

Kernel-based ARchitecture for safetY-critical cONtrol

KARYON
FP7-288195

D3.3 – Working prototype of adaptive
middleware

Work Package WP3

Due Date M24 Submission Date 2013-12-03

Main Author(s) Jörg Kaiser (OVGU), José Rufino (FFCUL)

Contributors Christoph Steup, Tino Brade (OVGU), José Rufino (FFCUL), Jeferson
Souza (FFCUL), Rui Caldeira (FFCUL), André Guerreiro (FFCUL)

Version 1.0 Status Final

Dissemination
Level

Public Nature Software

Keywords Wireless protocols, inaccessibility analysis, adaptive middleware, mixed
reality

Part of the Seventh

Framework Programme

Funded by the EC - DG INFSO

KARY N

KARYON ‐ FP7‐288195
D3.3 – Working prototype of adaptive middleware

© 2013 KARYON Project 2/24

KARY N

Version	history	

Rev Date Author Comments

V0.1 2013-11-18 Jörg Kaiser (OVGU) Preliminary Draft release.

V0.2 2013-11-29 Jeferson Souza (FFCUL) FFCUL contributions.

V0.3 2013-11-30 António Casimiro (FFCUL) Made minor corrections.

V1.0 2013-12-03 António Casimiro (FFCUL) Final review and delivery.

KARYON ‐ FP7‐288195
D3.3 – Working prototype of adaptive middleware

© 2013 KARYON Project 3/24

KARY N

Executive	Summary	

This document provides a brief description of the software that has been developed in WP3. The
software is made available in the KARYON svn as release packages under public licence. It
may also be accessible in local version management systems to allow shared development.

The following packages have been made available:

1. IEEE 802.15.4 Network Inaccessibility Evaluation Tool. It is available through the
KARYON web site, at http://www.karyon-project.eu/documents/software-tools/.

2. NS-2 Simulator module with GTS (Guaranteed Time Slots) support for frame
transmissions on IEEE 802.15.4 wireless networks. It is available through the KARYON
web site, at http://www.karyon-project.eu/documents/software-tools/.

3. NS-2 fault injector and timeliness evaluator component for IEEE 802.15.4 wireless
networks. It is available through the KARYON web site, at http://www.karyon-
project.eu/documents/software-tools/.

4. Wireshark extension modules for fault-injection, monitoring and evaluation of IEEE
802.15.4 wireless networks. It are available through
https://bitbucket.org/rpcaldeira/karyon-wireshark/get/master.zip and
https://bitbucket.org/rpcaldeira/karyon-adapter/get/master.zip.

5. FAMOUSO Middleware. This is the central part of the KARYON publish subscribe
middleware. It is available through the FAMOUSO repository at https://svn-
eos.cs.ovgu.de/repos/staff/mschulze/Research/MIKRO/famouso.

6. For deeply embedded systems we provide two hardware abstraction libraries for AVR
and ARM-based microcontrollers. These are available in respective repositories at
https://github.com/steup/AVR-HaLib and https://github.com/steup/ARM-HaLib.

7. A toolset for testing, validating and integrating sensors in our prototyping system based
on ROS. The individual tools are currently available at
http://eos.cs.ovgu.de/de/crew/dietrich.

KARYON ‐ FP7‐288195
D3.3 – Working prototype of adaptive middleware

© 2013 KARYON Project 4/24

KARY N

Table	of	Contents	

1. Introduction ... 5

2. Predictability and Resilience in Embedded Networks ... 6

2.1 IEEE 802.15.4 Network Inaccessibility Evaluation Tool (LibreOffice) 6

2.2 NS‐2 Simulator module with GTS (Guaranteed Time Slots) support for frame

transmissions on IEEE 802.15.4 wireless networks ... 9

2.3 NS‐2 Simulator extension module for fault‐injection and timeliness evaluation of IEEE

802.15.4 wireless networks under error conditions ... 10

2.4 Wireshark extension module for fault‐injection, monitoring and evaluation of IEEE

802.15.4 wireless networks .. 12

3. Adaptive Middleware for Advanced Control Systems ... 16

3.1 How‐To Install and use the KARYON Middleware ... 16

3.1.1 Overview ... 16

3.1.2 Sources .. 16

3.1.3 Dependencies ... 16

3.1.4 Building the software on Windows... 17

3.1.5 Building the software on Linux ... 17

3.2 Overview of the Software .. 18

3.2.1 KARYON Middleware Stack ... 18

3.2.2 Pub/Sub Communication .. 18

3.2.3 Layered Communication Stack ... 18

3.3 Examples .. 19

3.3.1 A basic configuration .. 19

3.3.2 A simple publisher .. 20

3.3.3 A simple subscriber ... 21

3.3.4 Running an example communication ... 22

3.4 Next Release .. 22

3.4.1 Support for Sensor Event Attribute Schemes ... 22

3.4.2 Contiki Support ... 23

3.4.3 Directed Diffusion Routing.. 23

3.5 Known Bugs ... 23

4. References ... 24

 	

KARYON ‐ FP7‐288195
D3.3 – Working prototype of adaptive middleware

© 2013 KARYON Project 5/24

KARY N

1. Introduction	
This document provides a brief description of the software that has been developed in WP3. The
software is made available in KARYON repositories as a set of release packages under public
licence. The software may also be accessible in local version management systems to allow
shared development.

