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Glossary	of	Acronyms	
 

ASIL  Automotive Safety Integrity Level 

CBS  Cyber Physical System 

COTS  Commercial-of-The-Shelf 
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Executive	Summary	

D3.5 summarizes the final development of WP3: Supporting technologies. After having provided 
working software prototypes in D3.3, this report gives an overview over the adaptations and 
additions that have been made to the middleware with respect to the demonstrators and 
particularly the evaluation environment comprising fault injection. As indicated in the DoW, this 
report is mainly composed from technical papers. The document is structured in topics along the 
tasks in WP3. The chapters are devoted to a certain topic each. They contain short informal 
descriptions of the more detailed papers that are allocated in the Annexes. 

Chapter 2 of the report is dealing with resilient real-time communication over wireless media. A 
novel architecture is described that is based on an abstract communication model, which offers a 
set of correctness, dependability and timeliness properties.  

Chapter 3 describes the use of adaptive middleware in a focussed demonstrator. Here, we show 
the benefit when integrating hardware and software components in a mixed reality scenario that 
is based on quite a number of different technologies.  

The various tools for fault injection are presented in Chapter 4. Fault injection particularly 
addressing communication faults is described in two papers. Section 4.1 presents a real-time 
assessment suite for IEEE 802.15.4 networks. This suite provides two services, namely network 
monitoring and fault-injection. With this suite effective fault injection campaigns can be easily 
defined and instantiated while providing means to visualize and record its effects. The work in 
Section 4.2 shows a way of using fault injection as part of a safety case for cooperative automotive 
systems. The failure modes are derived from respective safety standards and the prototype shows 
that it is feasible to inject all faults needed in a safety assessment according to the requirements 
in the functional safety standard for the automotive domain. Finally, Section 4.3 addresses a 
failure injection framework for the perception system needed for autonomous and cooperative 
driving. This is tightly related to the work on sensor failure modes and semantics performed in 
WP2. The white paper describes how patterns of sensor failures are defined and injected.  

Chapter 5 includes final work on exploiting environment models for autonomous self-driving 
cars. Section 5.1 describes one of the key services implemented in the Gulliver Testbed: the Local 
Dynamic Map (LDM) and how it is exploited for "driving with confidence". An LDM, based on 
on-board and remote sensory information provides the position of all nearby noticeable objects 
along with the LDM’s confidence about these positions. The paper describes how safety can be 
maintained even under the uncertainties of environment perception by changing the levels of 
service.  

The paper summarized in Section 5.2 addresses the problem of how to store and retrieve 
environment information in a way that is relevant in the context of an application. The work 
classifies relevant types of environment data and how this data can be organized. The distributed 
Cassandra database is used, which allows every entity to store its data for its own purpose, but 
also to share it with interested entities if needed. A specifically tailored language "SelectScript" 
allows it to extract information supporting application-based environment models and views. 
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1. Introduction	
This final report on middleware and the evaluation environments covers the recent results in 
networking, the adaptive middleware and fault-injection. Monitoring and fault injection tools for 
dependable networking and adaptive middleware have been provided as software modules in 
D3.3. This final report describes additional components for developing and testing the 
middleware used in the demonstrators and final results in fault-injection.  

The structure of the report follows the specification in the DoW and includes brief descriptions 
of new components added to the adaptive middleware and evaluation environments which are 
described in detail by technical papers attached in Annex A to Annex G.  

The chapters are organized along the tasks of WP3. The next chapter comprises a contribution 
from T3.1 Predictability and Resilience in Embedded Networks. Chapter 3 addresses issues of 
"Adaptive Middleware for Advanced Control Systems". Chapter 4 is related to "Evaluation 
Environment and Tools" and Chapter 5 describe components to handle and exploit environment 
information.  
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2. The	Wi‐STARK	 Architecture	 For	 Resilient	 Real‐Time	
Wireless	Communications	

This section presents an overview of the state of the art architecture dubbed Wi-STARK. The Wi-
STARK architecture supports the provision of dependability and real-time guarantees within a 
one-hop communication domain established by the Medium Access Control (MAC) and Physical 
(PHY) communication (sub)layers between wireless nodes. Wi-STARK takes a divide-to-
conquer approach to the provision of dependability and real-time guarantees, motivated by the 
following observation: 
 

If no real-time guarantees can be offered within communications at one-hop of distance, 
no real-time guarantees can be offered within multiple-hop communications at all. 

 
That means, any dependable real-time message delivery guarantee has to be secured first within 
the one-hop of distance wireless space, prior to be extended end-to-end, across multiple hops. 
Given this context, the Wi-STARK architecture is deemed extremely useful and emerges as a 
fundamental building block to reach the ambitious goal of enforcing end-to-end real-time wireless 
communication guarantees, which have been the main target of several works in the literature [1] 
[2] [3]. 

The Wi-STARK architecture is presented in Figure 1. Its design is open and flexible, being 
composed by two layers dubbed Channel Layer and Mediator Layer, wrapping a standard service 
MAC sublayer and interfacing, at the bottom, a standard basic MAC and PHY layers (abstracted 
in Figure 1, by the RF transceiver interface). The design decision of wrapping the standard MAC 
sublayer has two main advantages: enables a tight control of the use of RF communication 
channels; allows to improve the services offered to high level protocol layers.  

 

 
 

Figure 1 ‐ The Wi‐STARK architecture. 
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Detailing the architecture of Figure 1, the Channel Layer is a thin layer that provides a common 
interface to transparently control the use of a given RF communication channel for purposes of 
frame transmission and reception, incorporating useful extensions to enhance the dependability 
of communications. In particular, the Channel Layer implements: an extension to the standard 
Frame Check Sequence (FCS) mechanism (specified in [4]), which secures the detection and 
signalling of every error observed in received frames; the detection of RF communication channel 
failures; and the RF communication channel switch strategy, specified in [4], to be performed 
upon channel failure detection. 

The MAC sublayer illustrated in Figure 1 is the standard MAC sublayer present in the traditional 
wireless networking protocol stack, such as those specified within the IEEE 802.15.4 [5] and 
IEEE 802.11p [6] wireless standards. In the context of the Wi-STARK architecture such standard 
MAC sublayer is dubbed serviceMAC, offering only conventional unreliable data frame and layer 
management service interfaces. No modifications to the standard specification are needed for its 
integration in the Wi-STARK architecture. In this sense, the Wi-STARK architecture is highly 
flexible supporting the integration of any MAC sublayer wireless protocol, including the real-
time variants proposed in [1] [2]. 

The Mediator Layer is an extensible sublayer, specially designed to mediate the communication 
flow from (and to) the high level protocol layers, being established upon the exposed serviceMAC 
interface, as illustrated in Figure 1. The Mediator Layer is responsible for the semantically rich 
service interface offered by Wi-STARK, which includes reliable communications, effectively 
augmenting the services offered by the standard MAC sublayer.  

In the perspective of networking communication protocol developers, the dependability and 
timeliness guarantees offered by the Wi-STARK architecture are represented by a set of 
fundamental primitives for transmission and reception of messages to/from the network, which 
are specified in Table 1. 

 

Wi-STARK data service interface

Primitives Description 

MLA.Data.request 
Requests a message transmission using 
one of the Wi-STARK communication 
protocols. 

MLA.Data.confirm 

For reliable services, it confirms 
message delivery at recipients. 
Otherwise, it confirms only message 
transmission. 

MLA.Data.indication Notifies the arrival of a message. 

Table 1 ‐ Wi‐STARK data service interface. 

 

All of the primitives present in the Wi-STARK data service interface are easily integrated into 
embedded and real-time operating systems, being available as system calls associated to the 
wireless networking protocol stack. Design details of the Wi-STARK architecture can be found 
in the following contribution: 

  

In Annex A: reprint of the paper “The Wi‐STARK Architecture For Resilient Real‐Time Wireless 
Communications”.  J. L. R. Souza and J. Rufino. EWiLi 2014. November 2014, Lisbon, Portugal. 
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3. The	KARYON	Adaptive	Middleware	
During the development of the automotive demo scenario of the Otto-von-Guericke University 
the KARYON Middleware was extended to incorporate more components. These additional 
components are mainly used to test, develop and visualize the behaviour of the demonstrator. 

This section briefly describes the extension of the software as provided in D3.3 (Working 
Prototype of the Adaptive Middleware) and the use in the demonstrator. 

3.1 The	OvGU	Demonstrator	

The OvGU demonstrator aims to emphasize the abilities of integrating physical and virtual entities 
in a mixed-reality setup. Figure 2 depicts the example scenario. On the left side the real track and 
car are visible. The right side shows the virtual environment modelled in V-REP (Virtual Robotic 
Experimentation Platform) including the virtual representation of the real car in the lower part of 
the track as well as a virtual car in the middle of the track. The benefit of mixed reality is to allow 
and assist developers when gradually integrating functionality and test it at different levels of 
abstraction. Additionally, and in fact a consequence of mixed-reality, the demonstrator shows the 
fault-injection capabilities supported by the KARYON Middleware enabling fault analysis at 
varying levels of integration. 

3.1.1 Demo	Scenario	

The demonstration consists of three cars driving autonomously on the track. They follow the right 
lane of the track and keep their distance towards their front car. Two of them are virtual ones only 
driving in the simulation environment and one car is a real one driving in the simulation as well 
as on the real track. According to the KARYON architecture, the cars can drive at different levels 
of service depending on the quality of their perception of their position and orientation on the 
road. The quality of perception is in turn depended on the failure states of the various sensors 
expressed as validity of the respective sensor data. In the demonstration the level of service 
defines the maximum speed a car can travel. According to the validity of the sensor data the level 
of service and therefore the speed may decrease. In Annex B, we present the details of the 
interaction between speed, uncertainty and control of the car. Cars adapt their speed based on the 
local current level of service. In case of all sensors failing, the lowest level of service is activated, 
which switches to manual control (for practical reasons this is only available for the real car in 
the demonstrator).  

 
 

Figure 2 ‐ Overview picture of the OvGU demonstrator. 
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It should be noted that all cars run the same control software. Mixed reality allows embedding the 
control software in three different system environments transparently: 

1. We provide a real car that receives position data from a real camera-based sensor and 
controls real actuators. Both, the sensor data and the actuation commands are also fed to 
the simulator to enable mutual awareness between the real and the virtual cars. The real 
car uses the embedded hardware of the FCUL to provide a physically separated safety 
kernel controlling the level of service. 

2. We run the control software as a hardware-in-the-loop system on the same embedded 
hardware that is used in the real car. However, the position information is completely 
derived from the simulation and the actuation commands are made available to the 
simulator. V-REP runs a complete simulation considering the physical properties of the 
car based on this information. Another safety kernel is run on the embedded hardware for 
this virtual car. Although, the physical separation of the safety kernel is not provided, it 
performs the same functionality in the demonstrator. 

3. The control software runs on a powerful Linux machine receiving inputs and generating 
outputs as above. 

It is quite obvious that a large number of different hardware and software components including 
the wireless links have to be integrated in the mixed-reality demonstration scenario. The 
KARYON Middleware is crucial to ease this integration task and provides a seamless interaction 
between all parts hiding the differences of the underlying system. Figure 3 roughly sketches the 
involved components. In this case, the position tracking sensors of the real car is visualized. To 
produce a position, a video stream is acquired through an industrial camera and fed to a ROS-
based vision algorithm detecting the car in the video. Subsequently, the detected position is 
modified by a Matlab-based fault injection component, based on the current configuration. The 
configuration is supplied through the Android-User-Interface. To further highlight the benefits of 
the KARYON middleware, fault-injection exploits its specific publish-subscribe communication. 
Every sensor producing data for the demonstrator is enhanced with a Matlab-based fault injection 
component (as visible in Figure 3). These components are controlled via a specific fault-injection 
topic, which is accessed through a mobile tablet, to enable an interactive reconfiguration of the 
sensors’ fault-injection parameters. This enables the visualization of the systems behaviour in 
different levels of service, without waiting for a specific fault. Finally the current state of the 
demonstrator, consisting of car positions and each car’s level of service, is visualized on multiple 
displays. This allows the spectators to observe the systems internal behaviour. 

 

Figure 3 ‐ A schematic view of an abstract sensor. 
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3.1.2 Extensions	of	the	KARYON	Middleware	

 

Figure 4 illustrates the extended KARYON Middleware used in the OvGU Automotive 
Demonstrator compared to the version that has been provided in D3.3. The blue parts of Figure 4 
depict ROS-based Systems, yellow parts show Android/Java based systems and green parts use 
the native KARYON Middleware. The real car internally uses ROS-components (ROS: Robot 
Operating System) to handle hardware access and low-level computing tasks. The ROS-
components accessing hardware are low-level drivers build for special devices like Hokuyo-laser-
scanners or DC-motors. Additionally, specific functionalities like optical lane detection are 
provided by ROS. All of them, define their own message formats and message subjects that are 
used to communicate with other parts of the system using gateway nodes. These nodes transform 
the specific ROS-messages into publish-subscribe messages of the KARYON middleware 
enabling real-time properties as well as fault injection.  

The mixed-reality of the simulation is achieved through the usage of VREP as a simulation 
environment. In this environment, virtual and real cars may coexist, which is only possible by 
synchronizing all cars’ perception and actuation. The sensing and actuation of the virtual cars are 
handled directly by the simulation environment. The cars only need to fetch the sensor data from 
the simulation and transmit their actuation commands back. However, the real car is more difficult 
to include. On the one hand, the sensor data of the real car needs to be extended by the data 
inferred in the simulation. To this end, a virtual twin of the real car is included in the simulation, 
which is provided with simulated sensor data by the simulation environment. This simulated 
sensor data is fused with the real sensor data to form a consistent perception for the real car. On 
the other hand, the effects of the actuation of the real car need to be observed by the simulation 
environment to update the state of the virtual twin. Therefore, an optical tracking system observes 
the behaviour of the real car and publishes its information to the environment simulator. The 
optical tracking system uses ROS-based computer vision algorithms to derive the position and 
orientation of the real car. The Middleware allows, through the usage of publish/subscribe, a 
unification of the virtual sensors and actors and the real sensors and actors. Consequently, the 

 

Figure 4 ‐ Overview of the extended KARYON Middleware. 
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control algorithms used in the cars perceive no difference between the data of a real or virtual 
entity enabling a transparent integration of real and virtual components. 

The control software for the cars is implemented in Simulink, as depicted in Figure 5. The yellow 
blocks establish the communication link to the VRep environment simulator. Apart from 
providing basic communication functionalities, the special KARYON-Matlab-interface (Block 
A) synchronize the internal simulation time of Simulink to the synchronous time of the KARYON 
Middleware in order to achieve a consistent behaviour of the demonstrator. Afterwards, the 
environment model depicted by the green block (Block B) interprets the obtained sensor data, 
provides a model of the environment and generates an application specific view out of the 
environment model. Finally, the control software (Block C) operates on the generated view of the 
environment model and outputs respective actuator command that are fed back to the environment 
simulator via the KARYON-Matlab-interface (Block D). The mentioned structure is used for each 
car no matter whether simulation, hardware-in-the-loop or real hardware is used. In order to 
maintain such a perception-action loop, the KARYON-Matlab-interface keeps track of the 
necessary underlying primitives.  

 

Figure 6 provides an insight into the environment model consisting of the interpreter (Block E), 
the environment model (Block F) itself and the view generator (Block G), as described in D 2.6. 
For each running application an associated view is generated so that actual error values are 
provided based on which a respective application responds with an actuator command. This 
means the lane tracer and the adaptive cruise control are provided with relative position errors 
and relative distance values, respectively. Due to the achievements of the environment model, the 
application behaviour simplifies to a simple control loop as represented by the PID block 
illustrated in Figure 7. Dependent on the actual error value, the PID controller is used to keep the 
car on track and to maintain a gap between cars by respective steering and speeding commands.  

 

 

 

Figure 5 ‐ Control behaviour modelled in Simulink. 
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Figure 7 ‐ PID controller representing the application behaviour. 

 

 

 

 

 

 

Figure 6 ‐ The environment model with the interpreter and the view generator. 
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The visualization of the demonstrator’s behaviour is done through the User Interface, which 
consists of two sub parts: A PC is used to visualize the current state of the mixed reality 
application. An Android Tablet is used to configure the fault injection framework of the 
KARYON middleware to different fault profiles, as shown in Figure 8. It uses the Java binding 
of the KARYON Middleware for integration.  

 

 

Figure 8 ‐ The fault injection interface running on an Android tablet. 

 

 

In Annex B : reprint of the paper “Sensor‐and Environment Dependent Performance Adaptation 
for Maintaining Safety Requirements”.  T. Brade, G. Jäger, S. Zug and J. Kaiser. Computer Safety, 
Reliability, and Security, Springer, 2014, pp. 46‐54. 
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4. Fault	injection	

4.1 Real‐Time	Assessment	Through	Fault	Injection	in	IEEE	
802.15.4	networks	

Despite some advances in the support of real-time communication in wireless networks, there are 
still open problems to be solved, which often need the appropriate tools for their study and 
analysis, namely when experimental activities in real settings are of fundamental importance. 

Obtaining experimental data from real network operation requires the use of appropriate tools 
immersed in the wireless network setting. Network monitoring is a technique aimed at analysing 
the functional network interactions between its nodes. Obtaining other non-functional 
characteristics such as reliability, timeliness, resilience and susceptibility to errors requires more 
advanced network monitoring tools. A tool aiming to extract both functional and non-functional 
characteristics from real wireless network settings will be, by itself, of extreme importance and 
significance for the study and analysis of network protocols.  

In addition, a key issue is that wireless communications are prone to be disturbed by 
electromagnetic interferences from the surrounding environment, causing then network errors. 
Since particular error patterns may be especially relevant for the analysis of the network operation 
and their natural occurrence may be rare, there is the need to re-enact such error patterns, trough 
fault injection. To fully understand how network errors interfere in the real-time behaviour of 
networking communications a real-time assessment toolbox is required. Both fault injection and 
networking monitoring functions are needed: the fault injector (selectively) enforces the 
occurrence of (particular) network errors, possibly in some kind of transmitted frame; monitoring 
and capturing the network traffic enables the analysis of the real-time capabilities of the 

 

Figure 9 ‐ System Architecture. 
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communication system face to the injected error pattern. Some error patterns may be so relevant 
that they may be configured as pre-defined fault injection profiles.  

Within the scope of the KARYON Project, a toolbox has been developed to assess not only the 
functional properties of wireless network operation but also a set of non-functional properties of 
network and protocols, such as reliability, timeliness, resilience and susceptibility to network 
errors. The toolbox architecture and design is completely general and the basic concepts and 
principles can be applied to any wireless network. The toolbox is composed by four components 
(as illustrated in Figure 9): the network monitoring unit, the fault injector unit, the hardware 
integration interface, and the Wireshark. A use-case has been set and engineered for the real-time 
assessment of IEEE 802.15.4 [5] networks and protocols.  

The Network Monitoring Unit includes a Commercial-Of-The-Shelf (COTS) hardware network 
interface device acting as networking monitoring probe (a.k.a. sniffer) with the purpose of 
capturing all traffic transmitted through a specific channel. Taking advantage of the promiscuous 
mode to receive all correct traffic in conjunction with the Frame Check Sequence (FCS) extension 
specified in [4] the Network Monitoring Unit is able to receive all correct traffic as well as frame 
received with errors. 

The Fault Injector Unit includes a fault injector device intended to force the occurrence of errors 
accordingly with a given (configurable) pattern and timing. Faults are injected directly in the 
wireless communication medium. In all the aspects, the Fault Injector Unit is a perfectly common 
Commercial-Of-The-Shelf (COTS) network interface, with the exception that the network 
interface may be configured to bypass the medium access control protocol thus allowing a direct 
access to the wireless transmission medium when needed. The Fault Injection Unit operation can 
be individually configured for a specific fault injection campaign or it can be configured with one 
of several pre-defined fault injection profiles. 

A third unit, the Hardware Integration Interface connects the two previous units: the Network 
Monitoring Unit and the Fault Injector Unit. The Hardware Integration Interface is a glue 
component that enables extremely fast cooperation and interaction between the network 
monitoring unit and the fault injection unit. For example, a given fault injection event or campaign 
can be timely triggered by the detection of a given event or operational condition by the Network 
Monitoring Unit.  

Finally, Wireshark [7] was extended to manage all aspects of the network assessment, including 
control and data collection from the previously mentioned components. Wireshark is a referenced 
network protocol analyser tool with support for different wireless network standards, including 
EEE 802.15.4 packet visualisation capabilities. 

Further details on the tool above presented can be found in the following contribution:  

 

In Annex C: reprint of the paper “A Tool for Real‐Time Assessment Through Fault Injection in 
IEEE 802.15.4 Networks”.  R. P. Caldeira, J. L. R. Souza and J. Rufino. Submitted for publication. 
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4.2 A	Fault‐Injection	Prototype	for	Safety	Assessment	of	V2X	
Communication	

One of the key characteristic of a cooperative system is the possibility to wirelessly exchange 
information, usually local sensor data which is distributed globally. One common example is to 
exchange absolute and relative positions among the involved vehicles. Thus, the wireless 
communication links will be associated with safety requirement and their corresponding safety 
integrity levels. The integrity of the communication links will be monitored by safety mangers 
on-board the vehicles and the level-of-service will be adjusted accordingly to maintain a safe 
system. In order to evaluate the aforementioned functionality, it is necessary to have the 
possibility to inject faults in the communication links in a controlled and predictable manner. The 
fault-injection prototype presented in the paper of Annex D have been developed to fulfil this 
purpose. 

