

Kernel-based ARchitecture for safetY-critical cONtrol

KARYON
FP7-288195

D4.3 – First report on Cooperative
Diagnostics

Work Package WP4

Due Date M24 Submission Date 2013-12-03

Main Author(s) Olaf Landsiedel (CTHA)

Contributors Salvo Tomaselli (CTHA), Elad M. Schiller (CTHA)

Version 1.2 Status Final

Dissemination
Level

Public Nature Report

Keywords Distributed Diagnostics, Debugging Distributed Systems, Tracing,
Deterministic Replay

Reviewers Kenneth Östberg (SP)

Part of the Seventh

Framework Programme

Funded by the EC – DG INFSO

KARY N

KARYON ‐ FP7‐288195
D4.3 – First report on Cooperative Diagnostics

© 2013 KARYON Project 2/19

KARY N

Version	history	

Rev Date Author Comments

V0.1 2013-08-29 Olaf Landsiedel (CTHA) Initial Structure

V0.2 2013-09-10 Olaf Landsiedel (CTHA) First draft

V0.3 2013-09-12 Olaf Landsiedel (CTHA) Complete, needs polishing & clean-up

V0.4 2013-09-16 Olaf Landsiedel (CTHA) Polishing, added cites

V0.4 2013-09-17 Olaf Landsiedel (CTHA) Ready for internal review

V0.5 2013-09-23 Olaf Landsiedel (CTHA) Integrated review from SP (Kenneth Ö.)

V1.0 2013-09-23 Olaf Landsiedel (CTHA) Final

V1.1 2013-11-12 Olaf Landsiedel (CTHA) Integrated comments from WP4.3
WebEx 2013-11-06

V1.2 2013-12-03 António Casimiro (FFCUL) Final review and delivery

KARYON ‐ FP7‐288195
D4.3 – First report on Cooperative Diagnostics

© 2013 KARYON Project 3/19

KARY N

Glossary	of	Acronyms	

AUTOSAR AUTomotive Open System Architecture

CPS Cyber Physical System

CPU Central Processing Unit

ECU Engine Control Unit

KARYON Kernel-based ARchitecture for safetY-critical cONtrol

MCU Microcontroller Unit

MILD Minimal Intrusive Logging and Deterministic Replay

OS Operating System

TinyOS Tiny Operating System (for WSNs)

Tx.y Task belonging to work package x, with serial number y

WP Work Package

WPx Work Package with serial number x

WSN Wireless Sensor Network

KARYON ‐ FP7‐288195
D4.3 – First report on Cooperative Diagnostics

© 2013 KARYON Project 4/19

KARY N

Executive	Summary	

Collaborative vehicles demand for thorough testing and evaluation, as their operation is
inherently safety critical. However, diagnosing and debugging such cooperative systems during
deployment is challenging, due to the concurrent nature of distributed systems, the interaction
between the different vehicles, and the limited insight that any deployed system offers.

In KARYON we address this challenge by designing MILD; providing Minimal Intrusive
Logging and Deterministic replay. MILD enables logging of events on deployed Cyber-Physical
Systems at minimal intrusion and their cycle accurate and deterministic replay in controlled
environments such as system simulators. In this report we present the design and architecture of
MILD, discuss the underlying motivations for its design, and present an initial prototype
implementation. Additionally, we report insights into its flexibility and discuss performance
results.

KARYON ‐ FP7‐288195
D4.3 – First report on Cooperative Diagnostics

© 2013 KARYON Project 5/19

KARY N

Table	of	Contents	

1. Introduction ... 7

1.1 Motivation and Background .. 7

1.2 Purpose and Scope .. 8

1.3 Relation to Other Work ... 8

2. Design Overview and Challenges ... 9

2.1 Design Challenges .. 9

2.2 Design Overview .. 9

3. Architecture ... 11

3.1 Distributed Logging for Deterministic Replay .. 11

3.2 Collection: Analysing and Sorting Logs .. 12

3.3 Deterministic Replay in System Simulation ... 13

4. Implementation and Evaluation .. 14

4.1 Prototype Implementation .. 14

4.2 First Case Study: Diagnosing Split‐Phase Faults ... 14

4.3 Initial Evaluation: Performance and Memory Overhead ... 15

5. Discussion .. 16

5.1 Benefits .. 16

5.2 Limitations ... 17

6. Conclusions and Next Steps ... 18

References ... 19

KARYON ‐ FP7‐288195
D4.3 – First report on Cooperative Diagnostics

© 2013 KARYON Project 6/19

KARY N

List of Figures

Figure 1: System Overview of Distributed Debugging with MILD. We depict MILD connected to