The following packages have been made available:

1. IEEE 802.15.4 Network Inaccessibility Evaluation Tool. It is available through the
KARYON web site, at http://www.karyon-project.eu/documents/software-tools/.

2. NS-2 Simulator module with GTS (Guaranteed Time Slots) support for frame
transmissions on IEEE 802.15.4 wireless networks. It is available through the KARYON
web site, at http://www.karyon-project.eu/documents/software-tools/.

3. NS-2 fault injector and timeliness evaluator component for IEEE 802.15.4 wireless
networks. It is available through the KARYON web site, at http://www.karyon-
project.eu/documents/software-tools/.

4. Wireshark extension modules for fault-injection, monitoring and evaluation of IEEE
802.15.4 wireless networks. It are available through
https://bitbucket.org/rpcaldeira/karyon-wireshark/get/master.zip and
https://bitbucket.org/rpcaldeira/karyon-adapter/get/master.zip.

5. FAMOUSO Middleware. This is the central part of the KARYON publish subscribe
middleware. It is available through the FAMOUSO repository at https://svn-
eos.cs.ovgu.de/repos/staff/mschulze/Research/MIKRO/famouso.

6. For deeply embedded systems we provide two hardware abstraction libraries for AVR
and ARM-based microcontrollers. These are available in respective repositories at
https://github.com/steup/AVR-HaLib and https://github.com/steup/ARM-HaLib.

7. A toolset for testing, validating and integrating sensors in our prototyping system based
on ROS. The individual tools are currently available at
http://eos.cs.ovgu.de/de/crew/dietrich.

KARYON ‐ FP7‐288195
D3.3 – Working prototype of adaptive middleware

© 2013 KARYON Project 6/24

KARY N

2. Predictability	and	Resilience	in	Embedded	Networks	
A set of tools were developed in the context of Task 3.1 of WP3 to help in the analysis and
evaluation of embedded networks, concerning aspects related to their predictable and resilient
operation. Those tools to perform theoretical, simulation-based, and experimental evaluation of
IEEE 802.15.4 networks were specifically designed to analyse and evaluate: the impact of
network inaccessibility on the timeliness of the network; and the network behaviour under error
conditions.

2.1 IEEE	802.15.4	Network	Inaccessibility	Evaluation	Tool	
(LibreOffice)	

The network inaccessibility evaluation tool supports the theoretical study of network
inaccessibility on IEEE 802.15.4 networks. This tool is a LibreOffice spreadsheet built-in,
helping the offline calculation of the network inaccessibility duration, as given by our
theoretical model described within the D3.1 document.

The tool is composed by different sheets, presenting the network configuration parameters in an
intuitive way, and the numerical and graphical results of network inaccessibility for a given
configuration. Only the sheets/cells specifying the network configuration parameters can be
modified.

The utilisation of the KARYON network inaccessibility evaluation tool requires a basic
knowledge of LibreOffice calc and computer networks, more specifically about the medium
access control (MAC) sublayer and the IEEE 802.15.4 wireless standard. Each parameter has an
additional explanation to help the user to understand it’s semantic and purpose, and how such
parameter influences the temporal behaviour of the network. Such explanations show up when a
parameter value is selected.

The first thing that has to be done is the configuration of the MAC parameters, using the
interface of the MAC Parameters Configuration sheet, depicted in Figure 1. The parameters
presented in this interface defines the temporal behaviour of the network, including, e.g., the
network cycle (i.e., the beacon interval,TBI) and the number of transmission retries in case of the
presence of faults.

The other important parameters are related to the durations of management operations,
performed by the MAC sublayer and represented by the acronym MLA. The duration regarding
the execution of such operations is not explicitly defined in the IEEE 802.15.4 standard. By
default, each MLA operation is set to an uniform value of TMLA(action)= TBI /10, as illustrated in
Figure 2. However, these values can be changed and replaced by the real processing times of
each IEEE 802.15.4 specific platform.

Assuming that MAC and MLA parameters were configured, the duration of network
inaccessibility scenarios can be evaluated and visualised as absolute values in milliseconds (ms),
or as normalised values of TBI units of time. Figure 3 presents an example of the absolute
(Figure 3a) and normalised (Figure 3b) results obtained from the tool.

KARYON ‐ FP7‐288195
D3.3 – Working prototype of adaptive middleware

© 2013 KARYON Project 7/24

KARY N

Figure 1 ‐ The interface for the MAC parameter configuration.