The techniques used in the prototype are generic, i.e. agnostic with respect to underlying 
communication protocol. However, the presented implementation of the prototype targets the 
IEEE802.15.4 protocol used in e.g. wireless sensor networks. The prototype emulates many most 
common communication failure modes by one or a combination of packet sniffing, jamming, and 
insertion. As an example a message delay is emulated by jamming the original message and 
resending (injecting) it a specified delay later (a priori knowledge of message content is assumed). 
State machines are used to control fault injection triggers and the fault injection itself.   The 
following failure modes are currently supported by the fault injection prototype: message 
corruption, delay, loss, insertion, unintended message repetition, masquerading, and blocking 
access. 

 

In Annex D:  reprint of  the paper “A Fault‐Injection Prototype  for Safety Assessment of V2X 
Communication”.    Daniel  Skarin,  Benjamin  Vedder,  Rolf  Johansson,  and  Henrik  Eriksson, 
Department of Electronics, SP Technical Research  Institute of Sweden. Presented at DEPEND 
2014:  The  Seventh  International  Conference  on  Dependability.  Published  in  conference 
proceedings by IARIA, 2014. ISBN: 978‐1‐61208‐378‐0. 

4.3 Configuring	Fault	injection	for	Cyber‐Physical	Systems	

Autonomous vehicles intimately link the entities of the real-world to their internal virtual world 
images. At the interface between these worlds, sensors perceive and transform the real-world 
entities. The challenge is to provide a precise and an accurate observation that may be 
substantially affected by sensor failures and inherent uncertainties. Obviously, these failures 
cause a potential risk for violating safety goals, because an application takes action based on these 
observations. A safety critical system must be proven safe before it will be put to operation due 
to the potential to cause harm. Therefore, checking, analysis and validation have to be performed 
at early design and development stages. Failure injection is one of the important techniques 
providing evidence at design-time that the application is either robust enough to resist failures or 
not susceptible to the considered set of failures. Recognizing the advantages, failure injection 
became part of several standard such as ISO 26262.  

ISO 26262 defines automotive safety integrity levels (ASIL) that identify the safety requirements 
for a function that may be broken down to requirements of components that are involved. In order 
to verify correct operation, test patterns are demanded to be injected. The characteristics of such 
tests as coverage an extension depend on the safety integrity attribute (ISO 26262 - ASIL A-D, 
ISO 61508 - SIL 1-4). For instance, out-of-range, offsets, stuck in range and oscillations faults 
are specified by the standard. However, the standard the standard does not address complex fault 
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patters of a sensor and the selection of the injection points (e.g. hardware or software) as well as 
the parameterization of the injected faults is left open.  

The proposed failure injection framework provides means to model and inject complex failures. 
It allows to define the shape of a failure signal, its distribution over time and combinations of 
various failures, thus complex failure patterns. Because the failure injection is to some extent 
stochastic, it must be ensured that all failure patterns are injected with a sufficient occurrence rate. 
A failure injection monitor allows to observe the failures and to verify occurrence rates.   

Sensor failures are specified by electronic data sheets. These descriptions are automatically 
transformed to Simulink blocks and placed between the correct sensor (whether a simulated 
sensor or a real sensor operated under lab conditions) and the respective control component. The 
KARYON middleware supports this configuration procedure (see also section 3.1.2). External 
configuration tools enable the injection of different complex failure patterns at run time, thus 
exercising the system under varying failure conditions. 

 

In Annex E: reprint of the paper “A Failure Injection Framework for Cyber‐Physical Systems”. 
Sebastian Zug, Tino Brade, Christoph Steup. Submitted for publication. White Paper EOS‐OVGU. 
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5. Exploiting	Environment	Models		

5.1 Driving	with	Confidence:	Local	Dynamic	Maps	That	Provide	
LoS	for	the	Gulliver	Test‐Bed	

The design of automated driving systems aims at reducing the human error and increasing the 
fuel efficiency by letting the vehicles map their surroundings and drive autonomously. One of the 
system challenges on the road is that at any time the environment can stop meeting the system’s 
operational conditions (and then resume meeting the requirements at some later point in time). 
Thus, as vehicles map their surroundings, they should also provide information that can help the 
vehicles to know whether the operational conditions are met with respect to the confidence that 
they have about the mapped information. 

We design and implement key services of Local Dynamic Maps (LDMs) that are based on on-
board and remote sensory information. The LDM provides the position of all nearby noticeable 
objects along with the LDM’s confidence about these positions. The design also includes an 
extension that allows the vehicular system to agree on the lowest common ability to meet the 
operational conditions.  

We evaluate the performance of a key component in our pilot implementation together with a set 
of test cases that validate the proposed design. Our current findings show that the presented ideas 
can accelerate the deployment of automated driving systems. 

Self-driving cars will be the next big step in vehicular technology as several important automotive 
original equipment manufacturers (OEMs) have recently announced. However, their specific 
challenge besides deploying a robust and reliable technology throughout a vehicle’s lifetime is to 
bring down the technology’s costs. Therefore, expensive sensors that perceive a vehicle’s 
surroundings need to be substituted by cheaper counterparts. Cheap sensors normally have a 
reduced accuracy. This is addressed by sensor fusion with information provided by other vehicles 
and the infrastructure. 

Research in this area however is time-consuming, error-prone, expensive, and tedious, when 
several cars need to be coordinated within a real-scale experiment on a real proving ground. As 
an intermediate for instance, preliminary experiments can be planned and conducted with 
miniaturized counterparts. We maintain such a fleet of scaled autonomous and cooperative 
vehicles using the Gulliver Testbed. Different use cases with our test-bed have successfully shown 
that it is possible to bridge between purely virtual experiments as carried out in simulations and 
physical experiments on real-scale proving grounds. 

Our system design has two distinct parts that each has different timing properties, following the 
architectural hybridization concept. Given the uncertainties affecting the system operation and 
the confidence in the data used in control processes, we use the architectural concept of safety 
kernel. This concept is responsible for managing the task, in a way, that ultimately ensures the 
required safety goals. The vehicle limited ability to communicate prevents centralized solutions 
and open the door to cooperative ones. We consider sensory data that has validity attributes 
attached that defines that accuracy and conference in the data. The (decartelized) safety kernel 
uses these attributes to decide on a system service level that in turn will set the system 
performance level after cooperatively evaluating the service level. This version of the paper refers 
to the work that was done in KARYON with respect to local dynamic maps. We note that 
cooperation to construction of localization maps was earlier discussed in other projects, such as 
HIDENETS. 

We have designed and implemented the Gulliver test-bed with an emphasis on demonstrating 
safety aspects of cooperative systems, and system architecture to the concrete implementation of 
fundamental components. The software architecture within each vehicle follows the proposed 
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architectural pattern and, in particular, uses a safety kernel for safety management. For that, the 
hardware and software solution presented in this paper are based on an earlier design in which we 
have implemented and integrated the safety kernel in Gulliver vehicles [8]. Thus, the test-bed is 
adequate to demonstrate the architectural concept, and to show that it is possible to manage the 
performance level depending on the operational conditions while ensuring that the functions 
always perform safely. 

 

In Annex F: reprint of the paper “Driving with Confidence: Local Dynamic Maps That Provide 
LoS for the Gulliver Test‐Bed”.  C. Berger, O. Morales, T. Petig and E. M. Schiller. Computer Safety, 
Reliability, and Security, Springer, 2014, pp. 36‐45. 

 

5.2 Distributed	Management	and	Representation	of	
Environment	Data	and	Context	in	Robotic	Applications	

The higher level of the KARYON middleware provides components for representing the 
environment. This part of middleware is designed for interpreting sensor information and for 
distributing information about the environment as provided by distributed stationary and mobile 
sensor systems available from road side infrastructure and floating car data. The respective 
component has been described in the deliverables D2.4 and D2.6. The general approach presented 
in the paper in Annex G is an extension that addresses storage and retrieval of environment 
information. The scheme allows to query and access data in smart environments, based on a two-
step approach.  

In a first step data is classified and organized according to a global and hierarchical structure. 
Based on CassandraDB and its ROS integration, described in [9], we developed a virtual overlay 
database for smart environments that links measurement data, robot and sensor descriptions, with 
location information. A first prototype was made available at:  

http://svn.code.sf.net/p/ivs-ros-pkg/code/trunk/glodel/  

This virtual overlay database is used to recreate local environment models and views.  The 
generated complex geometric local environment models can be updated with available real-time 
data and furthermore be applied to extract more application specific information. For this purpose 
we developed a new kind of programming/querying language "SelectScipt", which is based on a 
SQL-like semantics. A first prototype was made available at:  

https://pythonhosted.org/SelectScript_OpenRAVE/  

SelectScript is a scripting language and can be executed at runtime and allows requesting facts 
about the environment and extracting further specific representations, e.g. such as views, sub 
models, or maps. 

 

In Annex G:  reprint of  the paper “Distributed management and  representation of data and 
context  in  robotic applications”.   A. Dietrich, S. Zug, S. Mohammad and  J. Kaiser.  Intelligent 
Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference on, 2014. 
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Annex	A The	Wi‐STARK	Architecture	For	Resilient	Real‐
Time	Wireless	Communications	

 

J. L. Souza and J. Rufino, “The Wi-STARK Architecture For Resilient Real-Time Wireless 
Communications”. 
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ABSTRACT
Networking communications play an important role to se-
cure a dependable and timely operation of distributed and
real-time embedded system applications; however, an effec-
tive real-time support is not yet properly addressed in the
wireless realm. This paper presents Wi-STARK, a novel
architecture for resilient and real-time wireless communi-
cations within an one-hop communication domain. Low
level reliable (frame) communications, node failure detec-
tion, membership management, and networking partition
control are provided; since these low level services extend
and build upon the exposed interface offered by networking
technologies, Wi-STARK is in strict compliance with wire-
less communication standards, such as IEEE 802.15.4 and
IEEE 802.11p. The Wi-STARK service interface is then
offered as operating system primitives, helpful for building
distributed control applications. The one-hop dependabil-
ity and timeliness guarantees offered by Wi-STARK are a
fundamental step towards an effective design of real-time
wireless networks with multiple hops, including end-to-end
schedulability analysis of networking operations.

Categories and Subject Descriptors
C.4 [Computer System Organisation]: [Fault tolerance];
C.3 [Special-Purpose and Application Based Systems]:
Real-time and embedded systems; C.2.1 [Computer Com-
munication Networks]: Network Architecture and De-
sign—Wireless communication
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1. INTRODUCTION AND MOTIVATION
Advances in microelectronics enable the development and in-
tegration of networking computing systems in environments
with different levels of criticality, monitoring and controlling
physical entities such as nuclear reactors, physical structure
of buildings and bridges, and power grids. In these kind
of environments, usually known as Cyber Physical Systems
(CPS), communications may have safety-critical constrains,
implying a mandatory provision of real-time communication
guarantees to secure the dependable and timely operation of
the entire system.

The literature addressing real-time support on the wireless
realm can be classified into two distinct domains: (a) com-
munication protocols and architectures, and (b) schedulabil-
ity analysis.

The contributions to real-time communication protocols and
architectures, such as [16, 17, 18], are concerned with the
provision of end-to-end guarantees within multiple hop net-
works. However, some of them require strong assumptions
with respect a global notion of time (synchronised clocks
among all nodes of a multiple hop network), which is a prob-
lem by itself without an easy solution. Furthermore, the
used error model only assumes the loss of data frames, ne-
glecting the effects that control frame errors may have on the
operation of the Medium Access Control (MAC) sublayer,
which may generate network partitions during long periods
of time. These partitions may imply an unpredictable tem-
poral behaviour and thus those protocols and architectures
may, at the best, only provide probabilistic real-time guar-
antees.

The schedulability analysis of wireless networking commu-
nications [3, 11, 12] aims to verify if all transmissions can
meet their deadlines for a given traffic workload, consider-
ing the end-to-end temporal guarantees wanted for a target
network. Such end-to-end guarantees depend on the real-
time guarantees secured within each single hop. Single hop
guarantees can, on its turn, be derived from the temporal
behaviour provided by the networking technology (commu-
nication protocols included), which must take into account
the expected error conditions.

Conjugating dependability and real-time message delivery
guarantees with wireless communications is a difficult prob-
lem. Instead of following the classic approach described in
the wireless communication literature, and trying to estab-



lish those guarantees end-to-end —using a traditional point-
to-point communication model —we take a divide to conquer
approach, which is motivated by the following statement:

If no real-time guarantees can be offered within commu-
nications at one-hop of distance, no real-time guaran-
tees can be offered within multiple hop communications
at all.

That means, any dependable real-time message delivery guar-
antee has to be secured first within the one-hop of distance
wireless space, prior to be extended end-to-end, across mul-
tiple hops. Thus, this paper presents a design overview
of a novel wireless communications architecture dubbed
Wi-STARK, which has three main goals: (1) taking advan-
tage of the intrinsic broadcast properties of the shared wire-
less communication medium within one-hop space, (2) pro-
viding dependability and real-time guarantees within such
one-hop space, and (3) ensuring the feasibility of end-to-end
schedulability analysis given the bounded transmission delay
guarantees within each single hop. The Wi-STARK design
is compliant with wireless communications standards, be-
ing able to offer at the lowest level of communications a set
of useful and semantically rich services such as reliable and
timely communications, node failure detection, membership
management, and networking partition control. Since these
services are built upon the exposed interface offered by cur-
rent networking technologies, the Wi-STARK architecture
can be easily implemented using Commercial Off-The-Shelf
(COTS) components. The Wi-STARK service interface can
easily be made available at the operating system Application
Programming Interface (API).

To present the details concerning the design of the
Wi-STARK architecture, this paper is organised as follows:
section 2 presents a brief description of the system model,
which is the foundation for the design of the Wi-STARK
architecture; section 3 presents the main components and
characteristics of the Wi-STARK architecture; section 4
presents the primitives and semantics of the Wi-STARK ser-
vice interface; and finally, section 5 presents the conclusion
and future directions of the design and applicability of the
Wi-STARK architecture.

2. SYSTEM MODEL
All networking communications described in this paper are
performed within the scope of a physical and data link layer
abstract networking model dubbed Wireless network Seg-
ment (WnS), which establishes a broadcast domain where
all wireless nodes are one-hop of distance from one another.
This simple approach empowers the achievement of a first
and fundamental result: the capability of exploiting the broad-
cast nature of the shared one-hop communication space.

The formalisation of the WnS is expressed by a 4-Tuple,

WnS
def
= 〈X,xm, C,W 〉, where X is the set of wireless nodes

members of the WnS; xm is the WnS coordinator, xm ∈ X;
C represents a set of radio frequency (RF) communication
channels; and W represents the set of networking access
protocols utilised in the support of frame transmissions. As
illustrated in the graphical representation of Fig. 1, the in-

Figure 1: The Wireless Network Segment (WnS)
abstraction

tersection of the communication range of all nodes within
the WnS constitutes its broadcast domain, where each node
xj ∈ X is able to sense any transmission from any other
node xq ∈ X.

2.1 Fault Model
The failure of a networking component (a channel c ∈ C or
a node x ∈ X) is identified using an omission fault model,
where frame errors are transformed into omissions. The oc-
currence of frame errors may be originated by disturbances
caused by the presence of electromagnetic interferences on
the communication channel, or malfunction within the node
machinery, being accounted as omissions for the purpose of
monitoring networking components.

For each received frame, each node x ∈ X locally accounts
observed omissions. When the number of observed omis-
sions exceeds the component’s omission degree bound, fo,
the failure of such component can be locally signed. Errors
occurred at the wireless communication medium may affect
only some nodes, which implies omissions may be accounted
inconsistently at the different nodes of the WnS.

Both omissions with origin in the channel and at the channel
end-points (i.e., the nodes) are accounted for. When succes-
sive frames are received with errors from a given channel
input — i.e. a node x ∈ X — exceeding a given omission
degree bound, a node persistent failure is detected and sig-
nalled; when no traffic is received from node x ∈ X within
a bounded monitoring time interval, a node crash failure is
detected and signalled.

Each node x ∈ X may also inconsistently experience a tem-
porary loss of connectivity with the WnS, caused by a phe-
nomenon dubbed network inaccessibility [13]. A period of
network inaccessibility may be induced by glitches in the
MAC sublayer operation, such as those that may result
from the omission of a MAC control frame (e.g., beacon).
The network cannot be considered failed; it only enters into
a temporary state where the communication service is not
provided to some or all of the nodes. The loss of connectiv-



WnS1 - Broadcast : correct nodes, receiving an uncorrupted
frame transmission, receive the same frame;

WnS2 - Frame Order : any two frames received at any two
correct nodes are received in the same order at both nodes;

WnS3 - Error Detection : correct nodes detect and signal
any corruption done during frame transmissions in a locally
received frame;

WnS4 - Bounded Omission Degree: in a known time inter-
val Trd, omission failures may occur in at most k transmissions;

WnS5 - Bounded Inaccessibility : in a known time interval
Trd, a wireless network segment may be inaccessible at most i
times, with a total duration of at most Tina;

WnS6 - Bounded Transmission Delay : any frame trans-
mission request is transmitted on the WnS, within a bounded
delay Ttd + Tina.

Figure 2: WnS abstract channel properties

ity due to transient node mobility is also treated under the
inaccessibility model.

Mobility may drive nodes to outside of the WnS, as illus-
trated in Fig. 1, where node x2 using channel c moves from
the geographic position P (x2) to the geographic position
P ′(x2). In despite of x2 transmissions at the new position
may reach all nodes of the WnS, the transmissions from the
WnS coordinator, xm ∈ X, do not reach node x2 at posi-
tion P ′(x2). The permanent mobility of a node to outside of
the WnS broadcast domain is then transformed into a node
crash failure in our fault model.

2.2 WnS abstract channel properties
Communications at the lowest levels of the networking pro-
tocol stack can be abstracted by a set of correctness, depend-
ability, and timeliness properties, which are not dependent
on any particular networking technology. In the context of
the WnS model such properties are seen as being provided
by a single abstract communication channel dubbed WnS
abstract channel, as illustrated in Fig. 2.

Property WnS1 (Broadcast) formalises that it is physically
impossible for a node x ∈ X to send conflicting informa-
tion (in the same broadcast) to different nodes, within the
broadcast domain of the WnS [2], BX(c), for a given channel
c ∈ C (see Fig. 1).

Property WnS2 (Frame Order) is common in network tech-
nologies (wireless technologies included), being imposed by
the wireless communication medium of each channel c ∈ C,
and resulting directly from the serialisation of frame trans-
missions on the shared wireless communication medium.

Property WnS3 (Error Detection) has both detection and
signalling facets; the detection facet, traditionally provided
by classical MAC sublayers, derives directly from frame pro-
tection through a frame check sequence (FCS) mechanism,
which most utilised algorithm is the cyclic redundancy check
(CRC); the signalling facet is provided by the FCS exten-
sion introduced in [15], which is able to signal omissions
detected in frames received with errors. No fundamental
modifications are needed to the wireless MAC standards,
such as IEEE 802.15.4 [8]. The use of such unconventional
extension is enabled by emerging controller technology, such
as reprogrammable technology and/or open core MAC sub-
layer solutions, which are present, for example, in the devel-
opment kits from ATMEL [1]. With the CRC polynomials
used in wireless MAC sublayers, the residual probability of
undetected frame errors is negligible [4, 5].

Property WnS4 (Bounded Omission Degree) formalises for
a channel, c ∈ C, the failure semantics introduced earlier in
the fault model definition, being the abstract channel omis-
sion degree bound, k ≥ fo. The omission degree of a WnS
abstract channel can be bounded, given the error character-
istics of its wireless transmission medium [4, 9, 13].

The Bounded Omission Degree property is one of the most
complex properties to secure in wireless communications.
Securing this property with optimal values and with a high
degree of dependability coverage may require the use of
multiple RF channels. In [15] we have advanced on how
this can be achieved by monitoring channel omission errors,
and switch between RF channels upon detecting the channel
omission degree bound has been exceeded.

The time domain behaviour of a WnS is described by the re-
maining properties. Property WnS6 (Bounded Transmission
Delay) specifies a maximum frame transmission delay, which
is Ttd in the absence of faults. The value of Ttd includes the
medium access and transmission delays and it depends on
message latency class and overall offered load bounds [6,
10]. The value of Ttd does not include the effects of omis-
sion errors. In particular, Ttd does not account for possible
frame retransmissions. However, Ttd may include extra de-
lays resulting from longer WnS access delays derived from
subtle side-effects caused by the occurrence of periods of
network inaccessibility [13]. Therefore, the bounded trans-
mission delay includes Tina, a corrective term that accounts
for the worst case duration of inaccessibility glitches, given
the bounds specified by property WnS5 (Bounded Inacces-
sibility). The inaccessibility bounds depend on, and can
be predicted by the analysis of MAC sublayer characteris-
tics [13].