three cooperative applications, which run on top of the safety kernel and communication

middleware. Additionally, we depict the data handling pipeline of MILD (lower part) for

collection, processing and replay / analysis of traces. .. 10

Figure 2: Architecture Overview: MILD consists of three key elements: (1) logging elements on

the individual nodes (on the left); (2) data collection elements (in the middle); and (3) replay,

e.g., with a system simulator (on the right). ... 11

Figure 3: Sample application without logging elements. We depict a simple TinyOS application

(named BlinkToRadio) that uses three resources: Timers, radio transmission, and radio receive

modules. .. 12

Figure 4: Sample application (same application as on the left) with logging enabled. We note

that the software components of the application remain unmodified. MILD merely hooks into

the points of interaction of the software components, e.g., function calls from one component

to another. .. 12

Figure 5: Dependency graph of the events traced on two nodes (based on logical clocks). 13

Figure 6: Example Screenshot of a sample replay environment: the full system simulator

"Cooja" .. 14

Figure 7: Initial performance evaluation: Comparison of the cycles needed by the application to

send one message (“BlinkToRadio” application). Our results show a very limited logging

overhead. .. 15

Figure 8: RAM usage as reported by the compiler for: the Blink application with 1,2,3,4 timers

and for “RadioCountToLeds”. Every wrapper can buffer 40 events. .. 15

KARYON ‐ FP7‐288195
D4.3 – First report on Cooperative Diagnostics

© 2013 KARYON Project 7/19

KARY N

1. Introduction	
The KARYON project (Kernel-based ARchitecture for safetY-critical cONtrol) focuses on the
predictable and safe coordination of smart vehicles that autonomously cooperate and interact in
an open and inherently uncertain environment. For example, cooperating on common driving
tasks such as cooperative road trains, lane change, and virtual traffic lights, KARYON aims to
provide safer, greener, and more efficient transportation. Similarly, KARYON provides a
platform allowing UAVs to interact and cooperate on common tasks such surveillance of natural
disasters.

1.1 Motivation	and	Background	

Vehicular systems, both in automotive and aviation, are inherently safety critical. Any of these
safety critical components is required to be highly fault-tolerant in operation. A vehicle
comprises numerous mechanical, hydraulic, software and hardware components as sub-systems.
And throughout the recent years we saw an increasing amount of embedded software and
hardware in vehicular systems. A modern vehicle contains up-to 100 embedded,
microprocessor-based electronic control units (ECUs) and close to 100 million lines of software
code [1] . The on-going development towards autonomous and, as a next step, cooperative
vehicles (as focused on in this project), will increase the numbers of ECUs as well code
complexity in the coming years.

All safety critical systems, ranging from advanced convenience to safety features, must be
designed to be fault tolerant. Thus, they must be able tolerate faults in order to ensure the safety
of the vehicle, its drivers and passengers, as well as the surroundings including other vehicles
and pedestrians.

Commonly, a thorough safety analysis is conducted systematically during the design phase of a
vehicle. Thus, well before the vehicle is put into operation, an offline analysis is conducted to
evaluate and analyse the impact and likelihood of possible faults and their consequences. The
goal is to identify faults that can lead to undesirable consequences and implement the required
counter measures to ensure safety. Commonly, such counter measures are either fail-safe or
fail-operational: Fail-safe denotes that a system shuts-down into a safe state after a failure is
detected, i.e., it stops being available while not causing any harmful, undesired consequences. In
contrast, fail-operational denotes that is system continues to provide a certain, often degraded,
level of service in presence of failure while still providing the required safety.