Figure 2 ‐ The MLA Parameter Configuration sheet.

Additionally, the tool also incorporates mechanisms to evaluate and apply reduction policies to
minimise the impact of network inaccessibility on the IEEE 802.15.4 network operation, as
illustrated in Figure 4. The scientific explanation and detailed description of each reduction
policy, as the impact in the network dependability and timeliness, is presented in [2] . The tool
is available at the KARYON website (http://www.karyon-project.eu/wp-
content/uploads/2013/09/Inaccessibility_IEEE802.15.4_Beacon-enabled-Karyon.ods). The
LibreOffice suite has to be installed to use the tool, and can be downloaded at its official
website (http://www.libreoffice.org/).

KARYON ‐ FP7‐288195
D3.3 – Working prototype of adaptive middleware

© 2013 KARYON Project 8/24

KARY N

a) Results

b) Normalised results

Figure 3 ‐ The duration of network inaccessibility scenarios for IEEE 802.15.4 wireless
networks.

Figure 4 ‐ The Reduction policies sheet.

KARYON ‐ FP7‐288195
D3.3 – Working prototype of adaptive middleware

© 2013 KARYON Project 9/24

KARY N

2.2 NS‐2	Simulator	module	with	GTS	(Guaranteed	Time	Slots)	
support	for	frame	transmissions	on	IEEE	802.15.4	wireless	
networks	

Guaranteed time slots (GTS) are time slots allocated to provide contention-free access to the
network, being designed to support communications with real-time requirements. The GTS
support is not implemented in the native version of the IEEE 802.15.4 module of the network
simulator 2 (NS-2), being not possible to perform simulations of networks with real-time traffic.
This module provides the GTS support for the NS-2 IEEE 802.15.4 module.

The provision of the GTS support involves the adaptation of a previous GTS implementation
proposed by [3] with enhancements developed by the KARYON team. Real-time traffic,
supported by the introduction of the GTS support, is transmitted within IEEE 802.15.4 networks
according the Algorithm 1. Every transmission is only allowed within the allocated GTS for a
given node, resulting in a time division multiple access (TDMA) approach to control the access
to the network.

1:	Begin.	

2:	MAC.Data.Send.Request data ;	

3:	when	allocated	GTS	is	reached	do	

4:	MAC.Data.transmit data ;	

5:	end	when	

6:	End.	

Algorithm 1 ‐ Data transmissions using GTS

The referenced implementation proposed in [3] prevents the use of MAC management
commands such as Orphan Notification and Coordinator Realignment. The KARYON team
create a path to fix it, allowing the activation of the GTS mechanism from the NS-2 script
without affecting other MAC sublayer services.

Figure 5 presents the main classes of the IEEE 802.15.4 module, evidencing the modified and
implemented methods related to the GTS mechanism incorporated by the KARYON team.

Figure 5 ‐ Class diagram of changed classes on native IEEE 802.15.4 module.

KARYON ‐ FP7‐288195
D3.3 – Working prototype of adaptive middleware

© 2013 KARYON Project 10/24

KARY N

The methods of the p802_15_4field and the macGtsTimer classes are utilised by the
p802_15_4mac class within its management procedures related to the GTS extension. The
p802_15_4sscs class represents the connection between the MAC and the logical link control
(LLC) sublayer, providing a way to access all the methods present in the MAC exposed service
interface. The source code of the IEEE 802.15.4 module with the GTS support can be
downloaded at: http://www.karyon-project.eu/wp-content/uploads/2013/11/ns-
2_v2_35_802_15_4_gts_extension.zip. Instructions about how to install this module within the
NS-2 (version 2.35) are found inside the available package.

2.3 NS‐2	Simulator	extension	module	for	fault‐injection	and	
timeliness	evaluation	of	IEEE	802.15.4	wireless	networks	
under	error	conditions	

The KARYON project complements the NS-2 with the integration of a new fault injector and a
temporal analysis component, which are utilised to evaluate IEEE 802.15.4 wireless networks,
as represented in Figure 6.

Figure 6 ‐ New Features in IEEE 802.15.4 module.

The KARYON NS-2 fault injector is capable to use a fault pattern to introduce within
networking communications, during the simulation. The criteria to define the fault pattern is
totally configurable, allowing the definition of deterministic or probabilistic fault patterns. The
fault injection scheme is depicted in Figure 7.

Figure 7 ‐ Fault injector scheme.

KARYON ‐ FP7‐288195
D3.3 – Working prototype of adaptive middleware

© 2013 KARYON Project 11/24

KARY N

The fault injector can be customised regarding the type of frame to be corrupted, the injection
rate, and the duration of the fault injection campaign. Random noise or interferences are
simulated according to the random function implemented in the fault injector, as described in
Algorithm 2.

1:	Begin.	