3. THE Wi-STARK ARCHITECTURE
The Wi-STARK is a new low level architecture that takes
advantage of the intrinsic broadcast property of the shared
wireless communication medium, and of the set of correct-
ness, ordering, dependability, and timeliness properties of-
fered by the WnS abstraction (Section 2.2) to establish a
robust, resilient and real-time one-hop communication do-
main for wireless networks.

The Wi-STARK architecture design is open and flexible,
being composed by two layers dubbed Channel Layer and



Figure 3: The Wi-STARK Architecture

Mediator Layer. As shown in Fig. 3, these layers are by
design wrapping the standard MAC sublayer to improve:
the control and use of RF communication channels; and,
the services offered to high level protocol layers.

3.1 Channel Layer
The Channel Layer (Fig. 4) is a thin layer that provides
a common interface to transparently control the use of a
given RF communication channel c ∈ C for purposes of
frame transmission and reception, incorporating useful ex-
tensions to enhance the dependability of communications. A
RF communication channel c ∈ C is an abstract represen-
tation of the wireless transmission medium plus a piece of
hardware dubbed RF transceiver, which conjugates a resid-
ual part of the MAC sublayer, herein called, basicMAC and
the physical (PHY) layer itself.

The Channel Layer extends the basicMAC to exploit the
exposed RF transceiver interface, and the parametrisation
features thereof. In particular, the Channel Layer imple-
ments: the FCS extension (specified in [15]), which secures
the WnS3 property of the WnS; the accounting of channel
omissions and the detection of a RF communication chan-
nel failure, upon exceeding the omission degree bound, k
(accordingly with WnS4); the RF communication channel
switch strategy specified in [15].

Figure 4: Channel Layer

3.2 MAC Sublayer: serviceMAC
The MAC sublayer illustrated in Fig. 3 is the standard MAC
sublayer present in the traditional wireless networking proto-
col stack, such as those specified within the IEEE 802.15.4 [8]
and IEEE 802.11p [7] wireless standards. In the context of
the Wi-STARK architecture such standard MAC sublayer
is dubbed serviceMAC, offering only conventional unreliable
data frame and management service interfaces. No mod-
ifications are needed for its integration in the Wi-STARK
architecture. In this sense, the Wi-STARK architecture is
highly flexible supporting the integration of any MAC sub-
layer, including the real-time variants proposed in [16, 17].

3.3 Mediator Layer
The Mediator Layer is an extensible sublayer, specially de-
signed to mediate the communication flow from (and to) the
high level protocol layers, as illustrated in Fig. 3. The Me-
diator Layer is responsible for the semantically rich service
interface offered by Wi-STARK, effectively augmenting the
services offered by the standard MAC sublayer. Three main
components compose the Mediator Layer : the Real-Time
Communication Suite, the Timeliness & Partition Control,
and the Networking & Management Control.

3.3.1 Real-time Communication Suite
The Real-Time Communication Suite (RTCS) is the compo-
nent responsible for the data communication services offered
by the Wi-STARK architecture, as illustrated in Fig. 5. The
RTCS includes a Message Request Dispatcher that forwards
any high level message transmit request to the adequate in-
stance of the RTCS protocol bundle. Messages submitted
at the Wi-STARK service interface have a maximum length
for allowing the encapsulation of their content in exactly one
frame, without necessity of fragmentation.

The table of Fig. 5 specifies the fundamental properties (re-
cipients, ordering, and reliability) characterising the differ-
ent variants of the protocols to be included in the RTCS
protocol bundle. For example: a totally ordered reliable
message delivery targeting all correct nodes features the well
known atomic broadcast primitive. This specification is open
and extensible: other attributes (e.g., temporal order) and
other properties (e.g., urgency) can be included.

The Wi-STARK architecture design provides two funda-
mental guarantees to the high level protocol layers and ap-
plications:

Temporal-bounded communications: every transmitted
message1 is successfully received by all relevant correct nodes
of the WnS within a known temporal bound, TTx−Data.

The value of TTx−Data is directly derived from the combi-
nation of four important properties of the WnS: WnS3 (Er-
ror Detection), WnS4 (Bounded Omission Degree), WnS5
(Bounded Inaccessibility), and WnS6 (Bounded Transmis-
sion Delay). In the absence of errors, the Wi-STARK pro-
tocols execute in a single round and the upper bound for
all correct nodes of the WnS receiving a message success-
fully is: T wc−ne

Tx−Data = 2.Ttd; being Ttd the maximum frame
transmission delay in the absence of errors.

1A message is a high level protocol layer data service unit.



Real-Time Communication Suite

Property Attributes

Recipients

Single node (Unicast);

Multiple nodes (Multicast);

All nodes (Broadcast)

Ordering Unordered; Totally ordered

Reliability Unreliable; Reliable

Figure 5: Real-Time Communication Suite

In the presence of errors, frames2 may have to be retransmit-
ted and the protocols within the Wi-STARK architecture
may require more than one round to be executed, up to a
limit given by k+ i+1 (as specified by properties WnS4 and
WnS5); all relevant correct nodes can successfully receive
any message transmitted with any reliable commu-
nication protocol provided by the Wi-STARK architecture
in, at most, T wc

Tx−Data = (k + i + 1) × (2.Ttd) + Tina. The
timer utilised by reliable protocols to control protocol exe-
cution is configured with its optimal value (i.e., Ttd), and
extended (if needed) by the real value of the network inac-
cessibility, tina, adding up to at most Tina [14].

A failure of the RF communication channel in use is detected
by the violation of k, the channel omission degree bound
(WnS4), being the Wi-STARK architecture able to switch
to another channel to keep the networking communications
operational; the duration of the “communication blackout”
resultant from that channel failure is then incorporated in
the network inaccessibility model through Tina.

Message delivery : every transmitted message is delivered
to all relevant correct nodes of the WnS.

Message delivery guarantees emerge from reliable commu-
nication protocols of the Wi-STARK architecture, which
exploit the nature of the shared wireless communication
medium (properties WnS1 and WnS2) to offer totally or-
dered delivery guarantees.

2A frame is the MAC sublayer protocol data unit.

Figure 6: Timeliness & Partition Control

3.3.2 Timeliness & Partition Control
The Timeliness & Partition Control (TPC) presents the
transversal components that deals with the temporal aspects
of the service offered by the Wi-STARK architecture. As
shown in Fig. 6, the TPC component incorporates Time Ser-
vices that include the management of protocol timers and
other services used in the temporal control of Wi-STARK
components.

The Partition Handler is focused to detect the occurrence,
and to be aware of any partitioning incidents caused by the
presence of periods of network inaccessibility. Controlling
networking inaccessibility allows the use of optimal timeout
values, which are automatically extended [14] when a pe-
riod of inaccessibility occurs, preventing the propagation of
premature timeout errors to other components and to high
protocol layers.

3.3.3 Networking & Management Control
The Networking & Management Control component (illus-
trated in Fig. 7) incorporates all the functionalities of the
Mediator Layer responsible for managing the dependable
operation of each node x ∈ X. The management responsi-
bilities assigned to the Mediator Layer include controlling
all internal configuration of the Wi-STARK architecture,
the parameters of the MAC sublayer (basicMAC and ser-
viceMAC included), and the provision of management ser-
vices to support the WnS formation.

All configurations can be performed statically or dynami-
cally. The static configuration is target for hard real-time
environments where all analyses of the traffic pattern, er-
ror conditions, and mobility models are performed offline,
being stored in the Wi-STARK Information Base (Fig. 7).
The Mediator Layer (self-)adaptation and dynamic config-
uration capabilities are related with mixed-critical and soft
real-time requirements, which are outside the scope of this
paper.

The membership and node failure detection offered by the
Mediator Layer were designed to control and establish a con-
sistent view of all members of the WnS, which is represented
by the abstract set, X.

4. Wi-STARK DATA SERVICE INTERFACE
In the perspective of networking protocol developers, the de-
pendability and timeliness guarantees offered by the
Wi-STARK architecture are represented by a set of funda-
mental primitives for transmission and reception of messages
to/from the network, which are specified in Table 1.

All of the primitives present in the Wi-STARK data service



Figure 7: Networking & Management Control

Wi-STARK data service interface

Primitives Description

MLA.Data.request
Requests a message transmission us-
ing one of the Wi-STARK communi-
cation protocols.

MLA.Data.confirm
For reliable services, it confirms mes-
sage delivery at recipients. Otherwise,
it confirms only message transmission.

MLA.Data.indication Notifies the arrival of a message.

Table 1: Wi-STARK data service interface

interface are easily integrated into embedded and real-time
operating systems, being available as system calls associated
to the wireless networking protocol stack.

5. CONCLUSION
This paper presented the architectural design of Wi-STARK,
a novel low level architecture for resilient and real-time one-
hop wireless communications. The definition of Wi-STARK
is based on the establishment of an abstract communication
model dubbed Wireless network Segment (WnS), which offer
a set of correctness, dependability, and timeliness properties
to support the design of resilient communication services for
wireless networks.

Wi-STARK is compliant with wireless standards such as
IEEE 802.15.4 and IEEE 802.11p, being capable to offer
support for low level reliable message communication, node
failure detection and membership, and networking partition
control. Future directions involves the incorporation of the
Wi-STARK service interface in the API of embedded real-
time operating systems, and the extension of one-hop guar-
antees for multi-hop networking scenarios.
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Abstract. Driving assistance or automated driving depends to a large
extent on the correct perception of the environment. Because automated
driving functions have to be proven safe under all operational conditions,
worst-case assumptions concerning the sensors and also the environment
have to be assumed. In this paper, we propose a scheme that allows
taking weaker assumptions. This is based on a continuous assessment
of the quality of sensor data, a model of the interaction between the
control process and the environment and the possibility to adapt the
performance. We present an example of a car autonomously driving a
simple course and adapting its speed according to the environment and
the confidence in the perceived sensor data. We derive a set of simple
safety rules used to adjust performance that, in the case given in the
example affects the cruising speed.

1 Introduction

Functional safety is a non-debatable property for automotive systems. The re-
quirements and procedures for functional safety are fixed in a respective stan-
dard [1]. At the same time, it is one of the most challenging tasks ensuring func-
tional safety for sophisticated driver assistance systems or complex automatic
driving functions. One of the reasons is that assurance means that a function
has to be proven safe before it can be put into operation in a car. Consequently,
it has to be proven safe at design time for all driving situations and failures that
may occur during operation. This results in worst-case assumptions about the
environment, the perception system and the control application. Particularly,
the control application makes implicit assumptions about the quality of sensor
input by tolerating acceptable error margins due to a robust design of the con-
trol algorithm. The correct functionality is usually carefully checked during the
testing phase. Statically assuming worst-case conditions at design time has some
undesirable consequences. Firstly, it leads to high costs of the sensors because
lower cost sensors, although in most cases will comply with the requirements,
cannot ensure this at any time during a mission. Secondly, because perception
and control are tightly intertwined, the test only provides a validation for a
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specific set of sensors. If sensors have to be replaced, only the same or very sim-
ilar sensors can be used. Finally, because a system has to show that safety is
guaranteed under all conditions, the requirements will be overly strict.

In this paper we will present a scheme for adapting performance according to
environmental conditions and erroneous sensor information without sacrificing
safety. This scheme is based on a number of system functions that have been
elaborated during the KARYON project [2].

1. The KARYON architecture defines a safety kernel that allows to put the
system in different levels-of-performance according to a set of safety rules.
The safety rules specify the conditions in terms of system health state and
the quality of sensor data.

2. Separating the design of the perception system from the design of the control
application. The main advance over other systems is that on the control
application side, we present a way, how the control application can specify
the quality of sensor data explicitly. On the sensor side, we provide a concept,
how to quantify the confidence in sensor data. Instead of having to validate
a single sensor-control block, we can validate these blocks separately. This
allows dealing with a changing set of sensors easily. Additionally, it is a
prerequisite when assuming remote sensors that are not known at design
time. A more detailed discussion about this point can be found in [3].

3. The scheme to quantify the confidence in sensor data called ”validity” allows
the dynamic assessment of sensor data during run-time. Because the KAYON
safety kernel allows to react if the validity is too low, we are able to handle
this situation dynamically. The example below explains this in more detail.

4. Knowledge about the road is exploited to define the tolerable error margins
in which safety can be ensured. In our example, we simulate a simple course
and build a model of the process that relates speed, validity of sensor data
and the position of the car to define safe conditions for controlling the car

The contribution of this paper is firstly showing how the notion of validity
can be used to express error margins and secondly how the knowledge about
the course of a road, the speed of a car, its position and orientation can be
described by a mathematical model allowing to determine the adequate level of
performance for a given safety level.

The paper is organized as follows: In the next section we briefly introduce the
notion of validity and its relation to a failure model. This is needed to understand
how error margins are expressed by a validity. Chapter 3 provides introduction
and evaluation of the simulation example. Chapter 4 discusses the results and
related work and the summary in chapter 5 concludes the paper.

2 Assessing the quality of sensor data

Sensors deliver a continuous range of values and often exhibit a subtle behaviour
in case of external or internal disturbances. In our work, we use a data centric ap-
proach [4] to identify sensor failures, i.e. we try to infer faulty sensor data from
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Fig. 1. Illustration of the environment

certain failure characteristics rather than applying space or time redundancy
mechanisms. These parameters are derived empirically from testing a sensor ex-
haustively under many typical operational conditions and internal and external
disturbances (e.g. voltage drops, electromagnetic glitches, intensive light for IR
sensors and laser sensors etc.). A discussion of the resulting failure model can be
found in [5]. Basically, we characterize a failure according to its amplitude and
its occurrence probability. From these parameters, we calculate the anticipated
validity of sensor data at design-time. A system performs at its best when no
failures occur. With occurring sensor failures, additional robustness is required
which has implications on the performance. The KARYON system allows to
trade fading functionality against the level of system performance. The more
failures will occur, the lower the performance that can be achieved safely by the
system. For choosing an adequate performance level without violating safety,
actual sensor data needs to be assessed at run-time. The key for achieving this is
a consistent representation of the validity at design-time and at run-time. This
allows proving the system to be safe for a given set of failures. By using the
run-time validity, the system is switched to a performance level that is proven
to cope with the occurred failures.

3 An automated driving scenario

This section considers a lane tracing application, which is a common task when
building an autonomous car. Fig. 1 illustrates an example course for the au-
tomated car. In order to prove the system to be safe, we have to model the
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environment, specify system parameters and we make assumption regarding the
operational context. This allows us to statically prove the compliance of our setup
with requirements. Based on this prove, we identify conditions under which the
car follows the line although sensor failures are present. Such conditions are ex-
pressed in terms of safety rules, which are used at run-time to choose the highest
possible performance setting (LoS) of the application without risking safety. By
analysing validity ranges at design-time we can derive safety rules, which are
checked at run-time by the safety kernel. This is the basis to trigger switching
the level of service (LoS).

The following example will explain how to derive these safety rules. For sake
of clarity, we consider a simple course with straight and curved lanes. The course
is modelled by the straight-line equation REF = |y| and the circle equation
REF =

√
(x− a)2 + (y − b2). Clearly, such an environment model leads to an

over-determined set of equations. For deriving safety rules, we have to assign sys-
tem variables to define the basic kinematics of the car, to map the requirements
and to make assumptions on which the system will be proven to be safe.

First, we assign system variables as follows: the steering angle (α) in a range

of −45◦ and 45◦, the highest maximum velocity of the car (v ≤ 15
m

s
), the

wheelbase of the car is set to 3m and the distance to the rear axle (a2) assigned
as 1.5m. Theses system variables describe the kinematics of the car so that the
anticipated position of the car can be calculated. Additionally, we have to define
the sample time (t = 0.5s), which is the update rate of the observation and of
the calculation of the steering command. This means that the perception-action
loop of the car is periodically executed every 0,5 seconds.

Second, the kinematics of the car is required to calculate the impact of a cer-
tain steering angel on its position and orientation in the environment. For resolv-
ing this relation, we make use of the Ackerman condition:R =

√
a22 + l2 · cot2(α).

This condition allows us to calculate the deviation of the car from its ideal track
assuming the current position and orientation of the car.

Third, in order to decide whether the deviation of the car from the ideal track
is in line with requirements, we have to specify what is tolerable. In our scenario,
we define a deviation of plus/minus one meter (therr ≤ ±1m) as acceptable.

Finally, we have to make assumptions in terms of the position and the orien-
tation of the car with respect to the validity. In cases where the position sensor
data has a high validity, the PID controller will keep the car very close to the
ideal track. When sensor failures occur and the observed position is not accurate,
the validity in sensor data drops and, as a result, the car deviates considerably
in terms of position and orientation from the ideal track. The key for mak-
ing such an analysis is the concept of design-time validity that specifies failure
cases. This allows proving the system being safe under a set of assumptions.
Without such assumptions, these check whether the system acts safe, could not
be made at design time. This is because the equations representing the environ-
ment stays over-determined without assumptions regarding the quality of sensor
inputs. Consequently, the combination of system variables, sensor inputs, and
the controller output together with the environment model would be checked at
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Fig. 2. Schematic overview of the concept

run-time. Obviously, run-time checking does not provide guarantees and so the
response of the system is unknown when sensor failures occur.

3.1 Deriving safety rules at design-time

The objective of safety rules is to calculate the performance that can be reached
without violating requirements. Fig. 3 depicts the problem of adjusting the steer-
ing angle based on an erroneous observation. C1 shows the observed position of
the car based on which a steering command is computed. By applying the steer-
ing command, the car drives to C2. In case of sensor failures, the computed
steering angle violates the requirement. The actual position now would be C3

and the car moves to C4 then. This shows the effect of erroneous observations.
To maintain a safe behaviour we use the notion of sensor data validity to adapt
the performance, which in this simple example means to adjust the velocity.

Safety rules define conditions under which the system operates safe. In our
case, we observe the position of the car and compute a respective steering com-
mand in order to keep the car on track. As illustrated in Fig. 2, we derive
safety rules by simulating the perception-action loop under a simple environ-
ment model. This setup allows us to check the compliance of the controller with
requirements. It requires knowing the environment model, defining the system
parameters and considering sensor failures that need to be handled at run-time.
As shown in Fig. 2, the controller receives observations of a (simulated) sensor,
which allows us to record the reaction of the controller on sensor failures that
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Fig. 3. The effect of sensor failures (e) without adapting the velocity (d)

have been injected. Consequently, we can check the controller response for ev-
ery anticipated failure case. Based on this analysis we can define safety rules.
Safety rules relate the validity of perception data to the level of service for the
controller, which specifies system parameters, in our case the velocity of the car.
The LoS may be translated to specific configurations or even different versions
of the controller.

The following safety rules respect the validity of sensor data to calculate
the highest velocity without violating requirements. Therefore, we compute the
intersection point I(xi, yi) between the requirement and the erroneous position,
which is in fact unknown but estimated by the validity C(xc, yc). By exploiting

the time-space-relation v =
s

t
, we determine the distance of the actual position

of the car to the intersection point I and so we receive the velocity for adapting
the performance.

Safety rule for driving on the straight track In cases where the steering an-

gle is zero (α = 0◦), the highest maximal velocity is then given by v = |−→CI|
t . Oth-

erwise, the car drives a circular path that is given by the Ackermann-condition
(R =

√
a22 + l2 · cot2(α)) and correlates to the second safety rule.

Safety rule for driving on the curved track When driving a curve, we
calculate the angle (γ) between the actual position of the car and the intersection

point with the requirement: cos(γ) =

−−→
MI ×−−→

MC

|−−→MI| · |−−→MC|
where M is the center of the

steering cycle as shown in Fig. 1. The velocity that should not be exceeded, is

therefore given by: v =
π ·R · γ

180◦
t

.

3.2 Checking safety rules at run-time

At run-time, detection mechanisms are used to assess the sensor data of the
positioning sensor. The better an observation, the higher the validity of sensor
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Fig. 4. Proven velocities of different performance levels to cope with positioning failures

data. As shown in Fig. 2, the safety kernel switches the controller into a level
of service (LoS) dependent on the validity of actual sensor data. The safety
rules thus specify the required validity for performing a certain level of service
and serve as a decision basis to switch configurations of the controller. Whether
the system operates safe by using this LoS setup was proven at design-time
while deriving the safety-rules. This results in an approach that reduces the LoS
in order to operate safe in case of sensor failures. Otherwise, the safety kernel
switches to a higher LoS without jeopardizing safety.

4 Discussion

The proposed scheme is implemented in Simulink where V-Rep is used as for
simulating the environment. We obtain reproducible results and are able to anal-
yse the effect of observation failures on the performance of the system. By using
a fault injection framework, we compare test cases with and without failures. In
accordance to the injected failure amplitude, the car degraded its performance in
order to comply with requirements. It should be noted that the system stops if
the car is not able to keep within the lane due to injected failures or limitations
of the steering angle.