Independent of the counter measures taken in the presence of failures, a key requirement is that
a system must be able to detect that a failure is present in the first place. Moreover, this
detection must deterministically happen within a specified amount of time (denoted as detection
latency). This upper bound on the latency is required to ensure that the vehicle (or individual
components) can safely transition from normal operation to a fail-safe or fail-operational stage.
This is a key requirement, as vehicles need to maintain a safe behaviour also during this
transitional phase. Additionally, not all faults can be detected by the system. The term detection
coverage denotes the faults that can be detected by the system and for which fail-safe or fail-
operational mitigation strategies are implemented.

In KARYON, the safety kernel supervises the failure states of the individual components. It
controls the overall level of service that a vehicle can provide based on the status of its own
components and the status of nearby vehicles. Thus, in this aspect, KARYON and its safety
kernel strongly differ from the state of the art, where safety decisions merely depend on the
status of local components. KARYON, in contrast, provides cooperative services and thus
decisions and actions inherently require consensus on planned activities between vehicles. Thus,

KARYON ‐ FP7‐288195
D4.3 – First report on Cooperative Diagnostics

© 2013 KARYON Project 8/19

KARY N

the failure of a component on one vehicle directly impacts the status and quality of the
information and strategies a vehicle receives from other vehicles.

1.2 Purpose	and	Scope	

The cooperative nature of KARYON is a fundamental shift when compared to today’s vehicles
that each operate on their own. Due to its cooperative nature, KARYON demands for new
approaches for diagnosing the cooperation and interaction of smart vehicles: As vehicles in
KARYON interact and communicate to agree on actions to execute in consensus, any system to
diagnose and debug the well being of the deployed system must inherently cover all
participating units. Thus, we cannot employ traditional diagnostics systems that commonly track
a number of components in one vehicle.

To debug distributed and cooperative functionalities we require new approaches to diagnostics.
We address these challenge, with a new, distributed diagnostics system. Its key contribution is
to provide a global, unified view on the individual components of the vehicles of interest even
in presence of

 failure of components or parts of them, and

 failure of the wireless communication between vehicles.

Our architecture for distributed diagnostics shall be readily available as a tool to collect the
global view from individual components. Collecting traces from each component of interest and
streaming these out, it provides

 an online view on the components of interest across multiple vehicles, and

 the cycle-accurate replay of the traces after collecting them from multiple vehicles.

1.3 Relation	to	Other	Work		

Debugging large-scale distributed systems has received significant attention in the recent years
with the raise of cloud computing and peer-to-peer networking. A common approach is to
collect traces of events and to use their logical relationship in the system to build globally
consistent snapshots and to enable replay [2] [3] [4] [5] . However, these mainly target Internet
based applications and their resource requirements make them not suited for resource
constrained, embedded systems such as ECUs in vehicles. Nonetheless, their design motivated
our work and we carefully designed MILD to adapt them for the use in resource constrained,
embedded systems and to ensure minimal intrusion. Others [6] [7] reflect the resource
constraints of sensor networks but do not focus on trace-driven replay. In this context, some
approaches [6] log each functional call and its parameters to provide the user with a complete
view on the system. In this work, we argue that tracing all the function calls is costly and we
show that it is not necessary to trace them entirely if the state of a node at a given time can be
restored and replayed deterministically.

KARYON ‐ FP7‐288195
D4.3 – First report on Cooperative Diagnostics

© 2013 KARYON Project 9/19

KARY N

2. Design	Overview	and	Challenges	
Due to their safety critical nature, Cyber-Physical Systems such as collaborative cars or smart
grids demand for thorough testing and evaluation. However, diagnosing such systems once
deployed is challenging, due to (1) the interactive and concurrent nature of distributed systems
and (2) the limited insight that any deployed system offers.

Addressing these challenges, we introduce MILD for Minimal Intrusive Logging and
Deterministic replay of deployed Cyber-Physical Systems. MILD enables (1) logging of events
with minimal intrusion of deployed systems, and (2) the deterministic, cycle accurate replay of
events in controlled environments such as test-beds and system simulators. As a result, MILD
offers deep insights into real-world deployments and allows diagnostics and testing in realistic
settings.