2:	randomTime	 	randomGenerator seed ;

3:	NewRandomEvent	 	faultInjector frameToCorrupt ;	

4:	Scheduler	::	instance .schedule NewRandomEvent,randomTime ;	

5:	CorruptNode.Update ;	

6:	End.

Algorithm 2 ‐ Fault Injector ‐ A random function.

Random noises are generated through a pseudo-random generator, described in line 2. A new
event to perform the frame corruption is created, as indicated in line 3. The created event is
inserted in the NS-2 scheduler and executed at the defined instant of time, as illustrated in line 4.
An information about the corruption occurred in a specific node is recorded, as described in line
5.

The fault injector achieves the frame corruption as described in Algorithm 3. The faults are
injected by changing a bit in the frame content, which implies the drop of these frames in the
MAC level of the receiving nodes. The parameter frameToCorrupt, represented in line 3, is
previously defined and if desired all the received frames can be affected.

An information about the corruption occurred in a specific node is recorded, as represented in
line 6. This information is used for a better control of the simulation events. The corruption of
the frames can be disabled, through the deactivation of the fault injector on a tcl script, being the
normal behaviour of the network restored at any time.

1:	Begin.	

2:	MAC.Receive frame ;	

3:	if	frame	 	frameToCorrupt	then	

4:	when	selected	Fault	Pattern	do	

5:	CommandHeader frame 	 	error 	 	1;	

6:	CorruptNode.Update ;	

7:	end	when	

8:	end	if	

9:	End.

Algorithm 3 ‐ Fault Injector Mechanism.

KARYON ‐ FP7‐288195
D3.3 – Working prototype of adaptive middleware

© 2013 KARYON Project 12/24

KARY N

Additionally, the KARYON team created the temporal analysis component to measure the
effects of fault injection campaigns on the simulated network. This component is responsible to
evaluate time events, in special the duration of periods of inaccessibility associated with the
corruption of specific MAC control frames, such as the beacon frame.

The temporal analysis component produces a report regarding the recorded events during the
simulation, which is stored within a log file. The log file is used as input to a gnuplot script that
produces a graphic analysis of recorded events.

The source code of the fault injector and the temporal analysis component can be downloaded
at: http://www.karyon-project.eu/wp-content/uploads/2013/11/ns-
2_v2_35_fault_injector_module.zip. Instructions about how to install the additional tools in the
NS-2 (version 2.35) are found in the available package.

2.4 Wireshark	extension	module	for	fault‐injection,	monitoring	
and	evaluation	of	IEEE	802.15.4	wireless	networks	

In order to perform an experimental evaluation of the IEEE 802.15.4 networks, the KARYON
team have built a traffic analysis tool, as an extension the well-known network protocol analyser
tool dubbed WireShark (http://www.wireshark.org/). This extension allows the use of the
Atmel REB232ED-EK Evaluation Kit (Figure 8) with the WireShark, which is an IEEE
802.15.4 compliant wireless node. The general view of the modules developed by the
KARYON team, and integrated with the WireShark, is illustrated in the Figure 9.

Figure 9 – Integration of developed
modules with WireShark

The wireless nodes illustrated in Figure 8 has the promiscuous mode activated, enabling the
capture of all traffic flowing through the network, even if such traffic contains errors. The
captured traffic is written to the serial connection on the computer where the WireShark is in
execution, converting the raw data obtained from the network to a pcap-savefile, which can be
interpreted by the WireShark tool.

Figure 8 ‐ Atmel REB232ED‐EK

Evaluation Kit

KARYON ‐ FP7‐288195
D3.3 – Working prototype of adaptive middleware

© 2013 KARYON Project 13/24

KARY N

Figure 10 ‐ Network Monitor Control Panel.

Figure 10 presents the control panel of the network monitor, accessed in the IEEE 802.15.4
Tools menu of the WireShark tool. In this control panel the user can select the serial port where
the wireless node is connected, being therefore able to star the scan of communication channels
supported by the IEEE 802.15.4 standard. The scan procedure is started pressing the scan
button. This scan procedure searches for IEEE 802.15.4 networks, inserting the found networks
in the dropdown list below to the label “Selected Network”. If the network intended to be
monitored was found during the performed scan, the monitoring process can be initiated
selecting the network on such list and pressing the start button.

The analyses of the captured data from the experiments can be done directly on the WireShark
(depicted in Figure 4), using the already existent features to help such analyses, which includes
embedded statistics, expert info, graphical representation of the frames (representation in
ASCII), and the possibility to save the captured data for future analysis.

Figure 11 ‐ The WireShark capture window.