In Fig 4, we plotted the resulting velocity of different LoS as a result of the
derived safety rules. The blue curve (LoS 3) shows the highest performance level
that can be reached when no failure occurs. Therefore, the velocities of the blue
curve corresponds to the performance of an ideal system. The red curve labeled
LoS 2 gives the velocity that can be set in cases where the positioning sensor
suffers from noise. The violet curve (LoS 1) states the system performance when
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outliers and noise failures are considered. When making only worst case assump-
tions, the system performance would be statically set to the violet curve (LoS
1). In contrast our approach degrades the performance level only if necessary.

Comparing our approach to related work, we found approaches either dealing
with sensor failures at design-time or at run-time only. Uncertainty margins [6]
describe the characteristics of a sensor but they fail to distinguish failure types.
The separation of failure types is provided by FMEA [7] that is limited to design-
time analysis. On the other hand, confidence intervals [8], confidence classes [9]
and also validates [10] provide a run-time representation but do no support
design-time analysis. None of them can be used both at design-time as well as at
run-time. Without such a consistent representation, the service levels of a sys-
tem cannot statically proven safe at design-time and switched at run-time. On
the side of an application, we found approaches [11], [12] for adapting the con-
figuration in accordance to failures but such approaches ignore the operational
context and the consideration of the environment. Nevertheless, those aspects
are essential when proving the system to be safe.

5 Conclusion

The KARYON project developed an architectural pattern, which allows to react
on a degraded functionality by switching to different levels of service, i.e. to
differnt control schemes. The decision is based on the assessment of system health
in a broad sense. In this paper, we focussed on failures of the sensor system. For
a simple example we showed how the notion of validity can be used for design
time analysis and also in run-time assessment of sensor data. A reliable safety
kernel monitors the validity and takes actions if validity drops below a predefined
bound. The bounds on validity and the necessary knowledge for the controller
can be statically analysed at design time and transformed into safety rules to be
executed at run-time for configuring controller functions.

Acknowledgment

This work has been supported by the EU under the FP7-ICT programme,
through project 288195 Kernel-based ARchitecture for safetY-critical cONtrol
(KARYON).

References

1. (ISO), ISO 26262-1 to ISO 26262-9, 1st ed., 2011.

2. A. Casimiro, J. Kaiser, E. M. Schiller, P. Costa, J. Parizi, R. Johansson, and
R. Librino, “The karyon project: Predictable and safe coordination in cooperative
vehicular systems,” in Dependable Systems and Networks Workshop (DSN-W),
2013 43rd Annual IEEE/IFIP Conference on. IEEE, 2013, pp. 1–12.



9

3. T. Brade, S. Zug, and J. Kaiser, “Validity-based failure algebra for distributed
sensor systems,” in Reliable Distributed Systems (SRDS), 2013 IEEE 32nd Inter-
national Symposium on. IEEE, 2013, pp. 143–152.

4. K. Ni, N. Ramanathan, M. N. H. Chehade, L. Balzano, S. Nair, S. Zahedi,
E. Kohler, G. Pottie, M. Hansen, and M. Srivastava, “Sensor network data fault
types,” ACM Transactions on Sensor Networks (TOSN), vol. 5, no. 3, p. 25, 2009.

5. S. Zug, A. Dietrich, and J. Kaiser, “Fault-handling in networked sensor systems,”
Fault Diagnosis in Robotic and Industrial Systems, 2012.

6. R. J. Moffat, “Describing the uncertainties in experimental results,” Experimental
thermal and fluid science, vol. 1, no. 1, pp. 3–17, 1988.

7. D. H. Stamatis, Failure Mode and Effect Analysis: Fmea from Theory to Execution.
Milwaukee,: ASQ Quality Press, 2003.

8. W. Elmenreich, “Fusion of continuous-valued sensor measurements using
confidence-weighted averaging,” Journal of Vibration and Control, vol. 13, no. 9-10,
pp. 1303–1312, 2007.

9. H.-M. Piontek, Self-description mechanisms for embedded components in coopera-
tive systems. Der Andere Verlag, 2007.

10. M. Duta and M. Henry, “The fusion of redundant seva measurements,” Control
Systems Technology, IEEE Transactions on, vol. 13, no. 2, pp. 173–184, 2005.
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Abstract. Advances in computer engineering and microelectronics have allowed
the use of tiny and powerful computing platforms (i.e., sensors and actuators)
everywhere, supporting the monitoring and control of, for example, process for
industrial automation and functions within aerospace vehicles. Many of these sys-
tems have the ability to host, in the same computing platform, applications with
different levels of criticality (or importance), i.e. mixed-critical systems. Wireless
sensor and actuator networks (WSANs) become the vivid example of computer
networks responsible for the monitoring and control activities of such systems,
being the dependability, timeliness, and then the real-time properties of such net-
works crucial. One key point is that WSANs are extremely susceptible to com-
munication errors induced by electromagnetic interferences. This paper presents
a state of the art solution for the real-time assessment of WSANs in the presence
of errors based on the IEEE 802.15.4 standard. The solution includes devices
and functions to monitor the behaviour the network as well as methods to emu-
late accidental errors and to perform intentional attacks. All these resources are
managed and controlled by a customised version of the well-known open-source
Wireshark network protocol analyser. This allows the generation of network er-
ror reports fundamental to the evaluation of the real-time capabilities of current
wireless network protocols and standards. These error reports contribute to a bet-
ter knowledge of the error characteristics of WSANs and therefore enable the
design of more robust and resilient solutions for WSANs operation.

1 Introduction and Motivation

Wireless Sensor and Actuator Networks are one of the latest revolutions in network-
ing. The absence of cables stem a reduction of Size, Weight and Power Consumption
(SWaP) which combined with node mobility, lead to the adoption of these networks as
a fundamental communication platform of many different types of systems that may
host applications with different levels of criticality (or importance), which are usually
known as mixed-critical systems. Despite some advances in the support of real-time

� This work was partially supported by the EC, through project IST-FP7-STREP-288195
(KARYON); by FCT/DAAD, through the transnational cooperation project PROPHECY;
and by FCT, through project PTDC/EEI-SCR/3200/2012 (READAPT) and through LaSIGE
Strategic Project PEst-OE/EEI/UI0408/2014.



communication in wireless networks, there are still open problems that need the ap-
propriate tools for their study and analysis. One key issue is that wireless networks
are subjected to electromagnetic interferences from the surrounding environment that
may impair ongoing communications. The presence of interferences can endanger the
real-time guarantees of the communications as well as of the overall system. This paper
discuses a highly flexible advanced tool that allows the real-time assessment of IEEE
802.15.4 networks through network monitoring and through emulation of accidental
faults and injection of intentional attacks. The assessment of the network operation,
and therefore the contributions of this paper, includes the facets that we detail next.

Network monitoring is a technique aimed at analysing the network interactions be-
tween its nodes and its characteristics such as reliability, timeliness and resilience. Net-
work monitoring assumes a passive and non-intrusive role at network assessment. In
particularly, it allows to assess normal network operation and the disturbances in its
behaviour in the presence of errors.

Since particular error patterns may be specially relevant for the analysis of the net-
work operation and their natural occurrence may be rare, there is the need to re-enact
such error patterns, trough fault injection.

Our fault injection methodology allows to directly inject interferences in the wire-
less transmission medium with the objective to stress test the network. This may be
achieved through the transmission of particular symbol patterns without obeying to the
medium access control protocol in use. This translates to the injection of unrecognised
noise. On the other hand, it may be useful to also inject properly formatted traffic. Our
fault injection tool supports both. Furthermore, combining network monitoring with
fault injection allows to trigger fault injection upon the occurrence of particular network
traffic patterns. This coordinated action allows an active role in network assessment.

Network monitoring activities can be a very data-intensive task, specially when con-
ducted concurrently with fault injection activities. Analysing the harvested data is sim-
ply too difficult to do without assistance. Wireshark [4], being a reference network
protocol analyser, has the ability to create a graphical representation of network inter-
actions, thus assisting in the network analysis task by being an integrated Graphical
User Interface for the whole suite.

The remainder of the paper is structured as follows. Section 2 describes the related
work. Section 3 describes the real-time assessment suite and its components. Section
4 describes the implementation details for the suite. Section 5 will walk through some
simple use cases of this tool and finally section 6 describes the conclusion and future
work.

2 Related Work

Monitoring and fault-injection are not new techniques. Both techniques are often used
in conjunction to perform dependability evaluation of computer systems and networks.

All network monitors provide a very basic function. The hardware and additional
features may vary but all capture network traffic. However, is usually restricted to cor-
rectly formatted packets. Existing tools traditionally do not capture and signal the oc-
currence of errors.



Due to WSANs growing popularity, researchers felt the need to create tools that
could analyse such networks. Popular use cases for this type of devices are, for in-
stance, those described in [8, 10]. However, these works focus in network performance
evaluation, paying little to no attention to communication errors or to the stress of the
network operation via fault injection campaigns.

With network security in mind, strategies for the injection of attacks in wireless
networks were studied and prototypes were developed. Xu et al. [15] raised concerns
about how insecure WSANs are. Wide range of attack strategies were defined in [15]
taking into account the scarcity of power resources in wireless devices. On the other
hand, O’Flynn [9], developed a dual-transceiver device capable of very precise attack
injection techniques.

3 A suite for Real-Time Assessment of IEEE 802.15.4 Networks

In this section we will address in detail each component and how they all integrate
following closely the architecture in Figure 1.

This tool for the real-time assessment of IEEE 802.15.4 networks is composed by
four components. Firstly, with the purpose of capturing and report network traffic, a
standalone network monitoring unit which assumes the role of packet sniffer was de-
veloped.

Secondly, to provide the ability to emulate accidental faults and to perform inten-
tional attacks, a fault-injection unit has been built to flexibly support the injection of
faults directly in the wireless transmission medium.

Thirdly, to provide interconnectivity support between the network monitoring unit
and the fault injection unit, as well to support advanced network analysis and filtering
functions, a special purpose hardware integration interface was introduced.

Finally, Wireshark, being a reference network protocol analyser with IEEE 802.15.4
packet visualization capabilities, was extended to manage all aspects of the network
assessment, including control and data collection from the previously mentioned com-
ponents.

3.1 Network Monitoring Unit

The Network Monitoring Unit includes a Commercial-Of-The-Shelf (COTS) hardware
network interface device acting as networking monitoring probe (a.k.a. Sniffer) with
the purpose of capturing all traffic transmitted through a specific channel. This is espe-
cially useful for testing networks and protocol implementations. The network monitor-
ing probe is not an active member of the network, and is instead a passive listener. This
is compliant with the IEEE 802.15.4 standard when using the so called Promiscuous
Mode. In Promiscuous Mode, the network monitoring probe is allowed to capture and
report any traffic it senses. Thus, the Promiscuous Mode is the key to capture all the
frames sensed by the network monitoring probe. However, this is insufficient to capture
the network error pattern since frames sensed with errors are traditionally silently dis-
carded at very low levels of communications, by the network interface device hardware.



Wireless networks, due to the open nature of the transmission medium are, in gen-
eral, extremely susceptible to electromagnetic interference (EMI) and therefore to the
occurrence of frame errors. In order to capture also frames corrupted by errors, the
operation of the network operating probe needs to be enhanced.

The IEEE 802.15.4 traffic is constituted by frames following the general format
represented in Figure 2. The Frame Check Sequence (FCS) field is a 16-bit frame in-
tegrity number used to evaluate the correctness of each frame captured by the network
monitoring probe. Any deviation from the original frame content, e.g. resulting from a
corruption in the wireless transmission medium, is detected by the network monitoring
probe. The residual probability of undetected frame errors is negligible [5].

A simple extension of this FCS integrity check mechanism [12], enabled by modern
network interface controllers such as the Atmel AT86RF232 [1], allows to receive and
signal erroneous frames. This is fundamental to evaluate the error characteristics of each
network and can be used to estimate the quality of the communications of a specific
network node or of the overall channel.

To enable a precise evaluation of network operation timing characteristics, a times-
tamp is generated at the network monitoring unit at the arrival of each frame, including
erroneous frames. This timestamp is attached to the frame and delivered at the Hard-
ware Integration Interface and to the Wireshark translator, as illustrated at Figure 1.

Concluding, the network monitoring unit offers to the surrounding components an
extended promiscuous network traffic capture service that includes both correct and
erroneous frames.

3.2 Fault-Injection Unit

The Fault Injection Unit is constituted by a hardware network interface, the fault in-
jection device, controlled by a software component, the fault injection controller, as
illustrated in the left uppermost part of the Figure 1.

The fault injector device is a perfectly common Commercial-Of-The-Shelf (COTS)
network interface with the exception that the network interface is configured to by-
pass the medium access control protocol thus allowing a direct access to the wireless
transmission medium. Traditional IEEE 802.15.4 nodes use the Carrier Sense Multiple
Access with Collision Avoidance (CSMA/CA) mechanism to sense the medium before
transmitting which is therefore disabled.

Disabling the medium access protocol allows effective fault injection actions. This
way, the fault injector device supports the injection of user-defined: pure noise patterns;
selected data patterns always preceded by the standard preamble1;selected data patterns
encapsulated in a correctly formatted frame, thus injecting a standard compliant trans-
mission.

The Fault Injection Controller is a software component executing on top of the hard-
ware fault injection device with the responsibility to control the patterns and timings to
be utilized in a fault injection campaign.

1 The preamble is pre-defined sequence of symbols for synchronization of the receiver’s circuitry
with the incoming sequence of symbols.
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Fig. 3. Graphical representation of some fault-injection parameters

The fault injection unit has two modes of operation: user-defined configurations or
pre-configured fault injection profiles.

Both modes originate the fault injection sequence illustrated in Figure 3 accordingly
with the parameters that are now explained further.

Fault injection parameters User-defined configuration requires the specification of
some parameters in order to build a particular fault injection profile. Some of the pa-
rameters are illustrated in Figure 3 and explained further. For future reference, and for
the particular case of the IEEE 802.15.4, all time units are to be considered as being in
microseconds.

– Injection Mode - The injection mode parameter determines how the potentially in-
terfering data will be sent to the wireless transmission medium. When a noise mode
is selected, the device simply sends random symbols to the wireless transmission
medium until the injection event duration finishes. Secondly, in the preamble pre-
ceded mode, the user selected data is attached to the standard preamble and sent
to the wireless transmission medium. Finally, in the encapsulated frame mode the
user can configure all the fields of a correctly formatted frame.

– Injection Pattern - (see Figure 3) the format of the user-defined data, in hexadec-
imal, to be injected to the wireless transmission medium. If the preamble is used, it
will be attached before the indicated pattern; otherwise, only the indicated pattern
will be sent. If the defined duration is lower than the time necessary to transmit the
pattern this should be trimmed and periodically re-transmitted otherwise.

– Minimum Duration - the minimum duration of a single fault injection event. It
can be expressed in time units or in bytes;

– Maximum Duration - the maximum duration of a single fault injection event. It
can be expressed in time units or in bytes. If the minimum and maximum dura-
tions are equal, the duration of the fault injection event will always have the same
value. Otherwise, it will have a random value between the minimum and maximum
durations;

– Number of Events - number of total fault injection events in the fault injection
campaign, after which the campaign shall terminate.

– Minimum Inter-Injection Time - (see Figure 3) the minimum time interval be-
tween consecutive fault injection events;



– Maximum Injection Jitter - (see Figure 3) maximum value of a positive random
time to be added to the Minimum Inter-Injection time.

– Total Duration - (see Figure 3) the total duration of a fault injection campaign. If
the number of events is specified, the user will no longer be able to set its value,
since it will be confined to an lower as well as an upper bound dependant on the
specific number of events, its (real) durations, its minimum inter-injection time and
its (real) injection jitter durations. Conversely, if the total duration is specified, the
fault injection campaign will last until the specified duration is reached. The Total
Duration is an alternative to Number of Events parameter described earlier, and for
that reason, both parameters cannot be used concurrently;

– Trigger - the condition to start the fault injection campaign using the previously
described parameters. The trigger can be defined to operate according two modes:
one-shot mode, where only one instantiation of the fault injection campaign is per-
formed; and the cyclical mode, where the fault injection campaign is repeated cycli-
cally until the stop command is explicitly issued.

Pre-configured fault-injection profiles Some combinations of these parameters are so
relevant that we have decided to include the capability to chose between a set of specific
instantiations of the previously described parameters, thus defining pre-configured fault
injection profiles. These profiles are useful both for the emulation of accidental faults
and for the injection of intentional attacks.

– Constant - this profile continuously injects constant noise in the wireless trans-
mission medium. This profile is meant for inducing communication blackouts such
as jamming attacks [15];

– Random - this profile injects random noise on the wireless transmission medium.
This profile is better suited for campaigns where it is only required the occasional
corruption of transmissions [15];

– Adaptive - This profile tries to synchronize the fault-injection timing with the
traffic pattern of the underlying network. Thus the campaign is triggered by net-
work monitoring unit after a specific type of traffic pattern has been detected by the
monitoring and capture filter (see Figure 1);

– Frame-type Adaptive - specialisation of the Adaptive fault injection profile,
where faults are injected to destroy the frames matching the specification(s) indi-
cated to the network monitoring unit. This profile is specially useful when, for ex-
ample, aiming to corrupt only beacon frames causing network-wide blackout [11].

A summary of the relevant fault injection parameters for each of the profiles is
represented in Table 1:

3.3 Hardware Integration Interface

The hardware integration interface is a component that enables cooperation and inter-
action between the network monitoring unit and the fault injection unit, as shown in
Figure 1.
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Constant Noise ∞ ∞ ∞ - 0 0 One-Shot
Random Noise Random - - Random 0 One-Shot
Adaptive Noise 19 bytes 133 bytes - 1 - 0 Cyclical
Frame-
Type

Adaptive
Noise 19 bytes 133 bytes - 1 - 0 Cyclical

Table 1. Fault-Injection Profiles expressed as Fault-Injection Parameters

The first aspect of this interaction concerns the analysis and filtering of the correct
received frames. Selected configurations of the Fault-Injector such as pre-configured
adaptive and the frame-type adaptive fault injection profiles requires analysis of the
captured traffic and in these occasions cooperation between both units is required to
trigger a fault injection campaign. In essence any frame field, such as frame-type, ad-
dresses and some contents of the payload, can be analysed.

The analysis of the captured traffic allows to detect relevant pre-configured traffic
patterns to be used to trigger fault injection campaigns. An effective and highly flexible
analysis and filtering of network traffic can be directly mapped into special-purpose
hardware components, such as Content Addressable Memories (CAMs), integrated into
Field Programmable Gate Arrays (FPGAs) [14].

On the other hand, the start and the end of each fault injection event needs to be
issued to the network monitoring unit to be timestamped, ordered, and inserted into the
traffic flow to be delivered at the Wireshark Translator (Figure 1).

3.4 Integration with Wireshark

Wireshark is a very flexible reference network analyser. It is extremely general in the
sense that it can be extended by the means of plugins to analyse networks and protocols
that were not initially considered in its design and engineering. Wireshark can monitor
traffic both from real and virtual devices such as networking hardware, regular files
and even inter-process communication channels. Beyond that, the captured data can be
saved for later analysis. Based on these reasons, Wireshark was chosen to be extended
in order to incorporate the control functionalities of the network monitoring and fault
injection units.

Firstly, Wireshark communicates directly with the units in order to perform initiali-
sation and command functions. In this sense, an extension the Graphical User Interface
was introduced to create a user-friendly interface for units initialization and command
purposes. The result of this extension is presented in Figures 4 and 5, respectively for
the network monitoring unit and the fault injection unit.



Fig. 4. Network Monitor Control Panel

Fig. 5. Fault Injector Control Panel

Secondly, after initialization, the network monitoring unit delivers captured frames
to Wireshark indirectly that are adapted to the Wireshark format by the Wireshark
Translator, as shown in Figure 1.

The Wireshark Translator is a piece of software which has the responsibility to
translate the raw frames collected from the network monitoring unit into data under-
standable by Wireshark. This process requires that a PCAP header [7], the format used
by Wireshark, is attached to the raw frame so that Wireshark is aware of, among other
aspects, the length and the network type of the frame.

4 Implementation

Built using Commercial Off-The-Shelf (COTS) hardware, our implementation currently
supports two hardware boards: the Atmel REB232ED-EK (Figure 6) [3] and the CC2520
and STM32 RFBoards (Figure 7) [13]. Both types of hardware use serial interfaces to
connect and exchange data.

The network monitor unit was implemented so it could be easily configured by
Wireshark. In Figure 4, it is shown the network monitor control panel. To configure



Fig. 6. Atmel REB232ED-EK

Fig. 7. CC2520 and STM32 RFBoards

a network monitoring session, it is required to select the type and path of supporting
hardware (Atmel REB232ED-EK in Figure 6 or CC2520 and STM32 RFBoards in
Figure 7) as well as the wireless channel to be monitored.

The monitoring starts by signalling the network monitor unit and starting up the
Wireshark translator. After a frame capture is successful, the frame length is attached
to the frame and sent out via the serial connection as hexadecimal characters.

In this work we aim at providing information making the least amount of assump-
tions as to who or what is reading the captured traffic and because of that the network
monitoring unit represents frames in hexadecimal format. Using hexadecimal format
also enables the profiling of IEEE 802.15.4 traffic and error patterns because it allows
even simple applications to read the traffic and perform any kind of processing and
analysis.