2.1 Design	Challenges	

Diagnosing distributed systems is challenging due to two key reasons:

1. Interactive and concurrent nature of distributed systems: In KARYON, a set of
cooperative vehicles interacts over wireless communication channels to achieve
consensus on the next actions to execute. Each vehicle senses, processes information,
communicates, and actuates driven by its computing infrastructure. In parallel, the other
vehicles do the same. Thus, it prohibitively difficult to examine the state of one
individual vehicle without impacting the other vehicles. Moreover, as a distributed
system, it is mandatory to evaluate all vehicles participating in a cooperative activity, as
only a global view on the distributed system can provide the required insights.

2. Limited insight offered by deployed systems: Any deployed system is difficult to
diagnose, as diagnostics often require physical access to the system of interest.
Moreover, diagnostics should not impact the normal operations of a vehicle. In
distributed systems, such as cooperative vehicles, this is even more challenging: for
diagnostics we require a global view on all participating units. Thus, we need to be able
to extract information from all participating vehicles simultaneously, even in the
presence of failed components and unreliable wireless communication.

After detailing on the key challenges, we next give an overview on MILD, our architecture
addressing these challenges.

2.2 Design	Overview		

Addressing the above challenges, we develop MILD, an architecture providing Minimal
Intrusive Logging and Deterministic replay. MILD enables debugging of cooperative vehicles
by (1) logging of events on deployed Cyber-Physical Systems, such as cooperative vehicles, and
(2) their deterministic and cycle-accurate replay in controlled environments such as test-beds
and system simulators (see Figure 1).

KARYON ‐ FP7‐288195
D4.3 – First report on Cooperative Diagnostics

© 2013 KARYON Project 10/19

KARY N

Figure 1: System Overview of Distributed Debugging with MILD. We depict MILD connected
to three cooperative applications, which run on top of the safety kernel and communication
middleware. Additionally, we depict the data handling pipeline of MILD (lower part) for

collection, processing and replay / analysis of traces.

1. Minimal intrusive tracing and logging with logical clocks: We trace and log
incoming and outgoing events on each component of interest. Amending each event
with a logical timestamp (and local timestamp when required), we can later replay
execution in a cycle accurate manner even in presence of timer failures or limited
connectivity of the wireless coordination system. To avoid any impact of the logging on
the safety of the system, the small run-time overhead of our logging can either be
included in the safety and real-time analysis or the logging can be executed by
dedicated hardware.

2. Consistent Global View based on Traces: Utilizing the logical timestamps of each
recorded event, we next order the traces of all components into a consistent global view.
We can either do this in real-time, by collecting a feed of the events from each
components or off-line after traces from all components have been collected.

3. Deterministic Replay of Traces: Utilizing the ordered trace, we feed it into either a
test-bed or a system simulator. Such a cycle-accurate replay in a controlled setting
allows us to stop the replay were required and examine the state of individual
components without impact on the overall execution. This strongly simplifies detecting
the root cause of any failure or bug. Please note, that for two independent events that
happen in parallel, for example, on two different nodes, MILD cannot distinguish which
one happens first. However, as these events are independent and hence did not impact
each other, the order of their replay does not impact the overall result.

To illustrate the feasibility and low overhead of our architecture, we present a prototype
implementation of MILD and discuss initial evaluation results. We show our initial results on
wireless sensor networks, as their embedded nature and wireless communication strongly
mimics the requirements of cooperative vehicles. Also, for these have publicly accessible, large-
scale real-world test-beds available, ranging up to 400 wireless nodes [8] [9] [10] . Nonetheless,
the design and implementation of MILD is generic and can be readily integrated into other
platforms including AUTOSAR [11] .

Safety Kernel

Coop.
App 1

Coop.
App 2

Coop.
App N

Communication Middleware
Dis.
Diag.

Collection
Replay &
Analysis

Processing

G
e
n
er
ic
In
te
rf
ac

KARYON ‐ FP7‐288195
D4.3 – First report on Cooperative Diagnostics

© 2013 KARYON Project 11/19

KARY N

3. Architecture		

After discussing challenges for distributed diagnostics and the underlying design idea of MILD
in the previous section, we now detail on the its architecture. It consists of three building blocks
(see Figure 2):

1. A logging element on each node: For each system component of interest, this logging
element is responsible for the minimal intrusive tracing and logging with logical clocks.

2. A collection system that collects and combines the traces to a consistent, global view.
This system can either be operated in real-time, assuming that a connection to each
logging element is available through which the traces can be collected. Alternatively,
the system can operate “off-line” once the traces from all nodes have been collected.