KARYON ‐ FP7‐288195
D3.3 – Working prototype of adaptive middleware

© 2013 KARYON Project 14/24

KARY N

The KARYON team also developed a fault injector to emulate accidental faults in IEEE
802.15.4 networks, such as loss or corruption of legitimate data. This fault injector makes
possible to subject a network to inject faults according the following parameters:

 Minimum Inter-Injection Time: the minimum time separation between fault injections;

 Fault-Injection Duration: The duration of the fault injection;

 Fault Pattern: The pattern of the fault injected on the network. The minimum pattern
length is constituted by 1 byte and the maximum pattern length is 127 bytes. The bytes
included in the pattern can be generated randomly, or can constitute a valid IEEE
802.15.4 frame;

 Frame arrival notification – This notification enables the fault injector to analyse the
network, using the timestamp and type of received frames as inputs to a specific fault
scenario.

A set of five pre-defined fault injection modes were specified to help the evaluation of IEEE
802.15.4 wireless networks. In summary, these pre-defined modes set values for the parameters
Minimum Inter-Injection Time, Fault-Injection Duration, Fault pattern, and Frame arrival
notification, which are utilised to control the fault injection. Each one of these pre-defined
modes is described as follows:

 Constant - This fault scenario emits a constant noise to the network. This
scenario block all communications through the network while active;

 Random - This scenario defines a random minimum inter-injection time for
each fault injection. The duration of the fault injection is also random;

 Deceptive - This fault scenario constantly sends out valid frames keeping the
remaining nodes in a constant listening mode;

 Adaptive - The adaptive scenario used the received Frame arrival notification
receives a notification to inject faults, according the frame arrival pattern into a
list of the timestamps of most recent twenty received frames;

 Frame-type Adaptive - The frame-type adaptive scenario is an extension of the
Adaptive scenario, which use a specific frame type to perform the fault injections.

Additionally, the user of the fault injector can select a custom fault injection mode, where all the
aforementioned parameters can be configured manually.

KARYON ‐ FP7‐288195
D3.3 – Working prototype of adaptive middleware

© 2013 KARYON Project 15/24

KARY N

Figure 12 ‐ Fault Injector Control Panel.

Figure 12 represents the fault injector control panel. The fault injection mode is chosen from the
right dropdown list (below the label “Fault Injection Mode”), which is composed by the pre-
defined fault injection modes, plus the custom mode. The start button sends commands to the
same wireless node utilised in the analysis traffic tool, initiating the fault injection accordingly
to the given fault injection mode.

The source code of the modules integrated into the WireShark tool can be downloaded from a
protected repository (access to these tools has to be explicitly requested) at:
https://bitbucket.org/rpcaldeira/karyon-wireshark/get/master.zip. The communication module
responsible to connect WireShark with the ATMEL hardware is available in a separated
repository, and can be downloaded at: https://bitbucket.org/rpcaldeira/karyon-
adapter/get/master.zip. Instructions about how to compile those tools are found in the available
packages.

KARYON ‐ FP7‐288195
D3.3 – Working prototype of adaptive middleware

© 2013 KARYON Project 16/24

KARY N

3. Adaptive	Middleware	for	Advanced	Control	Systems		
The software provided has been developed based on the concepts elaborated in T3.2 of WP3.
The first prototype version includes the complete publish/subscribe communication package for
Linux and Windows operating systems. There are language bindings for C, C++, Python and
Simulink.

3.1 How‐To	Install	and	use	the	KARYON	Middleware	

3.1.1 Overview	

The KARYON Middleware consists of multiple layers of supporting technologies. This
preliminary release delivers the communication abstracting platform independent publish
subscribe mechanism of the FAMOUSO middleware. This document guides users through the
steps necessary to use the software and integrate it in applications.

3.1.2 Sources	

There are multiple distribution systems available for downloading the software. If development
of the middleware is considered a version controlled download is available through:

https://svn-eos.cs.ovgu.de/repos/staff/mschulze/Research/MIKRO/famouso

This version contains the latest features and bug fixes from the development. It can be checked
out using any SVN tool. Additional information may be obtained through the official webpage
http://famouso.sourceforge.net/ as well as the wiki and bug tracker https://ivs-
pm.ovgu.de/projects/famouso.

Alternatively, a direct download link is available. The link is provided by sourceforge and is a
packed archive of the latest stable release of the software. I is available through:

http://sourceforge.net/projects/famouso/files/

3.1.3 Dependencies	

All versions provided are source distributions, which need to be compiled on the target
machine. The build process depends on some external tools, which need to be present in specific
versions. The needed dependencies for Linux are:

 gcc = 4.7

 Boost = {1.52,1.53,1.54} 1.53 will be fetched automatically during setup

 make >= 3.80

 wget

On Windows these dependencies can be fulfilled through the installation of Cygwin
www.cygwin.com.