Similarly to the network monitor unit, the fault-injection unit also has a control
panel, represented in Figure 5. With this control panel is possible to define fault-injection
campaigns making use of the parameters or modes described in section 3.2. This will
notify users when a fault injection event begins and when it ends. These delimiter flags
will assist the user by clearly stating the frames that arrived during the effects of the
fault injection event as shown in Figure 8.

5 Use Cases

This section discusses two relevant use cases: one gives emphasis to the network mon-
itoring functions while the other focuses in fault injection.
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Fig. 8. Wireshark capture screen

5.1 Standalone Network Monitoring

The first use case, illustrates the functionality of our tool in the traffic monitoring of a
IEEE 802.15.4 network. However, this network is operating in a ”dirty environment”
where a heavy electromagnetic interference is expected from ”alien” wireless nodes.

One of the main sources of interference on the IEEE 802.15.4 channels from wire-
less ”alien” nodes results from the coexistence with IEEE 802.11 nodes. Since both
standards operate in the same 2.4 Ghz Industrial, Scientific and Medical (ISM) bands
the probability, in some cases, of both protocols interfere is high [6].

To increase the likelihood of interference, we have set the IEEE 802.15.4 coordina-
tor to channel 17 (2.435 Ghz) which is the closest channel to an ”alien” IEEE 802.11
access point operating in channel 6 (2.437 Ghz). Only by monitoring the beacon frames
transmitted by the coordinator, we were able to observe erroneous beacons.

The results from out analysis, inscribed in Figure 9, show a high number of frames
disturbed by errors, some of them grouped in bursts of interference. However, these
error bursts do not violate (at least in this experiment) the upper bound of three consec-
utive frame errors defined in the IEEE 802.15.4 standard specification [2].

5.2 Network monitoring with Fault Injection

In this experiment, intended to demonstrate the functionality and effectiveness of the
fault injection methodology, the same IEEE 802.15.4 operates in a ”clean environment”
where only some occasional frame errors due to the natural electromagnetic interference
from the environment are expected. However, a frame injection campaign is conducted,
with the following parameters:

– Injection Mode: Preamble Preceded Symbols
– Injection Pattern: AABBCC
– Minimum Duration: 28000 microseconds
– Maximum Duration: 28000 microseconds



Fig. 9. Standalone Network Monitoring

– Number of Events: 100
– Minimum Inter-Injection Time: 1000000 microseconds
– Maximum Injection Jitter: 0 microseconds
– Total Duration: Not Defined
– Trigger: Cyclic

The results from this fault injection campaign is ilustrated in Figure 10, where the
black backgrounded rows signal the begin and the end of a fault injection event. The
beacon frame transmitted by the network and signaled by the red arrow at the right
of Figure 10 coordinator has been corrupted by the fault injection event. No further
frame corruptions have been detected elsewhere in the Wireshark packet list window
displayed in Figure 10. It is work noting that in this context the frames designated as
”Ack” in the Wireshark packet list window actually represents the fault injection. The
AABBCC pattern when analysed by the Wireshark internal components (in particu-
lar, by the wireshark dissector) will be considered as an Acknowledgement frame (see
Figure 2).

6 Conclusion and Future Work

In this work we have presented a real-time assessment suite for IEEE 802.15.4 net-
works. This suite provides two services, namely network monitoring and fault-injection.

Network monitoring allows the capture and analysis of network traffic under normal
operating conditions and in the presence of errors. Each captured frame is timestamped
with the arrival instant thus supporting the analysis of the real-time characteristics of
the network.



Fig. 10. Network monitoring with Fault Injection

With this suite effective fault injection campaigns can be easily defined and instan-
tiated while providing means to visualize and record its effects. Such fault injection
campaigns are relevant, to test and validate models describing network operations and
strategies to improve it.

In particular, both services provided by the suite are useful to study and validate
innovative research approaches aiming to bring hard real-time guarantees to WSANs.
This has been on of the main motivations for designing and developing this tool.

Future work will include the sophistication of the tool hardware integration interface
which in the current version only supports a minimum functionality implemented in
software.
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Abstract— This paper describes an approach for injecting 
faults in ad hoc vehicle networks. A prototype fault injector, 
which makes it possible to investigate how a cooperative 
vehicle system behaves in the presence of communication 
errors, has been developed. The prototype shows a feasible way 
to use fault injection as technique to produce evidence for a 
safety case belonging to a cooperative automotive system. 

Keywords-fault injection, safety assessment, IEEE 802.15.4, 
V2X communication. 

I. INTRODUCTION 

In the past years, there has been a strong focus on 
functional safety in the automotive domain. In 2011, the 
standard ISO 26262 [1] was released, and currently the 
industry is adopting the development procedure to the 
standard. At the same time, automotive functions are getting 
more and more complex; autonomous and cooperative 
vehicles will soon move from prototypes to products. Safety 
assessment of cooperative systems will put requirements on 
evidence which show that communication failures are 
handled in a safe way. This paper shows a way to inject 
communication faults in cooperative systems as a technique 
to produce evidence for a safety case. 

Cooperative vehicle systems cover a wide range of 
interdependence. Willke et al. [2] have suggested a 
taxonomy defining four type levels. On type levels 1 and 2, 
vehicles and infrastructure are exchanging information with-
out being dependent on it to achieve a safe behavior. On 
type level 3, the functions rely on communicated informa-
tion from other vehicles about motion and actuator states to 
ensure safe and/or efficient operation. On type level 4, 
applications use inter-vehicle communication to reach a 
common goal, e.g. driving in a road train (platooning). At 
least on the type levels 3 and 4, safety requirements will be 
allocated on the communication between the vehicles (V2V) 
and between the cars and the infrastructure (V2I). 

According to the ISO 26262 standard, safety require-
ments shall be refined from top-level safety goals to the 
system components of the physical architecture. For safety-
related cooperative functions, this implies that some safety 
requirements will be put on the V2V and V2I communica-
tion, respectively. Furthermore, the standard states what is 
needed to argue in order to fulfil verification of the safety 
requirements. For the higher integrity levels (ASIL C and 
D), it is required to use fault-injection techniques to show 
that safety mechanisms can handle all safety-relevant faults. 

Fault injection in wireless communication used for 
transfer of safety-critical information in ad hoc vehicle 
networks needs further research. For computer systems 
(hardware and software) communicating via wires, there is a 
fairly long tradition of using fault-injection techniques and 
tools [3]. Alena et al. [4] have investigated how the fault 
tolerance of wireless sensor networks using IEEE 802.15.4 
is affected by interference from other networks and multi-
paths. Boano et al. [5] present a solution which produce 
repeatable and precise patterns of interference in wireless 
sensor networks. Malicious faults (attacks) and some natural 
faults in ad hoc networks can be assessed using the fault-
injection platform developed by de Andrés et al. [6]. 

In this paper, a fault-injection prototype is described. 
The prototype is based on IEEE 802.15.4 since this standard 
is used for communication in the automotive and aerospace 
demonstrators of the KARYON project [7]. However, it is 
straightforward to adapt the concept to other techniques to 
be used in the automotive domain (IEEE 802.11p). 

Section II introduces relevant fault models originating 
from functional safety standards. The section also explains 
how different failure modes can be emulated. Section III 
describes the fault injection prototype, and Section IV 
presents initial conclusions and future work. 

II. FAULT INJECTION IN COMMUNICATION 

A. Fault models 
Standards for functional safety, such as ISO 26262 for 

road vehicles and the generic IEC 61508, list failure modes 
which are applicable for communication. Part 5 of ISO 
26262 [1] lists failure modes for on-chip communication 
and data transmission. The failure modes for data 
transmission are applicable for wireless communication. 
IEC 61508-2 [8] lists identical failure modes for communi-
cation. Other important failure modes for communication 
are blocking access to communication channel [9] and 
asymmetric information [10]. Table 1 summarizes failure 
modes applicable for wireless communication.  

Based on the diagnostic coverage that is claimed for a 
safety mechanism, ISO 26262-5 Table D.1 [1] lists failure 
modes that need to be analyzed. Failure modes for on-chip 
communication are described next. 

Stuck-at failures are described as a continuous low or 
high signal at the pins of an element.  They are applicable 
for elements which have a pin-level interface for data, 
control, address, and arbitration signals. 
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TABLE I.  FAILURE MODES FOR COMMUNICATION 
 

Failure mode Interpretation 
Message 

Corruption 
The received data of a message is incorrect. 

Message delay 
A message is received later than expected by all, or 

some, receivers. 

Message loss A message is lost by all, or some, receivers. 

Unintended 

message 

repetition 

Receivers obtain two or more messages with the 

same information instead of one message. 

Resequencing 
Messages are received with incorrect sequence 

numbering. 

Insertion of 

message 
Receivers obtain a message that they did not expect 

Masquerading  

(or incorrect 

addressing) 

A sender transmit messages using an id of a 

different sender 

Asymmetric 

information 

Information from a single sender is received 

differently by receivers. It can also be that 

information from a sender is only received by a 

subset of the receivers 

Blocking 

access to a 

communication 

channel 

Prevents nodes from accessing the communication 

channel, similar to a babbling idiot. 

 
The direct current fault model extends stuck-at failures 

with stuck-open, open, or high impedance outputs, and short 
circuits between signal lines. The analysis of the fault model 
is applicable for data, control, address and arbitration 
signals, but is mainly intended for main signals or on highly 
coupled interconnections.  

When several devices are connected to a bus, arbitration 
is used to determine which device that controls the bus. No 
arbitration and continuous arbitration are mentioned as 
failure modes for on-chip communication in ISO 26262-5 
[1]. Time out is mentioned in both IEC 61508 and ISO 
26262, but neither standard describes the failure mode in 
more detail.  

Soft errors are caused by ionizing particles, supply 
voltage noise, or cross-coupling between signal lines. The 
consequence is one or several bit-flips in memories or bus 
signals.  

B. Emulating the Effects of Faults 
The failure modes for wireless data communication can 

be emulated using a combination of jamming, packet 
injection, and packet sniffing. Jamming [5][11] is used to 
prevent one or several nodes from receiving or sending 
packets. Packet injection is used to insert additional, 
duplicated or corrupted messages in the wireless network. 
Packet sniffing allows the fault injection module to 
eavesdrop the wireless traffic in a non-intrusive manner. 
This is useful for logging and for triggering the injection of 
different failure modes.  

Table 2 shows how different failure modes can be 
implemented by combining jamming and packet injection. 
For example, the effects of a message delay can be emulated 
by jamming to prevent nodes from receiving the original 
message, and then resending the original message with a 

delay. This assumes that we have a priori knowledge of the 
content of the message. Message losses are emulated by 
activating jamming when specific messages are being trans-
mitted by a node. 

Figure 1 and Figure 2 illustrate how failure modes for 
on-chip communication are emulated. The signal between 
two elements passes through a fault injection module which 
has the capability to modify the transmitted signal value. 
For most failure modes, such as soft errors, a faulty signal 
only relies on the value of the non-faulty signal as shown in 
Figure 1. For short-circuits between signals, however, the 
values of two or more signals are needed, as shown in 
Figure 2. 

TABLE II.  EMULATING FAILURE MODES USING JAMMING AND 

PACKET INJECTION 

Failure mode Jamming Packet 
Injection 

Message Corruption x x 

Message delay x x 

Message loss x  

Unintended message repetition  x 

Resequencing  x 

Insertion of message  x 

Masquerading  

(or incorrect addressing) 
 x 

Asymmetric information x x 

Blocking access to a communication 

channel 
x  

 

 

Element

Fault injection module

Signal
SignalFI

0/1
Element

 
Figure 1. Injection of stuck-at faults in a signal. 

 

Element Element

Fault injection module

Signal 1

Signal 2 Signal 2FI

Signal 1FI

Figure 2. Injection of short-circuit failures between two signals. 

C. Controlling When to Inject Faults 
Figure 1 shows a state machine for controlling the fault 

injection. The idle state has an internal counter to keep track 
of the currently evaluated trigger. When all triggers have 
been evaluated to true in the correct order, fault injection is 
activated in the state “Start FI”. Following that, the “FI” 
state is immediately entered.  
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Idle Start FI FI Stop FI Done

start_triggerN stop_triggerN !intermittent

intermittent
 

Figure 3. State machine to control the fault injection. 

Initial

trigger1

Trigger1 ... TriggerN

trigger2 triggerN

!trigger2

!triggerN

TriggerN-1

triggerN-1

 
Figure 4. State machine to handle start and stop triggers for fault injection. 

The “FI” state is exited when all stop triggers have been 
fulfilled. Unless an intermittent fault is emulated, the fault 
injection is stopped. For intermittent faults, there is a return 
to the idle state and another wait for start trigger fulfillment. 
Fault injection is activated using triggers which can be 
based on: elapsed time, probability per received packet, 
sender or receiver address of a packet, or data in the payload 
of a packet. Several triggers can be combined so that fault 
injection is started or stopped by a chain of events, as shown 
in Figure 2. Using this approach, well-known packet loss 
models such as Bernoulli and Gilbert-Elliot [12] can be 
supported, as well as simple triggers based on, e.g., elapsed 
time. 

III. FAULT INJECTION PROTOTYPE 

The fault injection concept described in the previous 
section has been implemented for vehicle demonstrators in 
the KARYON project [7]. The fault injection prototype can 
be used for injecting failures in IEEE 802.15.4 data 
communication, and in the on-chip communication. Figure 
5 shows a picture of the fault injection node, which uses the 
STM32F4 microcontroller from ST and the CC2520 
communication chip from Texas Instruments. The node is 
based on layout and hardware schematics which are freely 
available from [13]. 

The fault injector uses ChibiOS/RT [14] as its operating 
system, and implements the state machine described in 
Section II.C. The following fault injection triggers are sup-
ported: 

� Time – Enabled after a specified time has elapsed. 

� Packet probability – Enabled with a specified 
probability for each received packet. 

� Packet destination address – Enabled when a 
packet with a matching source address is received. 

� Packet source address – Enabled when a packet 
with a matching destination address is received 

� Packet data – Enabled when the specified data 
matches the received data 

� The fault injector is configured using USB 
commands, or by sending configuration packets via 
IEEE 802.15.4. 

 

Figure 5. RF board with STM32F4 and CC2520 based on [Vedder]. 

 
The prototype fault injector also provides packet logging 

capabilities, which are useful for debugging purposes. The 
CC2520 communication chip provides hardware support for 
packet sniffing, which can be used as a non-intrusive 
method of observing wireless traffic. The fault injector can 
output captured packets in the packet capture (pcap) format 
using a named pipe. The logged traffic can then be analyzed 
in real-time using tools such as Wireshark which is an open 
source network protocol analyzer. Figure 6 shows an 
example of logged traffic in Wireshark. 

The following failure modes are currently supported by 
the fault injection prototype: message corruption, delay, 
loss, insertion, unintended message repetition, masquerad-
ing, and blocking access.   
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Figure 6. Packet sniffing using the fault injection node and Wireshark. 

 
For some of the failure modes, e.g. message delay, 

message payload need to be known a priori. Proof-of-
concept fault injections have been successfully performed, 
but no complete fault-injection campaigns have been run 
yet. 

IV. CONCLUSIONS AND FUTURE WORK 

A prototype fault injector for digital communication, in 
particular wireless communication, has been described.  One 
limitation with the approach is that communication chips 
require some time to switch between receiving and sending. 
For the CC2520 chip, the RX/TX turnaround time is 192µs. 
For packets with a small payload, it might therefore not be 
possible to trigger the fault injection and jam the packet 
currently being received. This is something which will be 
investigated in the near future.  

The prototype has been tested on IEEE 802.15.4 
communication, but the concept is straightforward to adapt 
to other communication techniques, such as IEEE 802.11p. 

The prototype shows that it is feasible to inject most 
faults needed in a safety assessment according to the 
requirements in functional safety standards.  
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ABSTRACT
Cyber-Physical Systems (CPSs) control real-world entities
and inherently depend on the safety of operation. Stan-
dards like ISO 26262 or ISO 61508 lay down rules and pro-
cedures for fault injection techniques to verify the reliability
of CPSs in the automotive and industrial automation field
respectively. A system tolerating a larger number of injected
faults or a higher occurrence rate usually imply a higher re-
liability and, in turn, may increase safety. One of the core
issues is defining the fault model which anticipates the na-
ture of faults or fault patterns, the amplitude the occurrence
probability and distribution. This is a prerequisite for a suc-
cessful fault injection analysis. These fault assumptions have
to match exactly the individual safety goals of an applica-
tion. Overdoing, i.e. assuming non-relevant fault pattern,
amplitudes and occurrence probabilities will increase costs
and probably development time without a measurable ben-
efit for safety. On the other hand, too optimistic assump-
tions will decrease the needed safety level. Thus, the set of
injected faults must precisely match the safety requirements
of a CPS.

We propose a versatile and flexible fault injection frame-
work for CPS that particularly considers sensor failures. To
achieve a high level of flexibility and adaptability to various
safety requirements, we capture the properties of relevant
faults defined by the standards as well as the faults emitted
by the sensors in an Electronic Data Sheet (EDS). A fault
type and its type specific parameters describe the charac-
teristics of individual faults or more complex fault patterns.
Our framework is based on Simulink. A parser evaluates the
EDS and includes this data into pre-defined fault injection
blocks. This integrates fault injection early in the design
phase. The overall schedule for fault injection containing all
relevant faults is automatically derived from the descriptions
to satisfy the needs of the respective standard. Additionally,
we use the sensor fault information to exactly include those
faults only that are relevant for the safety goals of the ap-
plication. This allows analyzing and verifying the needed

safety requirements in early stages of the design, keeping
the necessary overhead to a minimum.

Categories and Subject Descriptors
B.2.3 [Arithmetic and Logic Structures]: Reliability,
Testing, and Fault-Tolerance—Test generation; D.2.8 [Software
Engineering]: Requirements/Specifications—Languages

Keywords
Fault injection, testing, safety, sensor faults, Simulink

1. MOTIVATION
“Cyber-Physical Systems” [1], “autonomous automotive sys-
tems”, “smart environments” [2] or “Pervasive/Ubiquitous
Computing” [3] intimately link the entities of the real-world
to their virtual images in (a set of) computers. At the inter-
face between these worlds, sensors perceive and transform
the real-world entities. The challenge is to provide a precise
and an accurate observation that is substantially affected by
sensor failures and inherent uncertainties. Obviously, these
failures cause a potential risk for violating safety goals, be-
cause an application takes action based on these observa-
tions. A safety critical system must be proven safe before
it will be put to operation due to the potential to cause
harm. Therefore, checking, analysis and validation have to
be performed at early design and development stages. Fail-
ure injection is one of the important techniques providing
evidence at design-time that the application is either robust
enough to resist failures or not susceptible to the considered
set of failures. Recognizing the advantages, failure injection
became part of several standard such as ISO 26262.

ISO 26262 defines automotive safety integrity levels (ASIL)
that identifies the safety requirements for a function that
may be broken down to requirements of components that
are involved. The respective ASIL is derived from a Hazard
and Risc Analysis (HARA) and defines the requirements of
safety mechanisms. In order to verify such mechanisms, test
patterns are mandatorily demanded to be injected. The
characteristics of such test patters depends on the safety
integrity attribute (ISO 26262 - ASIL A-D, ISO 61508 - SIL
1-4) that is derived from HARA. For instance, out-of-range,
offsets, stuck in range and oscillations faults are specified by
the standard. However, standards only specify single-point
faults and fail to address complex fault patters, which are
essential in order to reproduce the behavior of a sensor. In
addition, the selection of the injection points (e.g. hardware



or software) as well as the parameterization of the injected
faults is left to the system engineer.

It should be noted that the generation of relevant, complex
failure patterns is by no means easy or straightforward. As
indicated above, too pessimistic assumptions about the fail-
ure class, occurrence probability and distribution may lead
to an overly expensive design while, even more dangerous,
too optimistic settings may lead to the situation where the
system may be erroneously compliant with a higher ASIL.
This may jeopardize safety at run-time. Especially, the lat-
ter situation must be avoided under all circumstances.

The proposed failure injection framework provides a compli-
ance check and a failure injection monitor in order to gener-
ate complex test patterns. The compliance check identifies
the failure types such that the requirements of the safety
goals are met. To know how often those failures need to
be injected, the failure injection framework features a mon-
itoring functionality to obtain how many failures have been
injected so far. Further information on this topic is provided
by the following section. The third section refers to the state
of the art. The final section of the paper summarizes our
achievements and mentions the future work.

2. FAILURE INJECTION FRAMEWORK
This section presents a failure injection framework for ver-
ifying the robustness of an application by injecting sensor
failures. We are talking about failure injection because we
modify the output data of a sensor (thus generating a failure)
rather than injecting faults in the internal components of a
sensor. The rational behind this approach is that we may
deal with sensor data generated by a simulator during the
design phase or a sensor in a lab environment respectively.
In both cases, we would obtain perfect or near perfect sen-
sor readings. By applying failure injection, the difference
between a real run-time behavior of a certain sensor and the
design-time (simulation- or lab-based) analysis of an appli-
cation will be compensated. A real physical sensor reading
may suffer from multiple uncertainties due to internal faults,
sensor characteristics, signal conditioning, EMC, changes in
the environment or non-steadiness of the observed process.
Because of these failures, an application may take wrong ac-
tions and safety constraints may be violated. Therefore, we
have to consider defining sophisticated failure modes for our
injection tool.

