

AGENDA

- Scenario Description
- Safety Kernel Components
 Architecture
- Test Environment
- Demonstrations

SCENARIO DESCRIPTION

 Demonstrate KARYON functionalities in an aeronautical application and how it may improve the usage of local airspace without compromising flight safety.

SCENARIO DESCRIPTION

This information is the property of Embraer and cannot be used or reproduced without written consent.

SAFETY KERNEL COMPONENTS ARCHITECTURE

This information is the property of Embraer and cannot be used or reproduced without written consent.

TEST ENVIRONMENT

DEMONSTRATIONS

[/]1. No failure insertion. Level of Service = 2;

2. GPS PDOP = 5. Level of Service = 1.

Validity Signal	Description
1-2	Good reliability and better precision. All safety requirements are met.
2-5	Uncertainties start to have some impact on navigation. Additional measures must be taken so that flight safety is not compromised.
5-10	Poor information quality and potential threat to safety. Signals must be used carefully.
10-20	Displacement information only an estimation. Worst quality signal.

Physical interpretation of GPS validity signals

 The level of serviced calculated by the Safety Kernel becomes worse the higher the validity value.