

KARYON: Kernel-Based Architecture for safetY-critical cOntrol

Cooperation with Disagreement Correction in the Presence of Communication Failures

KARYON Workshop, Borås, Sweden, Dec 11, 2014

Introduction

KARY

- Self-driving vehicles plan their trajectories
 by using sensory information about their vicinity
- Cooperative vehicular systems
 - use V2X for sharing that sensory information
- The limitation is that V2X is failure prone
 - and thus we cannot bound the communication delay

How can safety-critical cooperative systems attain the highest performance in the presence of communication failures?

Motivation

The cooperative system computes its trajectory based on exchanged information

Problem Definition

KARY

Minimum Longest Uncertainty Period: Is there an upper-bound on the longest period that cooperative systems spend disagreeing on s?

• This period is longer than zero! We show a solution that uses 1 communication round in which, in the absence of failures, all vehicles exchange messages.

Timed Protocol for Cooperation with Disagreement Correction

Vehicular Control Timed Protocol for Cooperation with Disagreement Correction

Communication Protocol

Correctness

Theorem 1. The system disagreement period is bound by one communication round Level of Service Over the Time

6

Implementation and Evaluation

- Authenticity: ratio of rounds in which the system agrees on s (without using \perp)
 - We use a gossip algorithm with 2 retransmissions

Trade-off between round length and authenticity

- Shorter rounds, shorter disagreement period but lower authenticity
- Longer rounds, longer disagreement but higher authenticity

KARY 🖲 N

8

Conclusion

KARY

• We show how to attain the highest performance in the presence of failures

- Resolves disagreements in at most one round
- Bounded exposure to risk (that is due to failures)
- Trade-off: authenticity and disagreement period
- Simulations show high performance (and still safe)
- We demonstrate cooperative applications

Ponce, Schiller, Falcone, "Cooperation with Disagreement Correction in the Presence of Communication Failures," 17th Inter. IEEE Intelligent Transportation Systems (ITSC'14), CoRR abs/1408.7035

KARYON Workshop, Borås, Sweden, Dec 11, 2014