For representing complex failure cases, several failure in-
jection units are essential, which do not provide a result
that matches with real observations. When failure injection
units are running on their own, some failure combinations
might not be injected whereas other combinations are in-
jected which do never occur when using a sensor in reality.
Therefore, failure injection of complex patterns requires a
kind of schedule so that each failure injection instance is ac-
tivated at the right time. The generation of such a schedule
brings us finally to the questions: what failure types need
to be injected and how many of them for being compliant
with a standard.

As mentioned in the motivation, there is a chance to inject
either too many failures or not enough failures. As shown in
the Tab. 1, a failure does not need to be considered, which

Table 1: Comparison of failure types presented in
the EDS and defined by the standard

electronic sensor data sheet
present not present

ISO 26262
present mandatory critical
not present unnecessary not relevant

is neither required to be injected by the standard nor exhib-
ited by a sensor. When failures of the standard match with
the failure behavior of a sensor, a mandatory failure injec-
tion configuration has been found. Requested failures of the
standard are considered to be unnecessary if a sensor does
not exhibit those failures. Appearing failures of a sensor are
stated to be critical in case the standard does not consider
them. Considering the second question ”how many failures
have to be injected”, a failure injection monitor is required
beside the failure injection schedule. When no enough fail-
ures have been injected, the system seems sound but is in
fact not as robust as required. Of course, this situation
needs to be avoided by all efforts because it features a safety
attribute that cannot be maintained. On the other hand, in-
jecting more failures than required leads to an overly robust
design, which is in principle acceptable but at the expense
of system performance and system complexity.

In order to master those questions, the proposed failure in-
jection framework operates on a failure description that is
linked to a failure model. This allows describing in sepa-
rate the individual failure behavior of a sensor as well as the
required failures to be injected of a standard. The key for
matching the failures of a sensor with a standard is the fail-
ure model, which defines explicitly the failure types provided
by the failure injection framework. Afterwards, the failure
description is used to generate a schedule that matches the
failure behavior of a real sensor. The generated schedule
serves as a configuration for the failure injection framework.
Finally, the injected failures are monitored at run-time in
order to master the trade-off between injecting not enough
failures and injecting too many failures.

2.1 Definition of the Failure Model
We defined a set of failures types in [4], which we found are
relevant for sensors. Partly, these failure types have been
described in the literature [5], partly they have been ob-
served in experiments, which we conducted in our lab. The
failure model comprises timing failures and value failures.
Referring to the analysis in [4], e.g. delay and omission
failures belong to timing failures. The class of outlier fail-
ures, spikes, offsets, drift, noise, stuck-at-X and saturation
failures belong to value failures. The survey in table Tab. 2
distinguishes 13 failures. Computational or network failures
are currently not part of the model. However, it should be
noticed that our failure injection framework is not limited
to the mentioned failure types and may include other fail-
ures in future work. Thus, we designed the framework in
a generic and flexible way that enables further individual
failure types to be included.

Starting from the defined failure types we need to specify
the way in which they are generated. We may need to acti-
vate a failure with reproducible characteristics many times.



Table 2: Characterizing modelled failures
I II III

Failure type Occurrence Parameters
Amplitude Corr.

Constant Noise transient pdf
Time-Corr. Noise transient pdf function
Value-Corr. Noise transient pdf function
Constant Offset permanent value
Time-Corr. Offset permanent value function
Value-Corr. Offset permanent value function
Outlier transient pdf
Spike transient value
Stuck-At-X permanent pdf
Stuck-At-Zero permanent
Saturation permanent value
Constant Delay permanent time
Time-Corr. Delay permanent time function

Therefore we can specify an occurrence probability in ad-
dition to the failure type and amplitude. The failure am-
plitude is determined by a probability density function over
time. In cases where a non-linear behavior is required, an
individual function is used to describe the failure amplitude,
which allows reproducing complex signal waveforms such as
spikes. On the other hand, the occurrence of a failure de-
scribes the point in time when a particular failure is going
to be injected. A failure type specified as permanent will
be injected in every simulation step. In contrast, transient
failures will occur stochastically defined according to the oc-
currence probability.

2.2 Failure Description
From a careful analysis of a sensor, that has been analyt-
ical and empirical, we were able to identify which sensor
failures may occur and what are their characteristics. This
knowledge, captured in a detailed failure description is used
to configure the failure injection framework. For achiev-
ing compatibility between systems, the failure description is
encoded in a compact Extended Markup Language (XML)
data structure. Listing 1 shows the failure behavior of a
sensor where each failure type is described together with its
respective parameters. This failure description holds the pa-
rameters of constant noise (from line 3 to line 8) and outlier
failures (from 9 to line 14) where the occurrence probabil-
ity, the used distribution and the correlation are described
respectively.

To describe more complex sequences of failures, we also need
to model the transition probabilities between various failure
states including the failure-free case. We specify this behav-
ior by a Markov model, as depicted in Fig. 1, in which the
transition matrix describes the stochastic behavior of the
failures. Such a transition matrix holds the probability of
staying in the same state (self-loop) and of switching to an-
other state where n states represent the n failure types and
an additional state corresponds to the failure-free behavior.
The description of a transfer matrix is given in Listing 1
from line 15 to line 19, which is interpreted as follows. As-
suming the sensor being in the failure-free state, which is
represented by line 16, the sensor stays with a probability of
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Figure 1: Markov model representing the failure be-
havior of a sensor

92 per cent in the failure-free state (self-loop), switches with
a probability of 7 per cent to the noise state and enters the
outlier state with a probability of 1 per cent. By integrating
the transition matrix in the injection concept, we are able
to uniquely describe complex failure behavior.

Listing 1: Sensor-specific failure description
1 <?xml version=”1 .0 ” encoding=”utf−8”?>
2 < f a i l u r e t y p e s>
3 <f a i l u r e N>
4 <type>value c o r r e l a t e d no i s e</ type>
5 <occurrence>0 .1</ occurrence>
6 <d i s t r i b u t i o n i d>1</ d i s t r i b u t i o n i d>
7 <c o r r e l a t i o n i d>0</ c o r r e l a t i o n i d>
8 </ f a i l u r e N>
9 <f a i l u r e O>

10 <type>o u t l i e r</ type>
11 <occurrence>0 .01</ occurrence>
12 <d i s t r i b u t i o n i d>2</ d i s t r i b u t i o n i d>
13 <c o r r e l a t i o n i d>0</ c o r r e l a t i o n i d>
14 </ f a i l u r e O>
15 <t r a n s i t i o n s>
16 <F>0 . 9 2 ; 0 . 0 7 ; 0 . 0 1</F>
17 <N>0 . 9 6 ; 0 ; 0 . 0 4</N>
18 <O>1 ; 0 ; 0</O>
19 </ t r a n s i t i o n s>
20 </ f a i l u r e t y p e s>

By applying the same description format to a safety stan-
dard, the compliance check as well as the monitoring can be
performed automatically. Therefore, the application-specific
description holds failure types, which are essential for veri-
fying the robustness of an application. The outcome of the
compliance check classifies the described failure types in ac-
cordance to Tab. 1. On the other hand, the probabilities
of an application-specific description specify how precise the
considered failure types have to be injected. This aspect is
addressed by the failure monitor, introduced in Sec. 2.5.

2.3 Generating the Failure Schedule
The failure schedule is key for running failure injection of
complex patterns in a deterministic and repeatable manner.
First, the set of failures need to be identified that have to
be injected. Second, activation signal have to be generated
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Figure 2: Failure injection scheme

in accordance to the identified failures. Third, the schedule
have to be assigned.

The failures to be injected result from checking the failure
description of the sensor against the application-specific fail-
ure description. This allows us to classify failures as criti-
cal, mandatory, unnecessary or not even relevant, as shown
in Tab. 1. For achieving this, the failure types of the sensor
as well as the application are mapped as terms of regular ex-
pressions. At this point, the compliance check is performed
by matching the regular expressions against each other. In
case both expressions match, mandatory failures have been
found. When a sensor expression do not match with the
standard, the regular expression represents a critical failure
to be checked. Failures are stated unnecessary if regular ex-
pression of the standard do not match the expression of the
sensor. Otherwise, failures are considered to be not relevant
and can be omitted. The generation of a schedule fails if a
sensor datasheet contains a failure type, which does not fit
any specified type in the standards definition (application-
specific failure description). In this case, the developer has
to check the requirements deduced by the HARA or has to
replace the sensor. Using regular expressions representing
failure types turn out to be beneficial for injecting the right
failures and omitting failures that are not of importance.

When the compliance check have been successfully passed,
activation signals are generated for failures that are clas-
sified as mandatory and critical. Those activation signals
are used to trigger the corresponding implementation of a
specific failure type. Consequently, failure types can be in-
dividually activated for injecting complex failure patterns.
The same activation signal results in the same injected fail-
ure pattern over and over again, which makes this approach
predestinated for verifying the robustness of an application
at design-time as well as providing evidence that safety con-
straints are met.

Finally, the failure injection schedule is a result of linking
those activation signals with the Markov model, which is
configured by the transition matrix given by the failure de-
scription of the selected sensor. The Markov model is used
to calculate the probability of the following failure state.
When linking failure states with activation signals, the fail-
ure injection follows the statistical nature of the described
transition matrix. The described failure injection schema is
depicted in Fig. 2.

2.4 Performing the Failure Injection
The presented failure injection framework is implemented in
MATHWORKS Simulink [6] and consist of three functional
blocks: Failure Control Unit (FCU); Failure Schedule Block
(FSB) and Failure Injection Block (FIB).

The FCU reads in the failure descriptions, parses them into
regular expressions and finally checks the compliance be-
tween sensor and the required standard, as described in
Sec. 2.2. When passing the compliance check, a set of acti-
vation signals is generated for failures that are stated to be
mandatory as well as critical (to be checked). Such activa-
tion signals trigger Simulink blocks where each block imple-
ments the failure injection of a specific failure type. After-
wards, the FSB selects a specific activation signal based on
the Markov model given by the failure description. Finally,
the FIB generates the output of the failure injection. There
may be failures that just distort the original sensor signal. In
these cases, the output signal is obtained by combining, e.g.
adding or multiplying the failure pattern and the original
sensor signal. This is e.g. applied to inject for instance off-
set, noise and outlier failures. Other failures are completely
independent of any sensor signal as e.g. as stuck-at-zero or
saturation failures. In these cases, the injector just replaces
the original sensor data with the specific failure pattern.

Fig. 3 illustrates the outcome of the failure injection frame-
work and shows the injection of a constant noise failure.
The second example displayed in Fig. 4 shows the injection
of constant noise and outlier failures for the same signal pat-
tern.

2.5 Monitoring Injected Failures

Figure 3: sensor data with injected constant noise

Figure 4: sensor data with injected constant noise
and outliers



The monitoring of injected failures is used to master the
tradeoff between injecting not enough failures and injecting
too many failures. In order to provide an answer to the
question how many failures have been injected so far and
still need to be injected, a second Markov model is used to
trace activation signals. Whenever an activation signal is
triggered, the corresponding failure state will be counted.
The key for doing this is a bijective function between acti-
vation signals and the states of the Markov model. While
generating the schedule, states are mapped to activation sig-
nals. Whereas to provide the monitoring functionality, the
other way around is needed.

As a consequence, we receive Markov models describing the
failure behavior of both, the real sensor and the set of in-
jected failures. By comparing them, we can check whether
our assumptions about the occurrence rate match reality.
Each Markov model is described by a respective transition
matrix. The failure behavior of the failure injection perfectly
matches the real sensor if the difference of both matrices
equals zero, as shown in the first row of the results matrix
in Fig. 5. In the case that the probabilities of the transition
matrix of the failure injector are greater than those of the
transition matrix of the real sensor, then we injected too
many failures, as depicted in the second row of the results
matrix. Otherwise, the number of injected failures may be
too low, as depicted in the last row of the results matrix.
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Figure 5: Transition Matrix

3. STATE OF THE ART
Fault injection techniques can be applied on different stages
in an ISO 26262 development process - 5-10 ”Hardware in-
tegration testing“, 6-10 ”Software integration testing“, 4-9
”Safety validation“, etc. To cover this spectrum, we have to
consider different approaches for fault injection. A compre-
hensive overview is presented for instance in [7]. We derived
three categories to summarize the state of the art:

3.1 Way of injection
An overview of fault injection techniques is given in [8]. We
can divide three basic concepts - hardware, software and
simulation based approaches. The first one directly effect a
component by electrical signals to manipulate pins or mem-
ory elements [9]. Contactless intrusions uses electrical fields
and radiation to initiate disturbances [10]. Software-based
fault injection components trigger a fault on the embedded
target system. Simulation-based fault injection can be ac-
complished in at different levels of abstraction e.g. logical
levels or system level [9].

3.2 Definition of fault models
The intended fault models are strongly connected to the way
of injection [8]. Hardware based fault injection considers
digital fault models - stuck-at or flipped bits. Measurement

oriented injection techniques apply continuous fault models
like noise, outliers or spikes [11]. Our data centric and sensor
specific fault type classification was motivated by different
previous work, for instance [5], [7]. They combine 14 basic
fault models suitable for a large number of sensing devices
(distances, temperature, orientation, acceleration, etc.).

3.3 Selection of relevant faults
The generation of a minimal test plan is in the focus of many
research papers. Often a simulation is used to recognize
the relevant faults in a first step. The authors of [12] tried
to reduce the amount of test cases through the complete
analysis of different fault sets. After the simulation the test
schedule is executed on a real target.

3.4 Schedule declaration
The injection schedule contains a fine grained activation
plan of relevant faults. A common approach is a definition
is safety oriented frameworks like SCADE or Simulink. A
multi domain approach is discussed in [13]. In all cases the
developer has to “implement” faults and their order manu-
ally. The authors of [14] refined the approach and developed
a new language to specify fault injection patterns, but the
fault models are limited to discrete fault states.

The approach described in this paper is focused on simula-
tion based fault injection. Similar approaches in mentioned
papers do not close the gap between standard requirements
and fault characteristic of the used components. Bozzano,
Villafiorita, Åkerlund, et al. illustrate this fact in a com-
pact way when they depict a safety engineer and a design
engineer in their architecture. Both developers are respon-
sible for requirement capturing but just the safety engineer
defines the relevant faults. But decisions about used com-
ponents are done by the design engineer. Just he can know
their fault characteristic. An efficient and seamless fault
injection tool-chain is not possible in such a development
process.

4. CONCLUSION AND FUTURE WORK
We proposed a failure injection framework respecting safety
goals of an application. Unlike traditional failure injection
techniques, we recommend using a failure model to balance
the trade-off between injecting too many failures and not
enough failures, instead of injecting failures without refer-
ence to the source of failures as it is common. In order to
achieve that, we first compute the probability of a certain
failure and in a second step we generate the related ampli-
tude of the failure to be injected. This allows at design-time
to inject precisely the set of failures from which a CPS may
suffer at run-time. The respective safety goal of the CPS
defines the degree of similarity which the injected failures
must have compared to the real failure behavior. In this
paper, we presented a way to meet the compliance with the
occurrence rate.

The exact verification of the amplitude of a failure and the
defined failure types needs further investigations. Match-
ing the failure model with a realistic failure behavior is of
utmost importance, because unconsidered failures will be a
substantial threat for the defined safety goal.
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Abstract. The design of automated driving systems aims at reducing
the human error and increasing the fuel efficiency by letting the vehi-
cles map their surroundings and drive autonomously. One of the system
challenges on the road is that at any time the environment can stop
meeting the system’s operational conditions (and then resume meeting
the requirements at some later point in time). Thus, as vehicles map
their surroundings, they should also provide information that can help
the vehicles to know whether the operational conditions are met with
respect to the confidence that they have about the mapped information.

We design and implement key services of Local Dynamic Maps (LDMs)
that are based on on-board and remote sensory information. The LDM
provides the position of all nearby noticeable objects along with the
LDM’s confidence about these positions. The design also includes an
extension that allows the vehicular system to agree on the lowest common
ability to meet the operational conditions.

We evaluate the performance of a key component in our pilot imple-
mentation together with a set of test cases that validate the proposed
design. Our current findings show that the presented ideas can accelerate
the deployment of automated driving systems.

1 Introduction

Self-driving cars will be the next big step in vehicular technology as several
important automotive original equipment manufacturers (OEMs) have recently
announced [9]. However, their specific challenge besides deploying a robust and
reliable technology throughout a vehicle’s lifetime [5] is to bring down the tech-
nology’s costs. Therefore, expensive sensors that perceive a vehicle’s surround-
ings need to be substituted by cheaper counterparts. Cheap sensors normally
have a reduced accuracy. This is addressed by sensor fusion with information
provided by other vehicles and the infrastructure.

� The work of this author was partially supported by the EC, through project FP7-
STREP-288195, KARYON (Kernel-based ARchitecture for safetY-critical cONtrol).

A. Bondavalli et al. (Eds.): SAFECOMP 2014 Workshops, LNCS 8696, pp. 36–45, 2014.
c© Springer International Publishing Switzerland 2014
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Research in this area however is time-consuming, error-prone, expensive, and
tedious, when several cars need to be coordinated within a real-scale experi-
ment on a real proving ground. As an intermediate for instance, preliminary
experiments can be planned and conducted with miniaturized counterparts. We
maintain such a fleet of scaled autonomous and cooperative vehicles using the
Gulliver Testbed [15]. Different use cases with our test-bed have successfully
shown [2, 3] that it is possible to bridge between purely virtual experiments as
carried out in simulations and physical experiments on real-scale proving grounds
[4].

Our system design has two distinct parts that each has different timing prop-
erties, following the architectural hybridization concept [8]. Given the uncer-
tainties affecting the system operation and the confidence in the data used in
control processes, we use the architectural concept of safety kernel. This con-
cept is responsible for managing the task, in a way, that ultimately ensures the
required safety goals. The vehicle limited ability to communicate prevents cen-
tralized solutions and open the door to cooperative ones. We consider sensory
data that has validity attributes attached that defines that accuracy and confer-
ence in the data. The (decartelized) safety kernel uses these attributes to decide
on a system service level that in turn will set the system performance level after
cooperatively evaluating the service level. This version of the paper refers to the
work that was done in KARYON with respect to local dynamic maps. We note
that cooperation to construction of localization maps was earlier discussed in
other projects, such as Hidenets.1

Mainboard  GNU/Linux

motor controller

IMU

RCM

Fig. 1. Gulliver vehicle (hardware) architecture

We have designed and
implemented the Gulliver test-
bed [4, 15] with an empha-
sis on demonstrating safety
aspects of cooperative sys-
tems, and system archi-
tecture to the concrete im-
plementation of fundamental
components. The software ar-
chitecture within each vehicle
follows the proposed architec-
tural pattern and, in partic-
ular, uses a safety kernel for
safety management. For that,
the hardware and software so-
lution presented in this paper are based on an earlier design in which we have
implemented and integrated the safety kernel in Gulliver vehicles [8]. Thus, the
test-bed is adequate to demonstrate the architectural concept, and to show that
it is possible to manage the performance level depending on the operational
conditions while ensuring that the functions always perform safely.

1 www.hidenets.aau.dk
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2 System Overview

We present the key implementation issues of the Gulliver test-bed, which we
have further developed based on an earlier design [4, 15].

Hardware Architecture. The hardware architecture is sketched in Figure 1.
The central component is the mainboard. Further components are the inertial
measurement unit (IMU), the ranging device (RCM), a GNU/Linux system and
the motor controller.

The IMU provides heading information that is derived from a gyroscope.
The RCM provides position information and allows communication between the
mainboards of different vehicles. The GNU/Linux system supervises the oper-
ation of the vehicle and provides a platform for cooperative algorithms. The
vehicles can communicate with each other and the test-bed control client via
Wifi links. The motor and the steering servos are controlled by the motor con-
troller. Additionally, it provides odometry information.

Further vehicles from the Gulliver Testbed [2, 3] comprise components that
also enable experiments for self-driving vehicular technology. These vehicles par-
ticipate in the annual international competition CaroloCup2 for miniature self-
driving cars.

Localization. The localization system is based on two different sensors, a
ranging device and an inertial measurement unit. The ranging device is P410
RCM produced by timedomain. It uses an ultra-wide band transceiver and mea-
sures the time of flight between two modules. Therefore, three stationary anchors
are used as reference points. They have a known position and define the refer-
ence frame. The ranging devices are sharing a common wireless and, hence, we
have the schedule of the transmissions. Our self-stabilizing approach is presented
in [16] and [17]. It features a TDMA timeslot assignment algorithm that does
not utilize an external reference.

The position is estimated from the ranging outcome, the odometry, and gyro-
scope data by a Kalman filter [18]. We have studied the influence of reflections
and interferences on our localization system. We have experimented both out-
door and indoor settings, see figures 2 and 3, respectively. We have used these
results when designing the safe distance that vehicles should keep from each
other when driving in the test-bed.