3. A replay environment, which feeds the traces to each node in a test-bed or in a system
simulator.

In the following we discuss each of them.

Figure 2: Architecture Overview: MILD consists of three key elements: (1) logging elements
on the individual nodes (on the left); (2) data collection elements (in the middle); and (3)

replay, e.g., with a system simulator (on the right).

3.1 Distributed	Logging	for	Deterministic	Replay 	

In MILD, all nodes are equipped with lightweight instrumentation to allow them to record
events of interest. To limit the overhead, we only record the events that are of interest to a
particular application. For example, when we are debugging a communication protocol, we log
in- and outputs such as messages and function calls corresponding to communication. This
information is sufficient to deterministically replay any code in a simulator or test-bed for
debugging. Thus, we can recreate the exact program execution in a controlled environment,
which allows for easy analysis for the program flow and detecting bugs: For example, we can
step through the execution of a distributed system or evaluate the values of individual variables.

While MILD is designed for minimal intrusive logging, a certain overhead of the logging cannot
be avoided. Thus, for hard real-time certain logging operations will be part of the time critical
program execution. MILD addresses this with two options: (1) as the logging overhead is very
limited, the additional CPU cycles of our logging can be directly included in any safety and
deadline analysis and, as a result, become part of the verified design. (2) When requested,
MILD can utilize dedicated hardware support for the logging to avoid any overhead. The
KARYON project partner SP is working on such a hardware assisted monitoring and its
integration into the safety kernel. Both design choices can also be combined on a per ECU level.

KARYON ‐ FP7‐288195
D4.3 – First report on Cooperative Diagnostics

© 2013 KARYON Project 12/19

KARY N

To realize our logging we rely on three key elements on a node. These can be either provided by
hardware or in software and is transparent to the architecture of MILD.

Figure 3: Sample application without
logging elements. We depict a simple

TinyOS application (named
BlinkToRadio) that uses three

resources: Timers, radio transmission,
and radio receive modules.

Figure 4: Sample application (same application as
on the left) with logging enabled. We note that the
software components of the application remain
unmodified. MILD merely hooks into the points of
interaction of the software components, e.g.,
function calls from one component to another.

 Wrappers: Tracking In- and Output of Software Modules.
For each software module that shall be included in the logging and replay, we
log all in- and output events such as messages or function calls (see Figure 4).
Each event is coupled with a logical timestamp to ensure deterministic replay
and to track interactions between nodes.

 Central module: Minimal intrusive state collection.
All events are collected at in a central module. Acting as background task, it
allows the collection of event traces via debugging ports at minimal intrusion. In
our prototype implementation, we either log events out to the serial port where
they are collected or we write them to flash storage. As a result, we do not utilize
the main communication sub-system and thus avoid any side effects on it.

 Initial State Collection.
To allow us to dynamically enable and disable logging, we store the initial states of a
module, i.e., its variables, when enabling logging. Loading the initial states in the
simulator and then replaying all input to one or more modules ensures deterministic
replay.

3.2 Collection:	Analysing	and	Sorting	Logs

Once all events are collected from the individual nodes via their debugging ports, we utilize
their logical timestamps to construct a globally ordered view on the system (see Figure 5). Since
all the events carry a sequence number that is locally unique, sorting the local events of a node
is immediate. Events such as radio events have (or can have) a received counterpart on the other
nodes. These events are used to obtain a global order of events.

KARYON ‐ FP7‐288195
D4.3 – First report on Cooperative Diagnostics

© 2013 KARYON Project 13/19

KARY N

Figure 5: Dependency graph of the events traced on two nodes (based on logical clocks).

To obtain a partial global ordering of events, every event is treated as a node of a dependency
graph. Events that are only local (e.g. timer events) depend on their predecessor in the event log
of the node, while others can depend on events on nearby nodes. One event on a node can only
be replayed if the events it depends on have been replayed as well. To generate the
dependencies, events are scanned to find the matching events on other nodes. Lost sent
messages don't have a corresponding receive event, so they are automatically considered as
local events instead. Additionally, we use the recorded output to determine deviations from the
replay, which indicate subtle system bugs such as buffer overflows, etc.