KARYON ‐ FP7‐288195
D3.3 – Working prototype of adaptive middleware

© 2013 KARYON Project 17/24

KARY N

3.1.4 Building	the	software	on	Windows	

Cygwin

To successfully build the KARYON Middleware on Windows the user need to provide an
appropriate infrastructure. Therefore, the installation of the Cygwin environment is necessary.
Download the 32bit setup for Cygwin from the Cygwin homepage (www.cygwin.com). During
installation choose your preferred install directory, but make sure it contains no spaces. When
the installer asks for packages to install choose:

 gcc-g++

 make

 wget

The dependencies of these packages will be resolved automatically. Since Cygwin provides a
Linux like environment on Windows all following steps are identical for both systems.

3.1.5 Building	the	software	on	Linux	

Download and Extraction

The software can be fetched from the sources listed above. Depending on the selected source,
the procedure differs slightly. If a VCS is used nothing needs to be done additionally. If the
software was acquired through an archive, it needs to be copied to the Home directory of
Cygwin. This is done by copying the file to C:\cygwin\home\<username>\. If cygwin was
installed in another path, the command needs to be changed accordingly. If the downloaded file
has a .zip extension it can be extracted from the Cygwin command line with “unzip <file.zip>”.
If it has a .tar.* ending, then it can be extracted with “tar –xf <file.tar.*>”.

Starting the build

To start the build process, issue “make” in the Cygwin command line in the root folder of the
extracted software. For a successful build internet access is needed, since some dependencies
are fetched automatically. If you build on Windows change the used configuration to
windows/cygwin. This can either be done by editing the file make/config.mk or on the
command line by issuing “make config=windows/cygwin”. If the configuration is stated in the
command line all calls to make need to be adapted similarly.

Afterwards the needed Event-Channel-Handlers supporting the used communication mechanism
need to be built. They are located in ECHs subdirectory of the root directory of the software.

Currently the following ECHs are supported:

 ech: ECH for local event dissemination without access to networked PCs

 ech-UDP-BC: ECH for broadcast event dissemination within a single hop environment

 ech-UDP-MC: ECH for multicast event dissemination over multiple hops if routers
support IP multicast

 ech-CAN: ECH for event dissemination over a CAN network using PEAK CAN
Dongles

To build an individual ECH the command: “make <ech-name>” may be used.

KARYON ‐ FP7‐288195
D3.3 – Working prototype of adaptive middleware

© 2013 KARYON Project 18/24

KARY N

3.2 Overview	of	the	Software	

3.2.1 KARYON	Middleware	Stack	

Figure 13 – KARYON middleware stack.

The KARYON middleware is subdivided in 3 major parts, as illustrated in Figure 13. The
Mosaic and Environment Modeling parts are currently not included in the released stack. This
release considers only the FAMOUSO communication abstractions.

3.2.2 Pub/Sub	Communication	

Publish Subscribe is a communication paradigm decoupling sender and receiver of data. This is
done through subject-based routing mechanism. Therefore, a subscriber requiring a specific type
of data may subscribe through the middleware to the subject of this data. Subsequently, the
communication middleware disseminates generated events of this subject to the registered
subscribers. This enables run-time binding between publishers and subscribers and
consequently, an independent development of publisher and subscriber software. During run
time, a virtual channel is established between each Publisher and Subscriber dynamically. This
channel may have attributes attached, describing quality (e.g. latency) and context (e.g. time,
location) parameters. At the moment, the attribute framework in not included in the distribution.
It will be added at a later stage.

3.2.3 Layered	Communication	Stack	

The communication middleware consist of a layer stack. Each layer is responsible for a certain
abstraction in the communication as can be seen in Figure 14.

Application

FAMOUSO

MOSAIC

Environment
Modeling

Networks / Operating Systems

KARYON ‐ FP7‐288195
D3.3 – Working prototype of adaptive middleware

© 2013 KARYON Project 19/24

KARY N

Figure 14 – Layered communication stack.

The Event Layer provides the notion of an event and handles the dissemination of events the
local system. If an event needs to propagate through the network it is passed to the Abstract
Network Layer which handles the selection of the appropriate output networks for the events.
The specific Network Layer converts the event to one or multiple network packages. During this
step the subject may be replaced by a network specific representation. Afterwards the packet
stream is delivered to the driver of the network interface. Each layer may be subject to a user-
specified configuration. In the following list, we describe configuration options:

 Event Layer: Base Event Layer forwarding events to networks or Event Layer Stubs
binding multiple Applications to a single communication stack

 Abstract Network Layer (ANL): The ANL may support an optional adaptive
fragmentation protocol to disseminate large events. The ANL also handles multi-
network configurations through the network adapter mechanism

 Network Layer: handling network specific bindings. Supported networks are currently:
IP and CAN.

 Driver Layer: individual driver for the networks. Currently IP uses asynchronous
sockets whereas CAN relies on PEAK CAN dongles.

3.3 Examples	

The software is accompanied by different examples. In the examples directory are more
complex examples. The Bindings directory contains the basic examples for the different
language interfaces. As a starting point the basic publish and subscribe bindings for C++ will be
discussed next.