Path Planning and Following. The Gulliver demonstrator uses a set of
predefined paths during a demonstration. The paths are defined by the operator
especially for the application that is to be demonstrated.

A waypoint is defined as (x, y, v), where x, y ∈ Z is the position of the waypoint
on the plane and v ∈ Z is the proposed maximum speed used to reach this
waypoint. The vehicles follow predefined paths; each is a finite ordered sequence
of waypoints, where the last waypoint follows the first.

For some test cases, e.g., it is useful to define multiple waypoints. Thus, we
support several paths and we allow the vehicle to switch between them.
2 www.carolocup.de
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Fig. 2. Outdoor accuracy of the RCM. The offset (difference of measured mean and
actual distance) and the standard deviation of 10k measurements each.

External Vision Based Localization. An external localization system can
help to supervise the operation of the demonstrator. A vision based system can
give, after calibration, absolute coordinates of the vehicles with respect to a given
reference frame. Our system uses inexpensive standard USB cameras as external
references. Each vehicle is equipped with a unique tag that can be recognized
by image processing software.

We are using OpenCV, a software toolkit that was originally introduced in [7]
as CVLib. It provides a programming interface for acquiring frames from the
camera, as well as composable algorithms for image processing. The vehicles are
equipped with unique AprilTags [14]. These tags allow the vision-based localiza-
tion system to compute the vehicle id, position and orientation. The computation
is done for every frame separately. The position of the camera is automatically
determined by a group of four reference tags on the floor with known positions.
These can be used to compute a perspective transformation matrix P . Using
this matrix, a vehicle’s position can be computed directly from the coordinates
in the captured frame. The resulting vehicle positions are sent in User Datagram
Protocol (UDP) to the test-bed control client and integrated with LDM, as well
as with the Gulliver software.
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Fig. 3. Indoor accuracy of the RCM. The offset (difference of measured mean and
actual distance) and the standard deviation of 10k measurements each.The standard
deviation increases due to reflections.
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3 Local Dynamic Map

We present our design for a Local Dynamic Map (LDM) that is inspired by ETSI
TR 102 863 and focus mainly on highly dynamic information (type 4). We follow
KARYON’s view on confidence, with respect to position, heading, speed, etc.,
and provide data validity information that includes time, offset and outlier [6].
Our pilot focuses merely on the position data from on-board sensors, as well as
sensory information that can be collected from nearby vehicles.

Since remote sensory information is prone to communication interferences and
delays, we use a hybrid architecture, in which the architecture is divided into one
real-time part and another in which complex computations are allowed, such as
vehicle-to-vehicle communication. Thus, the system can always rely on a base-
line service that is provided by on-board sensors. When the opportunity occurs
and the operational conditions improve, the system upgrades its performance by
using remote sensory information for gaining more confidence. Note that one of
the key advantages of this hybrid approach is that the system design does not
require the access to communication systems that never fail (or with very high
probability). In case that those communication failures bring the confidence level
below the operational requirements, the system can always rely on the base-
line service until better confidence is gained and the system can upgrade its
service. Our design assumes the existence of a safety kernel that sets the system
performance level according to the recent events [8].

On-board Local Dynamic Map. The on-board part uses merely on-board
sensors that can be implemented in a real-time manner. On-board maps, for
instance, are built and updated while the vehicle is driving through an unknown
or previously mapped environment to realize a self-localization and mapping
algorithm. Sensors that can be used for this purpose include: rotary encoders like
wheel encoders, incremental encoders, hall-effect sensors, mice-based odometers;
distance sensors like ultra-sonic sensors, infrared sensors, or depth sensors like
laser or radar sensors; even vision sensors can be used to analyze the optical
flow for instance. In combination with an IMU device, the input data from such
sensors is fused and integrated over time to create and update local onboard
maps. However, without regular updates from an external reference system, such
onboard-only systems are affected by increasing data error because the used
models, for such onboard maps, drift over time as inaccuracies in the measured
data can occur for instance.

Cooperative Local Dynamic Map. This network-oriented part collects the
position information from nearby vehicles, such as position, speed, and heading
together with the data age. The Cooperative LDM provides timing information
(TFD data) for the timing failure detector (TFD) and validity. The TFD data
allows the TFD to detect the liveliness of the Cooperative LDM. Note that this
does not contain information about the data age that is collected from other
vehicles. The validity contains information on how certain the Cooperative LDM
is about the position information stored, whereas certainty is meant over the
coordinates and time.



Driving with Confidence 41

safety kernel

Ext In
Ext Out

input output

TFD data validity 

TFD data TFD data

hybridization line

sematics line

cooperative LoS evaluator

local LoScoop LoS
output

input

driving managment

validity validity

Ext In Ext Out

perf. levelperf. level

perf. level

position estimator 
(network based)

TFD data

TFD data validity

validity

position

position estimaton 
(network free)

validity

validity

position

local abstract sensors

remote abstract sensors

sensor data

sensor data

local dynamic map

validity

validity

validity

validity

Ext In

Ext In positionraw data

raw data

TFD data

TFD data

position

Fig. 4. Gulliver software architecture of a single vehicle

4 Cooperative Vehicular Algorithms

We selected test cases for which we can define two applications; a fully coop-
erative one that we associate with the highest service level, and autonomous
one that we associate with the lowest service level. We explain how the vehicles’
driver manager can act upon the operation service level, which the Cooperative
Service Level Evaluator can provide. We present a pilot implementation for this
feasibility study.

Test Cases. We considered three test-cases for performing the experiments.3
For the completeness sake, this paper includes a brief description of these test
cases. More details can be found in [1].

Adaptive cruise control and vehicular platooning. Vehicles maintain a safety
distance from the vehicle ahead. We set to 3 sec the headway for the Vehicu-
lar Adaptive Cruise Control (lowest service level) and 1 second for platooning
(Highest service level).

Intersection crossing. The highest service level application coordinates the
intersection crossing so that the waiting time is minimized while the lowest

3 See demonstration videos at www.chalmers.se/hosted/gulliver-en/documents
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service level application maintains a conservative approach, in which vehicles
stop before crossing and let the vehicle coming from the right to cross first.

Coordinated lane change. The highest service level application coordinates
a lane change maneuver with minimum inter-vehicle distance while the lowest
service level application considers a conservative approach in which the maneuver
starts until a sufficiently large space is created.

The Driver Manager. The (decentralized) driver manager, as well as the
cooperative evaluator of level service, does not rely on a distinctive vehicle or
leader election. The design is based on (not necessarily aligned) rounds of 190
ms, which are locally divided into four phases:

Observe (80 ms). Each vehicle updates its local information (localization,
speed, lane, etc.) from the mainboard and broadcasts it along with all the ve-
hicle’s localizations that it has received since the last round. The broadcast is
transmitted twice with 40 ms between retransmissions.

Compute (10 ms). Each vehicle computes the trajectory for all the level of
services that the vehicle supports in each test case using the acquired information
since the last round. The time costs of all the advanced driver assistance systems
is O(n) with preprocessing time of O(n log(n)), where n is the number of vehicles.
During our three vehicle experiments, we observed a sub-millisecond trajectory
computation cost but for redundancy reasons we assume 10 ms.

Agreement (80 ms). Each vehicle executes the cooperative service level evalu-
ator to agree on the cooperative service level that all the vehicles will run in the
next round. Essentially, each vehicle broadcasts its maximum local level of ser-
vice as well as the maximum level of service from the vehicle that it has received
since the last round. The broadcast is transmitted twice with 40 ms between
retransmissions. Thus, the phase can be completed within 80 ms. Note that the
vehicles operate in distinct level of service for no longer than two consecutive
rounds.

Move (20 ms). Each vehicle determines the trajectory to operate according
to the cooperative service level obtained for the current round. The trajectory
is then sent to the mainboard. It takes around 10 ms to send the trajectory
through the serial port to the mainboard and receive the acknowledge, but for
redundancy reasons we assume 20 ms.

Cooperative Service Level Evaluator. This fault-tolerant distributed
vehicular system must ensure its safe operation. Each vehicle implements a co-
operative service level evaluator that on every round decides what would be the
lowest common ability to meet the operational conditions for the next round.
Therefore, the decision and its dissemination must be done in bounded time.
Due to communication failures, the cooperative service level evaluator must be
able to cope with participants or communication failures.

We consider n vehicles; each has a unique id. The vehicles create an ad-hoc
network, i.e., no access points or base stations [10–13]. For the communication
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protocol, we consider UDP in order to avoid the retransmission overheads, and
thus messages can be lost due to noise or interference.

Fig. 5. Reliability of the consensus
algorithm (Proportion of rounds in
high service level) and packet drop
rate

The cooperative service level evaluator
aims at allowing the vehicles to operate
at the highest service level. It can do so
when allow vehicles can support the high-
est service level, and the communication
network delivers messages in a timely man-
ner. Since wireless communications can ex-
perience periods of arbitrary packet drops,
the cooperative service level evaluator has
to lower the service level when the vehicles
fail to exchange their service level reports
in a timely manner. Our feasibility tests fo-
cused on the scalability of this component
in ns3 and aimed at validating its behav-
ior with respect to scenarios that involve
several vehicles. For the simulation, we con-
sider a wireless ad-hoc network with a stan-
dard channel IEEE 802.11b. We used the
log distance propagation loss model with
exponent 3 and reference loss of 60.0. We
assume that the vehicles are deployed uni-
formly at random in a rectangle with di-
mension 30× 150 meters. Vehicles move at
a constant speed chosen randomly and uni-
formly between 0 and 20m

s . We perform
experiments with a variant number of ve-
hicles between 2 and 30, and the number
of transmissions between 2 and 4. We run
each experiment for 1, 200 sec.

We estimate the reliability aspects of
our implementation by considering the time
that the system operates on the highest ser-
vice level. We compare that time and the
packet drop rate. The plot on the left of Figure 5 shows that, as the number
of vehicles increases, the time that the system operates on the highest service
level decreases. This is due to the increment on the packet drop rate since the
medium is shared with more vehicles, as depicted on the right of Figure 5. We
also validated our results via experiments that used (physical) scaled-vehicles in
which the number of vehicles was between two and five. We observed that 90% of
the time that the system operated on the highest service level when the number
of vehicles was between two and four. This validates our computer simulations.
However, there was a drop to 60% when we tested five vehicles. We believe that
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the reason is due to the use of network adapters from different vendors during
the experiments. Further tests are needed for this case.

5 Conclusions

This paper reports on the progress of the development work. The development
outlook includes further implementation of the different data validity mecha-
nisms as well as scalable algorithms for achieving cooperative service level eval-
uation.
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Distributed Management and Representation of Data and Context
in Robotic Applications*

André Dietrich1, Sebastian Zug1, Siba Mohammad2, and Jörg Kaiser1

Abstract— The traditional, isolated data handling in sensor-
actuator systems does not fulfill the requirements of robots that
need to interact with their smart environment. Consequently,
we have to develop new mechanisms for adaptive data and
context handling.

We firstly investigate what types of data are present within
smart environments and how they can be classified and
organized. Only if the available data can be structured, it
can be queried and thus put into context. This is important
because the variety of data and possible interpretations is
tremendous, ranging from measurement values, sensor and
robot descriptions/states/commands, to environmental data,
such as positions, maps, spatial relations, etc. To cope with
this diversity, we developed a solution capable of storing and
accessing data within a distributed environment by providing
additional context information. Furthermore, we describe how
this information can be assembled in a task-oriented manner.
This enables robots to dynamically generate environmental
abstractions by using data from different sources and also
enables them to incorporate external sensor measurements.

I. INTRODUCTION

If we think of future smart environments (a good overview
is given in [1]), whether in industrial manufacturing, building
automation, logistic processes, or health-care scenarios, we
think of various different smart entities, capable of func-
tioning in dynamic and changing environments, interacting
with each other and solving tasks in cooperation. These
entities are capable of sharing their knowledge, experiences,
and environmental perception. New and evolving technolo-
gies and paradigms like the “Internet of Things” (cf. [2]),
“Cyber-Physical Systems” (cf. [3]), or “Pervasive/Ubiquitous
Computing” (cf. [4]) adopt these ideas and intend a flexible
communication between different intelligent components.
However, simply transferring data is by far not enough. It
is rather the basis for flexible cooperations, or from another
perspective just the “tip of the iceberg” of what needs to be
done. In the end, there is a tremendous difference between
a value and a meaning. What does a change of a single
distance measurement stand for? Thus, meaning can only be
derived by transforming, interpreting, and reinterpreting data
according to the current context. Whereby, a context can be
defined by everything that is relevant to fulfill a certain task,

*This work is (partly) funded by the German Ministry of Education and
research within the project ViERforES-II (grant no. 01IM10002B) and by
the EU FP7-ICT program under the contract number 288195 “Kernel-based
ARchitecture for safetY-critical cONtrol” (KARYON).

1A. Dietrich, S. Zug and J. Kaiser are with the Department of Distributed
Systems, at the Otto-von-Guericke-Universität Magdeburg in Germany
{dietrich,zug,kaiser}@ivs.cs.uni-magdeburg.de

2S. Mohammad is with the Database and Information Systems Group at
the Otto-von-Guericke-Universität Magdeburg in Germany
siba.mohammad@iti.cs.uni-magdeburg.de

like other sensor measurements, location and infrastructure,
safety and security requirements, time, physical conditions,
etc. (cf. [5]). This opens up two rarely asked questions:

1) How can data be stored and accessed in conjunction
with context?

2) How can data, gathered from various sources, and
context be dynamically put together, to deduce any kind
of application specific information?

We construe a smart environment with appearing and
disappearing entities, with overlapping workspaces, changing
tasks, etc., as some kind of distributed mind that is con-
tinuously producing new data, information, and knowledge.
Systems in such environments will have to continuously
adapt to these changes, and therefore will require holistic
access to this distributed mind. Thus, there is a myriad of data
(measurements, commands, states) and descriptions (meta-
data) resident within smart and distributed environments,
which is somehow related (spatial, temporal, etc.), but it is
not organized, not directly accessible, and cannot be queried
(other problems are discussed in [6]).

Imagine a robotic platform that enters a (manufacturing)
hall for the first time to deliver some cargo to a certain
location. This platform would establish a connection to the
smart entities of the environment and simply request all
needed information, like a map of the hall with a sufficient
level of detail, including restricted areas, present robotic
systems, available sensors, human positions, etc. According
to the determined route, it would then just filter out irrelevant
information and possibly try to get access to external sensors
along its way. The flexible usage of external sensor allows
to extend the local view on the environment. The robot
is able to navigate more efficiently, by preventing sudden
and unpredictable dangerous situations and can increase its
traveling speeds.

The common benefits of such a flexible exchange and
integration of information are obvious. It provides a higher
coverage and higher degree of fault tolerance compared to
individual perception. At the same time, systems can interact
more efficiently and coordinate their behavior. It should be
noted that such future cooperations will happen between
previously unknown systems and therefore have to tolerate
dynamic integration and segregation of heterogeneous enti-
ties. Unlike today where cooperation or even the integration
of external sensor measurements is only possible if, and only
if, it was previously intended by the programmer/system-
designer.
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Intelligent Robots and Systems (IROS 2014)
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Structure and Overview

To tackle the above mentioned problems more efficiently,
we subdivided our approach into three conceptual parts.
Starting bottom up, we first identify what data is available
in such environments and how it can be classified. Based
on this preliminary investigation, we present a solution to
question 1, which allows us to organize this data (with its
spatial and temporal contexts) so that it can be dynamically
accessed and queried. The third part is based mainly on
our previous research efforts and describes how this data,
coming from different sources, can be combined freely and
how to deduce any kind of application specific information
(question 2). Additionally, we demonstrate the applicability
of our approach by replaying the introductory example on
the floors of our faculty building. To illustrate important
aspects of this paper in a more convenient way, we up-
loaded additional video material to our YouTube-channel at
htttp://www.youtube.com/ivsmagdeburg and denote
its appearance in some figures with “Fig.Ani.”.

Because the presented concept touches different research
ideas, we present a comparison to the related work at the
end of this paper, followed by the conclusion.

II. DIFFERENT FLAVOURS OF DATA

There is a tremendous difference between the often er-
roneously mixed terms knowledge, information, and data,
which is caricatured in Fig. 1. As described in [7] (in com-
parison to different research areas), data is mostly assumed
as simple, discrete, and isolated facts without any explicit
interpretation (e. g., the positions and trajectories of robots
and humans). Combining data within a structure or putting it
into a certain context generates information (e. g., combining
the trajectories and current positions within a map). Giving
information a meaning by interpreting it, produces knowl-
edge (e. g., the prediction of a collision, due to intersecting
trajectories). While intelligence comes into play by choosing
alternatives or by deciding on strategies based on knowledge
(e. g., preventing the collision by choosing between a full-
stop, a change of speed, by recalculating the trajectory, etc.).

In the context of smart environments, we can subdivide
data into the following four general categories (cf. Fig. 1):

1) Metadata: it can be translated as “data about data” and
refers to the static descriptions of data-formats (e. g.,
TEDS3, ROS-msg4), entities (e. g., MOSAIC5, Sen-
sorML6), or complete systems (e. g., AutomationML7)
and interfaces. It allows to access external systems,

3“Transducer Electronic Data Sheet”, which is part of the smart transducer
interface standards set IEEE 1451 [8].

4A messages description language used to define various message formats
for the ROS publish/subscribe system: www.ros.org/wiki/msg

5The “fraMework for fault-tOlerant Sensor dAta processIng in dynamiC
environments” provides several XML descriptions for accessing sensors as
well as actuators: www.code.google.com/p/mosaicframework

6“Sensor Model Language” offers models and encodings to describe sen-
sors and measurement processes: www.ogcnetwork.net/SensorML

7Automation Markup Language is a description format for storing and
exchanging plant engineering information. www.automationml.org

describes their configurations, and enables the decod-
ing of raw data. Literally, metadata is used to describe
every sensory system of a robot, the robot itself, and
external sensors in detail as well as how to access these
systems and to decode their message streams.

2) Raw Data: it is the amount of directly measurable
physical quantities that change over time, such as dis-
tance (laser scans), temperature, light (camera frames).
This group furthermore comprises status messages
gathered sensors or actuators.

3) Virtual Data: it can be described as indirect measure-
ments that are derived from raw data by applying
physical or mathematical laws (cf. [9]). This type is
required where physical modalities are not directly
measurable, such as the temperature within a combus-
tion engine, or simply to reduce the amount of raw data
and to deduce more expressive values, like a maximum
temperature or the average income.

4) Abstract Data: it is higher-level and can be generated
by abstracting from raw and virtual data. A wall for
example or a map, which are abstracted from multiple
laser scans, a detected human within an individual
camera frame or deducing the human’s trajectory by
analyzing multiple frames.

data

infor-
mation

know-
ledge

metadata: description of systems and data by
using standards, data-sheets, etc.
raw data: directly accessible and measurable
physical values
virtual data: indirectly measurable real world
phenomena or fused data
abstract data: gained through abstraction
of raw and virtual data, by using feature
extraction, associations, etc.

Fig. 1: Differences of data as well as information and
knowledge in smart environments.

Furthermore, raw and virtual data are useful in two ways:
They have a real-time value as well as historical value.
While access to real-time data is necessary for most systems
that directly manipulate or interact with their environment,
or bodiless applications for controlling or surveillance; a
wide range of applications also require further access to
historical data. Examples are the mining of sensor logs to
detect unusual patterns, analysis of historical trends, post-
mortem analysis of particular events, or simply for later
data abstraction (mapping). Thus, the archival storage of past
sensor data is becoming more important.

We therefore tried to create a minimalist solution that
covers all the above mentioned types of data as well as their
specific real-time/historical value and spatial and temporal
context. This requires the combination of two diverse areas:
Distributed robotic applications (as a part of smart environ-
ments) with distributed or nowadays cloud-based database
systems. This conceptual approach is presented within the
following section.
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III. DATA ORGANIZATION AND STORAGE
The key idea is to use databases as a kind of holistic

storage, where every entity hosts a local database instance
to memorize any kind of data that may be usable to carry
out a certain task. The usage of distributed databases should
therefore allow the entity to seamlessly access and query
data from all other connected entities. We decided to apply
Cassandra as our prior database system in combination with
ROS (Robot Operating System [10]) and its communication
infrastructure and message description formats.

Within this section, we describe how data is stored and
organized by keeping spatial and temporal relations. A
simplified diagram revealing the basic database structure and
the organization of data is depicted in Fig. 2. But firstly, we
discuss some benefits of Cassandra as well as the reasons
for choosing this particular database system.

Metadata Abstract data

Raw data Virtual data

complex

base
type
key
topics
...

robots
. . .

sensors
. . .

locations
. . .

objects
. . .

R1
. . .

R2
. . .

R2
. . .

ROS - messages
. . .

Fig. 2: Organization of data with column-family complex as
the global link.

A. Why Cassandra?

Although Cassandra was initially developed as a NoSQL
(Not only SQL (Structured Query Language)) database for
Facebook [11] and received only little attention in the
robotics community (cf. [12]), its concept as well as some
of its features make it an ideal storage system for distributed
applications (especially for smart environments).