3.3 Deterministic	Replay	in	System	Simulation

The final element of MILD is the replay of logs in system simulators. In the replay, we use the
wrappers (see Figure 4) in reverse operation: instead of logging all in- and out-going events of
a software module, the wrappers now act as event sources. Thus, feeding from the global event
log, the software module now replays the events in the same order as on the deployed system.
Basing on modern system simulators, emulators, or testbeds, we provide cycle accurate replay
of events. Thus, MILD can utilise the advanced debugging capabilities of modern system
simulators and allows monitoring of individual variables and stepping through code fragments.
Such tasks commonly cause prohibitively high overhead and side effects when performed on
deployed systems directly.

KARYON ‐ FP7‐288195
D4.3 – First report on Cooperative Diagnostics

© 2013 KARYON Project 14/19

KARY N

4. Implementation	and	Evaluation	
In this section we discuss implementation details, sketch on a first case study of how MILD can
be used to detect common bugs in distributed systems, and present results from an initial
performance evaluation.

4.1 Prototype	Implementation	

We implement our first prototype of MILD in TinyOS [12] , an operating system for Wireless
Sensor Networks (WSNs). In our prototype we utilize the software driven solution for logging
(see Section 3.1). This approach supports rapid prototyping and evaluation for two key reasons:
(1) we do not rely on any dedicated hardware and can use off-shelf micro-controllers and (2)
these off the shelf microcontroller are common in the testbeds we have access to.

As noted above, we utilize a Wireless Sensor Network for this initial evaluation, as its test-beds
are readily available for large-scale testing. For example, we have access to multiple test-beds
such as Twist [8] at TU Berlin, Germany, with 90 nodes, Indriya [9] at National University of
Singapore, Singapore, with 140 nodes and KansaiGenie [10] at Ohio State University, Ohio,
with about 400 nodes.

Figure 6: Example Screenshot of a sample replay environment: the full system simulator
"Cooja"

4.2 First	Case	Study:	Diagnosing	Split‐Phase	Faults

Most long operations in TinyOS are implemented as split-phase, when, for example, a
command to initialise a device is sent from the application to the lower layer, and then an event

KARYON ‐ FP7‐288195
D4.3 – First report on Cooperative Diagnostics

© 2013 KARYON Project 15/19

KARY N

is sent back to signal that the initialisation is complete. The authors of [6] use LEACH [13] as a
case study to explain how their tracer helped in finding an implementation error. LEACH is a
TDMA-based dynamic clustering protocol. In the example the problem was caused on the
cluster head by a timer event trying to send a debug message while another component was
sending the information about the cluster to a node requesting access. The bug was caused by
the fact that in the timer event, the type of the message was set, although the send itself would
fail, the message itself was sent with a different type (because there is only one buffer for the
messages, and the original content had been modified by an interleaving event) and
acknowledged and ignored by the receiver, which had no function associated with that type of
message. With our implementation the log on the non-head node would show no activity, since
the wrapper is placed at high level and the message would be discarded before reaching it, and
the head node would show an interleaving of a timer between send and sendDone, and also
carry enough information to show that the buffer's content was altered.

Figure 7: Initial performance evaluation:
Comparison of the cycles needed by the

application to send one message
(“BlinkToRadio” application). Our results
show a very limited logging overhead.

Figure 8: RAM usage as reported by the
compiler for: the Blink application with

1,2,3,4 timers and for “RadioCountToLeds”.
Every wrapper can buffer 40 events.

4.3 Initial	Evaluation:	Performance	and	Memory	Overhead

In this section we demonstrate that the extra cost added by our instrumentation is acceptable and
brings a fixed cost to use the central module, which needs the serial stack, and a variable cost
depending on the amount of wrappers used, that mostly depends on the size of the memory area
for the log. About the speed, as shown in Figure 7 with logging disabled the overhead is almost
zero (3 CPU cycles) and logging one event does not bring much overhead (around 500 cycles)
comparing to the effort to generate the event itself. These 500 cycles includes both storing of the
event and to schedule the logging message on the serial port. Please note that these results are
initial results based on our preliminary prototype implementation. It is part of our on-going
work to aim for optimizations here.