3.3.1 A	basic	configuration	

The following code represents a basic configuration of the middleware enabling interprocess
communication on a single PC, depending on the selected event channel handler additional
network support may be included.

01: #ifndef _famouso_bindings_h_
02: #define _famouso_bindings_h_
03:
04: #include "mw/el/EventLayerClientStub.h"

Network Network

Driver layer Driver layer

Abstract Network Layer

Event Layer

Publisher Subscriber

KARYON ‐ FP7‐288195
D3.3 – Working prototype of adaptive middleware

© 2013 KARYON Project 20/24

KARY N

05: #include "mw/api/EventChannel.h"
06: #include "mw/api/PublisherEventChannel.h"
07: #include "mw/api/SubscriberEventChannel.h"
08:
09: #include "mw/common/Event.h"
10: #include "famouso.h"
11:
12: namespace famouso {
13: class config {
14: public:
15: typedef famouso::mw::el::EventLayerClientStub EL;
16: typedef famouso::mw::api::PublisherEventChannel < EL > PEC;
17: typedef famouso::mw::api::SubscriberEventChannel < EL > SEC;
18: };
19: }
20:
21: #endif

In line 01-02 and 21 an include guard is created to enable robust inclusion of this header file as
a general configuration. Lines 04-07 include the individual components of the configuration:

 EventLayerClientStub as Event layer to support IPC with the event channel handler.

 PublisherEventChannel to support Publishers

 SubscriberEventChannel to support Subscribers

Additionally Lines 09-10 include generally needed headers of the middleware. Lines 12-19
contain the actual configuration which is included in the namespace of the middleware. The
class config contains the definition needed by the middleware. The only needed definitions are
PEC and SEC. These represent the configured event channels for publishing or subscribing. For
each subject an instance of these channels need to be instantiated. The EL is only a helper
definition to increase code readability.

This code is included in the release of the middleware as
Bindings/include/famouso_bindings_config.h.

3.3.2 A	simple	publisher	

The following code realizes a simple publishing application that periodically transmits the
ASCII string “Publish” on the subject “__Test__” it uses the already defined middleware
configuration.

01: #include "debug.h"
02: #include "famouso_bindings.h"
03:
04: #include <boost/thread/thread.hpp>
05: #include <boost/thread/xtime.hpp>

06: int main(int argc, char **argv) {
07: famouso::init<famouso::config>();
08: famouso::config::PEC pec(famouso::mw::Subject(“__Test__“);
09: pec.announce();
10:
11: famouso::mw::Event e(pec.subject());
12: e.length = 7;
13: e.data = (uint8_t*)"Publish";
14:
15: while (1) {

KARYON ‐ FP7‐288195
D3.3 – Working prototype of adaptive middleware

© 2013 KARYON Project 21/24

KARY N

16: pec.publish(e);
17: boost::xtime time;
18: boost::xtime_get(&time, boost::TIME_UTC_);
19: time.sec += 1;
20: boost::thread::sleep(time);
21: }
22: }

Lines 01-02 contain famouso specific headers like the previously defined configuration.

In lines 04-05 boost headers are included to enable platform independent sleeping. Beginning
from line 06 the publisher application starts. In line 07 the middleware is initialized with the
configuration famouso::config. In line 08 the needed publisher event channel is instantiated with
the subject “__Test__”, afterwards it will be announced to the network with line 09.

In line 11 a middleware event is created. It is initialized with the length of the data and a pointer
to the data itself in line 12 and 13. The data pointer is expected to be of type uint8_t* which is
not the case for static strings resulting in a cast. Also the content length needs to be defined
manually. In this case it is 7 because the contained string contains 7 ASCII-Letters. Therefore
the 0-byte finishing the string will not be transmitted.

Lines 15 to 21 contain the periodic publication of this data. In line 16 the data is actively
published to the network. Line 17 to 20 contain boost code to enable a platform independent
sleep of 1s.

This code is available in the release of the middleware as Binding/C++/Publisher.cc

3.3.3 A	simple	subscriber	

The following code realizes a subscriber listening for the data transmitted by the publisher of
the previous section. Therefore the defined subject is the same.

01: #include "debug.h"
02: #include "famouso_bindings.h"
03:
04: #include <boost/thread/thread.hpp>
05: #include <boost/thread/xtime.hpp>
06:
07: void cb(famouso::mw::api::SECCallBackData& cbd) {
08: ::logging::log::emit() << FUNCTION_SIGNATURE << " Length="
09: << cbd.length << " Event data="
10: << cbd.data << ::logging::log::endl;
11: }
12:
13: int main(int argc, char **argv) {
14:
15: famouso::init<famouso::config>();
16: famouso::config::SEC sec(famouso::mw::Subject(“__Test__”));
17: sec.subscribe();
18: sec.callback.bind<cb>();
19:
20: while (1) {
21: boost::xtime time;
22: boost::xtime_get(&time, boost::TIME_UTC_);
23: time.sec += 100;
24: boost::thread::sleep(time);
25: }
26: }