Cassandra provides a distributed key-value store. Keys
map to rows, which can contain a multitude of columns
(values), while rows by themselves are stored in column-
families (tables). See also Fig. 2 to get a better impression
about the data structure in Cassandra. Further columns can be
added dynamically or removed at any time, so that different
rows can store different types and different amounts of
values. That means that the structure of the database can
change over time and adapt to varying requirements, unlike a
classical relational database system. As revealed in [13] with
a performance evaluation, it also seems to provide an ideal
storage for sensor data. In [14] we describe a generic ROS-
Cassandra interface and present an evaluation that compares
our solution with the ROS MongoDB8 implementation and
the standard ROS data container rosbag9. This comparison
reveals that Cassandra memory consumption is very close to

8wiki.ros.org/warehousewg, 9wiki.ros.org/rosbag

rosbag, by keeping the ability for fast and complex querying
by using CQL (Cassandra Query Language). Additionally, it
showed the best overall performance.

Cassandra instances can be grouped into clusters and
keyspaces, allowing an entity to host and update its own
database instance. By querying local data, it also queries
data from other connected entities. Different strategies for
replication between instances provide a high availability of
data with no single point of failure. An entity can thus leave
the cluster while its data remains on other nodes. Every value
is marked with a timestamp, which allows to define TTLs
(Time to Live), so that data can be forgotten after a certain
period of time. This usage of timestamps enables eventual
consistency (see also [15]), a weaker consistency level than
strict or immediate consistency, which are commonly used
in relational databases, but more appropriate for distributed
systems. That means that due to the distribution of data and
the availability of nodes, it is guaranteed to receive a valid
value but maybe not the most recent. Tunable consistency
level enables application dependent refinements.

B. Metadata

There are currently two types of system described with
metadata: Sensors and robots. Whereas the description of
sensor and actuator messages is left out to ROS and its mes-
sage description language. Metadata for robots and sensors
are stored within two different column-families.

1) Sensors: We used the OpenRAVE10 XML-description
format for sensors, capable of defining various kinds of sen-
sors (such as laser scanners, odometry, etc.). This description
format was combined with the MOSAIC sensor description
capabilities, which allows the definition of more realistic
sensors, by including various fault models (see also [16]).

2) Robots: To characterize different robots in terms of a
kinematic and dynamic description, a visual representation,
and a collision model, we apply common formats such
as URDF (Unified Robot Description Format [17]) and
COLLADA (COLLAborative Design Activity [18]).

C. Raw & Virtual Data

Our generic cassandra ros11 interface, introduced in [14],
allows to store, query, and request historic ROS-messages
(e. g., laser scans, camera streams, etc.) of any kind and
source. Data can be stored either in a binary format (for fast
access), in a ROS similar manner (slower due to conversation
of messages, but it allows querying and analyzing data more
conveniently with Cassandra’s CQL-capabilities), or in other
formats, like yaml or string (having their specific advantages
and disadvantages). In contrast to other data, these types
of data are stored in multiple column-families, one topic
per column-family. This is necessary to be able to cope
with the large amount of produced data, its diversity, and to
reduce replication efforts. As mentioned in Sec. III-A, every
stored message is automatically labeled with a timestamp by
Cassadra, which allows it to keep temporal relations.

10OPEN Robotics Automation Virtual Environment: openrave.org
11Project website: www.ros.org/wiki/cassandra_ros
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D. Abstract Data
Actually, we identified two basic types of abstract data that

should be sufficient to allow smart entities to sustain even in
complex 3D environments. These are locations and objects.
Therefore, both of these data types are stored within their
own column-family (cf. Fig. 2).

In our case, a location always represents a certain area,
which is in general static and does not change over time.
It can be represented by any kind of 2D map or any kind
of 3D structure. Whereas objects can define any “thing” in
the environment and come up with higher dynamics than
locations, ranging from rarely moved objects such as tables
or wardrobes to objects with frequently changing positions
(e. g., mugs, chairs, etc.). As depicted in Lis. 1, the same
object or location can be represented in different formats and
with different levels of precision. A mug for example can be
defined as a detailed 3D model, such as vrml (Virtual Reality
Modeling Language), stl (Surface Tessellation Language),
etc., or as point cloud data (pcd). The value for precision is
currently a subjective chosen value. An application shall later
be enabled to decide upon the required amount of precision
and the appropriate format, simply by parsing column names.

Listing 1: Extract of column-family objects, with row-keys
(bold), columns (blue), and values.
1 objects : { ...

115 1sx34s : {
116 comment : "mug ... ",
117 stl 85 : binay-data,
118 pcd 85 : ascii-data },
232 6yfr48 : {
233 wrl 90 : xml-data,
234 comment : "standard phd student table",
235 ... },

E. Complex
So far we have only described how data is stored, but

not how this data is interconnected. To put all entities into a
global context, we use a further data structure, which we call
“complex”. This column-family combines all previous data
(cf. Fig. 2) and organizes it within a hierarchical structure.

As listed in the code example below, a complex entry
always points to a certain entity of a certain type (i. e., robot,
location, sensor, object) with a certain position, identifier,
etc., whereas metadata or objects are used to describe a
certain class of entities. For example, there can be two
mugs placed within an environment that are derived from the
same (abstract-) object. A complex entry can further be used
as a bodiless placeholder (to simplify some structures) by
pointing onto another complex entry. Next to a position (with
its specific uncertainty) and orientation relative to a base,
complex entities are further labeled with communication
specific information. Since we are using ROS, we store addi-
tional information about masters, topics, and services. Thus,
by assigning communication details to complex entities, it is
also possible to access to any kind of raw&virtual real-time
data (the correct interpretation is left out to the next section)
as well as to historic data, which is assigned to this topic
(cf. Sec. III-C).

Listing 2: Showing the complex entry katana 62x of type
robot, whose description is stored in row katana 2012 in
column-family robots, whereby position and orientation are
defined relative to the complex base entry room 309.

1 complex : { ...
255 katana_62x : {
256 key : "katana_2012",
257 type : "robots",
258 base : "room_309",
259 position : [2.3, 3.2, 0.0],
260 quaternion : [0.92, 0.0, 0.0, 32.2],
261 covariance : [0.04, 0.2, 0.01, 0.14, 0...],
262 ros-master : "http://moritz:11311",
263 topics : ... },
517 room_309 : {
518 key : "room_309",
519 type : "locations",
520 base : "floor_4", ... },

The order of entities, in our case, is defined by the their
positions, which are commonly defined as relative to a basis,
like a robot’s position relative to a room, sensor positions and
orientations mounted to a robot, or a room’s position within
a floor of a building, etc. We do the same, by assigning a
base to every complex entry. All positions are then defined
relative to that base. Knowing the id of a single entity
(bootstrapping), like the katana’s id in Fig. 3a, allows to
query in two directions: Downwards, by identifying entities
whose base the katana is, and upwards, by querying for the
katana’s base and for entities that are related to the same
base (cf. Fig. 3b).

(a) Katana-manipulator (with addi-
tional sensors attached)

(b) Room 309 (including 3d scans)

(c) Building (global base) (d) 4th floor (assembly of multiple
rooms)

Fig.Ani.12 3: Hierarchy of entities, starting from the sensors
whose positions are relative to the robot, while the robot is
located within room 309, which is part of the fourth floor in
building 29.

To sum up, it can be said that the organization of data, as
we propose it, constructs a large and distributed scene graph,
where every entity updates its own local Cassandra instance
with positions, identified objects, sensor measurements, etc.
But it is exactly what we required to solve question 1.

12Animation: www.youtube.com/watch?v=kvoC5yxdzsw
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IV. DATA INTERPRETATION
Within this section, we present a solution to question 2,

where we try to make sense of all of these different types
of data and relations by transferring them into a useful
representation, which we call an “environment model”.

A. The Concept of an Environment Model

Environment models can be considered as an adoption
of “mental models” (cf. [19]), which are widely used in
cognitive science to (partially) explain how humans perceive,
reason, assess, learn, and make decisions for a variety
of domains. Additionally, these models are essential for
integrating new information correctly. In the simplest way,
they can be interpreted as “mental simulations” of the real
situations or problems, with reduced complexity according
to reality. Quantitative relations are mapped onto qualitative,
and thus allow to store and handle elements of the world
within the working memory (cf. [20]).

The term environment model is used, because we only
consider information and data that might be relevant for a
system (robot), to sustain in a spatial environment. While
mental models are used in a much broader sense, including
also sociocultural standards or knowledge and reasoning
about complex action sequences. We firstly described the
idea of using environment models for environmental per-
ception and modeling in [21] and demonstrated its appli-
cability in [22]. As depicted in Fig. 4, all data is put into
a “co-simulation” of the surrounding. We currently apply
OpenRAVE10 as our prior simulation environment. It is
already integrated into ROS and open source, which allows
to develop own extensions13.
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Fig. 4: Schematic structure of an environment model as an
assembly of available and selected data, such as robots and
sensors (metadata), real-time values including sensor mea-
surements (red), current robot positions and configurations
(raw data), as well as (abstract data) geometries of the room
and depth scans (blue).

The bases for building such an environment co-simulation
are the data and the relations of the last recent environmental
configuration obtained from the distributed database. How-
ever, by associating the reconstructed scene and its entities

13Our plugins: code.google.com/p/eos-openrave-plugins

with real-time values through subscribing for topics, it is
possible to repeat every action and measurement within the
virtual world. It allows to integrate external sensors and
actuators and to interpret their in- and outputs as well as
their effect on the configuration of the environment. It can be
further used to validate sensor measurements by comparing
their values with measurements obtained from their virtual
counterparts.

All information required for applications can then be
taken directly from the model, such as relative positions
and distances, available sensors/robots and their location or
monitoring/operational area, etc., which can be considered
as abstractions of an environment model.

B. The Concept of Abstracting Views

A view is a well-defined and application specific ab-
straction of the external environment, while the environ-
ment model is the most general representation and serves
multiple applications. A view can be anything such as
complex 3D models used for grasp planning or to switch
perspectives (to be able to follow human orders [23]), 3D
or 2D maps used for navigation and localization, or simple
state vectors including distances, velocities, or even sets of
objects and sensors that fulfill certain properties. Deducing
such application specific information from the environment
model is a quite challenging task, due to the multitude
of requirements and opportunities. In [24] we discussed
this problem and proposed a solution, which interprets an
environment model as an implicit and dynamically changing
knowledge base that can be queried in the same way as
a database. We therefore had developed a new scripting
semantics/language, based on simple SELECT-statements,
which is mainly inspired by SQL. It even allows to define
complex situations (combining time and space), which occur
if the SELECT query returns a non-empty result. This query
language is called SELECTSCRIPT and it exists a prototype
implementation for OpenRAVE, to get a first impression on
the language and its concepts see the current project web-site:
http://pythonhosted.org/SelectScript_OpenRAVE

C. Proof of Concept

Because the benefits of our approach are hard to measure
and a sequence of queries would be meaningless, we present
the results of those queries and describe the conceptual
way of querying (for filtering and abstracting the gener-
ated environment model we applied our query language
SELECTSCRIPT). Let us go back to the delivery scenario,
with which we introduced this paper. We, therefore, modified
the scenario according to our local surroundings, whereby
the robot does not have to deliver cargo but simply to enter
room 309. So we start with only a model of the robot,
as it is depicted in Fig. 5a, knowing its relative position to
the 4th floor. By querying our system for all locations
whose base is floor 4, it is possible to reconstruct a simple
model of entire floor, with the correctly placed robot. This
model can be used to identify the position of the target
room and its relative position to the robot. Additionally, this
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model is used for an initial trajectory planning (see Fig. 5b),
which allows to it remove all locations that were not
touched by the calculated path afterwards (see Fig. 5d). The
remaining locations are used as bases to query for all
related sensors, robots, objects, abstracted data and historic
raw measurements (like a point cloud, retrieved from an
earlier Kinect scan). All of these entities are then placed
within the correct spatial context into the model, compare
with Fig. 5c.

(a) Volksbot (b) 4th floor

(c) Complex environment (d) Trajectory filtered locations

Fig.Ani.14 5: Query sequence: (a) starting from the robot mo-
del and its relative position; (b) adding location information
about the 4th floor, which is used for trajectory planning;
(d) the resulting trajectory is used as a filter to segregate
information about not required locations; (c) integration of
entities, such as external sensors (red) and Kinect scans.

The resulting model can be used afterwards in multiple
ways. On the one side it allows to identify and retrieve
all relevant information about the current operational area,
about included objects, robots, sensors, and their current
configurations. But on the other side, it can be further
abstracted to generate application specific views. The entire
environment model is far too complex and exaggerated for
the purpose of navigation. Thus, a simple occupancy grid
map might be the better choice. As depicted in the screen
shots in Fig. 6, something like maps can be simply generated
by applying different filters.

V. COMPARISON WITH RELATED WORK
Sharing data between entities is not a new idea, in contrast

to its organization and structuring for smart environments.
The outcome is that data gained from different sources can
be reused, combined and transformed into more meaningful
representations. Our notion of a meaningful representation
of data is based on environment models (cf. Sec. IV-A).
These models are used for two purposes, they are required for
including external measurements, which requires knowledge

14Animation: www.youtube.com/watch?v=Xt403wPCYD8

(a) Environment model with filter (b) Occupancy grid map

Fig.Ani.14 6: Abstraction of maps from complex models by
applying filter-functions.

about the type of sensor, relative positions, etc., but also
to integrate newly made observations. In concrete terms,
an autonomous robot should be able to look around the
corner, by using external cameras to detect humans and other
obstacles, but it should also be able to share this experience.

As the following overview reveals, there is some related
research that implicitly presents solutions our initial ques-
tions 2 and 1. But it also reveals that the growing complex-
ity of environment models and the ability for distribution
are also an outcome of previous developments and future
requirements.

A. Simple One-Purpose Models

The differences in tasks and environments in robotics
applications lead to a diversity of world models. An early
overview on the state-of-the-art given in [25] reveals that
most of these models were designed for specific (robotic)
applications only. Examples are “Constructive Solid Geom-
etry” [26], a geometric world model based on primitive
geometrical objects, occupancy grid maps [27], octrees [27],
etc. All of these examples are directly linked to the available
sensor information and its respective data formats. The
authors of [28] present a more specialized 3D occupancy grid
map, which can be customized in terms of update rates and
accuracy, to serve different needs. Other abstractions with
more than just spatial semantics are not considered.

B. Complex Multi-Purpose Models

Nowadays there is a shift to more general and complex
models, resulting from the fact that robots and their en-
vironments themselves have become more complex. New
developments should serve various purposes, like decision-
making, trajectory planning, obstacle avoidance, etc.

A theoretical concept of such a multi-purpose environment
model was discussed in [29], its architecture adopts the
psychological principals for artificial perception and con-
sciousness. The concept differentiates between two levels
of consciousness and two models. The first level of con-
sciousness simply describes basic and reflexive (hard-wired)
behavior that reacts directly to sensor inputs. Whereas, the
second level uses two types of abstractions, a self and a
world model, generated from system-knowledge and sensory
inputs. Higher level planning and predicting is cut off from
all sensory inputs and uses only the models. Unfortunately,
there is no further explanation of how such models look like
or what aspects of the environment they describe.
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In contrast to this, Hsiao and Roy presented an envi-
ronment model in [30] and [23] that describes intersecting
workspaces of robots and humans as a 3D physics simu-
lation. In fact, this approach was a source of inspiration
for our concept of co-simulating the environment. Their
approach is formally based on ODE15, a high performance
library for simulating rigid body dynamics. It allows to
describe an environment and the objects within in terms of
shapes, masses, velocity, forces, and colors. These properties
were used for enhanced predictions and it was demonstrated
that the cooperation between humans and robots requires
such a complex environmental representation. It enables a
robot to change its own viewpoint and to interpret human
commands, such as “Give me the blue screwdriver on my
left!”, correctly. But this environment model is built upon
a fixed and centralized simulation that does not allow the
dynamic integration of entities, and it does not consider
specialized entities (external robots and sensors).

The idea that an environment model can be constructed
from multiple sources is presented in [31]. It describes a
vehicle’s road environment conceptually as a (very special-
ized) object-oriented model. It uses a-priori information and
information obtained from on-board sensors or from through
car2car communication. That means that the awareness of
another car in front can be obtained either from the local
sensor system or from the communicated position of the
front car itself. Types of entities are restricted to vehicles,
pedestrians, and traffic signs, represented as 2D points on a
lane. This type of modeling is ideal for situation assessment,
because all required information is already translated into
a simplified structure with some semantics. However, the
environment of an autonomous robot is far more complex.

A concept of a complex environment model for au-
tonomous systems, which reflects our notion, was presented
in [32], [33]. It separates between sensor data, a world model,
and knowledge. Sensor data is analyzed with the help of
already existing knowledge, and the resulting information is
passed to the world model. Knowledge is defined in terms
of specific methods and algorithms for analyzing sensor
data. The world model consists of objects (labeled with
attributes), representing entities of interest. These objects are
interconnected in a scene via relations. It remains unclear
how data, knowledge, and the world model are stored or
how scenes, including all details about the environment,
are represented. But it reveals that there is a need for a
symbolic abstractions/level to describe situations, similar to
the examples within the next subsection.

C. Logic-Based Models

Models based on logic can are another type of environment
modeling. Whereby, such systems already work on abstracted
sensor data in terms of predicates and rules, which can be
queried easily according to various aspects. This approach is
mainly used to determine complex action sequences as well
as to describe complex situations. In most cases it is based on

15Open Dynamics Engine: www.ode.org

the situation calculus [34]. An example is “alGOl in LOGic”
better known as GOLOG [35] with its specialized dialects.

KnowRob [36] is another example of a knowledge pro-
cessing system, based on Prolog and OWL (Web Ontology
Language). It offers tools for the automated acquisition of
concepts through observation and experience, which can
be used for learning and reasoning. Perception modules
therefore create 3D environment maps, track human motions,
segment objects, and record robot activities, which means
that all data is already abstracted by a fixed set of algorithms
into a fixed set of concepts. Thus, sensor data is lost after this
procedure and cannot be used for later analysis. Abstracted
information is put into a knowledge base and can be easily
queried afterwards. Next to its connection to RoboEarth (see
next subsection) it also shows that relations can be directly
extracted from a spatial model. For example frequently
changing relations, such as “on”, “in” or “below”, are com-
pletely determined by the positions of these objects. As the
authors argue themselves, storing an object’s positions and all
possible relations within a knowledge base would cause too
much overhead, calculating the relations on demand is more
elegant. We simply extend this consideration, if we claim that
also all other information/relations can be extracted from a
complex environment model, as discussed in Sec. IV.

D. Distribution

A distributed scene graph with uncertainty support was
presented in [37]. It is intended to be used as a shared world
model for robotic applications. This approach is specialized
onto geometrical representations and spatial relations with
support for semantic annotations. It does not allow to share
further sensory data between entities, which could be used
afterwards to identify or generate additional elements, that
could be integrated into the scene graph.

RoboEarth [38] can be considered as a top-down approach,
closely related to the questions of what data is required
to support KnowRob. Whereby, we started bottom-up by
querying what types of data are available and how they can
be organized. RoboEarth is used to store and access the re-
quired (abstract) concepts, such as robots, objects (i. e., CAD
models, point clouds, images), environments (i. e., maps and
information on coordinate systems), and action recipes. This
data is separated in two distinct database systems, one based
on Apache Hadoop16, for storing data hierarchically and
a graph database for storing complex semantic relations
between data. Thus, its main purpose lies in reasoning and
in sharing knowledge between robots, but it does not allow
to share sensor data and functionality.

The PEIS-Ecology (Physically Embedded Intelligent Sys-
tem) supports the idea of distributed robots (cf. [39]). Actors,
sensors, and everyday objects are able to share a predefined
set of functionalities dynamically, to serve tasks, they cannot
fulfill on their own. All systems and functionalities are
therefore described with metadata, which allows to determine
their adequate combination or execution of functions.

16Project website: hadoop.apache.org
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A combination of heterogeneous and distributed robots
was also presented in [40] for outdoor scenarios. It combined
sensor information from different robots and used it for local-
ization, mapping, and path planning. A similar approach was
made by DAvinCi [41]. In contrast to the previous attempt,
it was built on a cloud-based service16. A heterogeneous
set of robots uploads its data that is afterwards combined
for map building and segmentation. The main problem in
both approaches is, that they imply that all heterogeneous
robots are able to share a global 2D map, which requires
that all robots are equipped with sensor systems at the same
height, used for localization. Otherwise, maps17, generated
at different heights for the same location, differ too much. It
is thus more appropriate to be able to share sensor data from
the same location and to generate maps afterwards (cf. [42]).

VI. CONCLUSION

A holistic access to data in smart environments requires
some kind of organization and the ability for interpretation.
These facts are mostly neglected in related research efforts.
Therefore, we started out by examining, what are relevant
types of data in smart environments and how this data can
be organized. Our solution is formally based on Cassandra,
allowing every entity to store its data for its own purpose,
but also to share it with interested entities. This allows it to
extract any information afterwards, whereby we propose the
usage of environment models and views.
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