Concerning the memory, Figure 8 shows how allocating large space for logs in the wrappers
brings a significant increase in memory usage, while the central module is not so heavy in itself.

KARYON ‐ FP7‐288195
D4.3 – First report on Cooperative Diagnostics

© 2013 KARYON Project 16/19

KARY N

5. Discussion	
After introducing the design of MILD and evaluating its performance and overhead, we next
reflect on our design choices and the performance results. Please note that the results discussed
below are based on our initial prototype implementation. Our next step is to focus both on
adding new functionally as well as improve the performance of the system design.

5.1 Benefits	

The evaluation results underline five key benefits of MILD and its architecture:

 Lightweight Logging: Our design choice to buffer the traces and using a low-priority
background task to collect them, results in a very small overhead in terms of MCU
cycles during each event. This is key to unsure a minimal intrusive logging and tracing
of events. As a result, MILD can record hundreds of events per second even on very
small, embedded systems.

 Flexible Logging: The design of MILD allows developers to target their tracing to
components of interest. Additionally, it allows to dynamically turn tracing on and off as
well as to re-target tracing at run-time. Thus, this keeps both the logging overhead as
well as its data stream limited and controllable. Moreover, it allows developers to
flexibility adept tracing to new insights they learned during an on-going analysis
without requiring physical access to any of the components.

 Deterministic Replay and Global View: Achieving a global, consistent view – as
provided by MILD – onto a dynamic, distributed system such as cooperate vehicles is a
key requirement for effective diagnostics and failure detection.

 Online and offline tracing: Depending on whether an online connection to each vehicle
is available or not, tracing and collection with MILD can be done both online and
offline. As this is transparent to the replay systems, a single system design provides
both.

 Detecting timing faults: Basing on logical timestamps and not hardware timers, MILD
can be also used to detect low-level failures such as of timer faults. Assume that a
communication sub-system on one node suffers from a timing fault and, for example,
sent out a message too late. In this case, this will trigger a timeout on another node,
which is recorded by MILD just as the late message transmission (and its corresponding
reception). Thus, when constructing the global view onto the system, we can trace and
detect that the message was send too late, i.e., after the reception took place after the
timeout.

 Detecting crashes: If a crash is caused by the code that we are logging, replaying the log
that led to the crash will in most cases also trigger the crash in the test-bed or full-
system simulation environment. As a result, we can track the execution that led to the
bug in the simulation environment enabling us to detect its cause. If the bug is triggered
from the outside, for example, by voltage fluctuation, or by code that we are not
tracking, the replay in MILD detect that log and replay do not match and we signal this
with an error message.

 Detecting value errors: In the replay of MILD, we can track any variable of interest.
Thus, when enabling the logging in Mild we merely have to select which software
components we are interested in. During the replay, we can then track any variable
within these software components. This design as the following key benefit: The user
does not have to select the variable during logging time. This is very practical, as an

KARYON ‐ FP7‐288195
D4.3 – First report on Cooperative Diagnostics

© 2013 KARYON Project 17/19

KARY N

error observed can often be connected to some software modules but not to individual
variables. During the replay, the user flexibility selects variables of interests and then
uses the powerful debugging utilities of modern system simulators to track values,
define breakpoints, and assertions.

5.2 Limitations	

Albeit MILD is designed to be minimal intrusive, any tracing inherently causes a certain
overhead. Due its careful design, i.e., relying on buffering and a low-priority background
process for collection, we efficiently limit this overhead to a couple of MCU cycles.
Independent of any optimizations, when relying on a software-based solution, a certain
overhead cannot be avoided, as we have to log the event. MILD addresses this with two options:
(1) as the logging overhead is very limited, the additional CPU cycles of our logging can be
directly included in any safety and deadline analysis and, as a result, become part of the verified
design. (2) When requested, MILD can utilize dedicated hardware support for the logging to
avoid any overhead. The KARYON project partner SP is working on such a hardware assisted
monitoring.

