The Wi-STARK Architecture for Resilient Real-Time Wireless Communications

Jeferson L. R. Souza, José Rufino DE CIÊNCIAS universidade de lisboa

Real-Time + Wireless Communications

- Lack of effective real-time support in the current wireless standards and literature;
- Capable to reduce system's Size, Weight, and Power consumption (SWaP);
- Enabling communication and cooperation between mobile entities with safety-critical constrains (e.g., UAVs, and cars);

broadcast: correct nodes, receiving an uncorrupted frame transmission, receive the same frame;
frame order: any two frames received at any two correct nodes are received in the same order at both nodes;
error detection: correct nodes detect and signal any corruption done during frame transmissions in a locally received frame;
bounded omission degree: In a known time interval $\mathcal{T}_{\text {rd }}$, omission failures may occur in at most k transmissions; bounded inaccessibility: In a known time interval $\mathcal{T}_{\text {rd }}$, a wireless network segment may be inaccessible at most i times, with total duration of $\mathcal{T}_{\text {ina }}$;
bounded transmission delay: Any transmission request is transmitted on the wireless network segment, within a bounded delay $\mathcal{T}_{\text {td }}+\mathcal{T}_{\text {ina }}$.

The Wi-STARK Architecture

Mediator Layer:

- Reliable frame transmissions;
- Temporal control over communications;
- Static/dynamic configuration for supporting dependable and (hard) real-time network operation;

Channel Layer:

- Enhanced error detection and signaling;
- Advanced and transparent control over communication channels;