KARYON ‐ FP7‐288195
D3.3 – Working prototype of adaptive middleware

© 2013 KARYON Project 22/24

KARY N

Lines 01 - 06 are equal to previously defined publisher. Line 07 to 11 defines the handling
callback function for a reception of an event. Since we expect strings in the event we print the
signature of the function we are currently in as well as the length of the data received and the
data as a uint8_t array. This data is therefore printed as a basic ASCII string. Lines 13 to 15 are
also equal to the publisher example. However in line 16 we define a subscriber event channel
listening on the subject “__Test__” this time. Following this the subscription is announced to
the network in line 17 and the defined callback function is bound to the channel in line 18. Lines
20 to 25 are similar to the publisher example, with the difference being the lack of any
publication and a shorter sleep time of 100ms.

3.3.4 Running	an	example	communication	

To run the examples the ech needs to be started first. This is done by navigating in terminal to
the ECHs folder of the middleware and issue the command ./ech.

Afterwards the publisher and subscriber can be started in additional terminals in any order by
issuing ./publisher or ./subscriber from the Bindings/C++ folder.

If everything went well the following output will be visible in the individual terminals, as
shown in Figure 15.

Figure 15 – Terminals in the communication example.

The left terminal shows the ech. Here the announcement of the publisher fallowed by the
subscription of the subscriber can be seen. After this on terminating the programs respective
unsubscriptions as well as unannouncements are visible.

The right terminal shows the output of the subscriber while the publisher is running.
Periodically events are received containing data of length 7 as well as the ASCII string
“Publish”.

All programs can be terminated through CTRL-C.

3.4 Next	Release	

The next release will comprise three major additional features, as described next.

3.4.1 Support	for	Sensor	Event	Attribute	Schemes	

This feature adds support for user specified sensor event attribute schemes. These schemes
define a contract between publishers and subscriber on what data is communicated. A scheme is
a set of defined attributes including data type, scaling, physical units and endianess. The
middleware provides transparent marshaling and unmarshaling of events obeying the scheme.
Therefore nodes can communicate typed events easily and transparently.

KARYON ‐ FP7‐288195
D3.3 – Working prototype of adaptive middleware

© 2013 KARYON Project 23/24

KARY N

3.4.2 Contiki	Support	

The Contiki embedded OS is tailored towards small embedded microcontrollers. It allows easy
hardware abstraction of basic hardware features like timers, sensors and communications
facilities. The support for Contiki within the middleware allows Contiki applications to use the
middleware API natively. To achieve this, the middleware is integrated into the build system of
Contiki. Additionally the communication stack of Contiki called RIME is integrated into the
middleware exploiting the configurable component system. Contiki supports multiple activity
models like threads, protothreads and events. However, only the event model is currently
integrated into the middleware support.

3.4.3 Directed	Diffusion	Routing	

Through the Contiki support communication hardware allowing single-hop 802.15.4 is
supported by the middleware. To extend this communication to multi-hop scenarios a directed
diffusion based routing will be implemented.

This routing is distance vector based routing, where each topic has its own distance vector in
each relay. Therefore the routing is content based. The route will be established through the
flooding of the initial subscription message through the network. Each node forwarding the
message remembers the first node it received the subscription from. On the publication of an
event with the same topic the receiving nodes transmit the message to this stored node.

The currently envisioned version has not yet support for mobility. However a mobility
extension is in the conception phase.

3.5 Known	Bugs	

Double Publish using ECH-UDP-BC on Window

On Windows using Cygwin the broadcast UDP event channel handler transmits every event
twice. This seems to be a bug in the ASIO library of boost. A fix is currently not yet ready. It is
recommended to switch to the multicast UDP event channel handler providing correct
behaviour.

Alignment Error on ARMv7a based targets

On ARMv7a architecture based systems like the Pandaboard the middleware is currently not
usable at all because of an alignment exception on accessing boost mutex. A fix is currently
developed and will be deployed with the next release.

KARYON ‐ FP7‐288195
D3.3 – Working prototype of adaptive middleware

© 2013 KARYON Project 24/24

KARY N

4. References		
[1] D3.1 First Report on Supporting Technologies, KARYON Technical Report,

26.10.2012

[2] Jeferson L. R. Souza and José Rufino, “Analysing and Reducing Network
Inaccessibility in IEEE 802.15.4 Wireless Communications”. In Proceedings of the
38th IEEE Conference on Local Computer Networks (LCN 2013), October 2013.

[3] WoongChul Choi and SeokMin Lee. “A Novel GTS Mechanism for Reliable Multihop
Transmission in the IEEE 802.15.4 Network” In International Journal of Distributed
Sensor Networks. vol. 2012, Article ID 796426, 10 pages, 2012.
doi:10.1155/2012/796426.

