPSN '06), 2006

[23] H. Heinecke, K.P. Schnelle, H. Fennel, J. Bortolazzi, L. Lundh, J. Leflour, J.L. Maté, K.
Nishikawa, T. Scharnhorst, “AUTomotive Open System ARchitecture - An Industry-
Wide Initiative to Manage the Complexity of Emerging Automotive E/E Architectures”,
in Convergence International Congress & Exposition On Transportation Electronics
(2004)

[24] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K. Pister, “Systemarchitecture
directions for networked sensors”, ACM SIGOPS Operating Systems Rev. 34(5), 2000

[25] M.J. Handy, M. Haase, and D. Timmermann, "Low energy adaptive clustering hierarchy
with deterministic cluster-head selection", In Proceedings of the 4th International
Workshop on Mobile and Wireless Communications Networks, 2002

[26] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - A Lightweight and Flexible Operating
System for Tiny Networked Sensors”, In Proceedings of the IEEE Confernece on Local
Computer Networks (LCN). (2004)

[27] F. Österlind, A. Dunkels, T. Voigt, N. Tsiftes, J. Eriksson and N. Finne, “Sensornet
Checkpointing: Enabling Repeatability in Testbeds and Realism in Simulations”, in
Proceedings of the European Conference on Wireless Sensor Networks (EWSN). (2009)

[28] A. Löscher, N. Tsiftes, T. Voigt and V. Handziski, “Efficient and Flexible Sensornet
Checkpointing”, in Proceedings of the European Conference on Wireless Sensor
Networks (EWSN). (2014)