KARYON ‐ FP7‐288195
D4.3 – First report on Cooperative Diagnostics

© 2013 KARYON Project 18/19

KARY N

6. Conclusions	and	Next	Steps	
In this report we introduced MILD, a lightweight architecture for minimal intrusive logging and
deterministic replay of deployed Cyber-Physical Systems. MILD enables (1) logging of events
with minimal intrusion of deployed systems, and (2) the deterministic and cycle-accurate replay
of events in controlled environments such as system simulators and test-beds. As a result,
MILD offers deep insights into real-world deployments and allows debugging and testing in
realistic settings. We discuss the architecture of MILD and show initial results of our prototype
implementation based on TinyOS, a widespread operating system for sensor networks. Future
directions include optimization to further reduce logging overhead and the application of MILD
in on-going deployments to gather real-world experience in utilizing MILD.

KARYON ‐ FP7‐288195
D4.3 – First report on Cooperative Diagnostics

© 2013 KARYON Project 19/19

KARY N

References	
[1] R.N. Charette, "This Car Runs on Code", in IEEE Spectrum, Feb. 2009,

http://spectrum.ieee.org/green-tech/advanced-cars/this-car-runs-on-code

[2] D. Geels, G, Altekar, S. Shenker, and I. Stoica: “Replay debugging for distributed
applications”, in Proceedings of the Annual Conference on USENIX ’06 Annual
Technical Conference. ATEC ’06 (2006)

[3] D. Geels, G. Altekar, P. Maniatis, T. Roscoe, and I. Stoica, “Friday: global
comprehension for distributed replay”, in Proceedings of the 4th USENIX conference
on Networked systems design and implementation. NSDI’07 (2007)

[4] D. Dao, J. Albrecht, C. Killian, and A. Vahdat, “Live debugging of distributed
systems”, in Proceedings of the 18th International Conference on Compiler
Construction: Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2009. CC ’09 (2009)

[5] X. Liu, Z. Guo, X. Wang, F. Chen, X. Lian, J. Tang, M. Wu, M.F. Kaashoek, and Z.
Zhang, “D3s: debugging deployed distributed systems”, in Proceedings of the 5th
USENIX Symposium on Networked Systems Design and Implementation. NSDI’08
(2008)

[6] V. Sundaram, P. Eugster, and X. Zhang, “Efficient diagnostic tracing for wireless
sensor networks”, in Proceedings of the 8th ACM Conference on Embedded Networked
Sensor Systems. SenSys ’10 (2010)

[7] T. Sookoor, T. Hnat, P. Hooimeijer, W. Weimer, and K. Whitehouse,
“Macrodebugging: global views of distributed program execution”, in Proceedings of
the 7th ACM Conference on Embedded Networked Sensor Systems. SenSys ’09 (200

[8] V. Handziski, A. Köpke, A. Willig, and A. Wolisz, “TWIST: a Scalable and
Recongurable Testbed for Wireless Indoor Experiments with Sensor Networks”, in
RealMAN: Proc. of the Int. Workshop on Multi-hop Ad Hoc Networks: from Theory to
Reality, 2006.

[9] M. Doddavenkatappa, M. C. Chan, and A. Ananda. “Indriya: A Low-Cost, 3D Wireless
Sensor Network Testbed”, in TridentCom: Proc. of the ICST Conf. on Testbeds and
Research Infrastructures for the Development of Networks and Communities, 2011.

[10] E. Ertin, A. Arora, R. Ramnath, V. Naik, S. Bapat, V. Kulathumani, M. Sridharan, H.
Zhang, H. Cao, and M. Nesterenko. “Kansei: a testbed for sensing at scale”,
in Proceedings of the 5th international conference on Information processing in sensor
networks (IPSN '06), 2006

[11] H. Heinecke, K.P. Schnelle, H. Fennel, J. Bortolazzi, L. Lundh, J. Leflour, J.L. Maté, K.
Nishikawa, T. Scharnhorst, “AUTomotive Open System ARchitecture - An Industry-
Wide Initiative to Manage the Complexity of Emerging Automotive E/E Architectures”,
in Convergence International Congress & Exposition On Transportation Electronics
(2004)

[12] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K. Pister, “Systemarchitecture
directions for networked sensors”, ACM SIGOPS Operating Systems Rev. 34(5), 2000

[13] M.J. Handy, M. Haase, and D. Timmermann, "Low energy adaptive clustering
hierarchy with deterministic cluster-head selection", 4th International Workshop on
Mobile and Wireless Communications Networks, 2002

