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Executive	Summary	

The main objectives of WP2 are to the definition the KARYON safety architecture, providing 
the guiding principles on how to structure a safe system in relation to assumed system and fault 
models. This will be done while taking into account that systems can be built from 
heterogeneous application components, where some components will realize their functions in a 
very predictable way, as necessary to meet the safety integrity levels that are assigned to them, 
but other components may also be included to achieve improved functionalities, although at the 
cost of being more complex, less dependable and possibly untimely. The goal is to define a 
hybrid system architecture that integrates all these components in a way that makes it possible 
to secure functional safety requirements while achieving, whenever possible, improvements in 
the way the functionality is provided, in comparison to solutions where all system components 
and interactions have to be predictable in order to prove that the functionality is safe at design 
time. This deliverable builds upon the first report on the KARYON architecture, improving it 
and extending it with new material to describe in a complete way the KARYON generic 
architectural pattern. 

The specific contributions that are provided in this deliverable are threefold. 

Firstly, the deliverable discusses some notions that are important to set the stage for 
understanding the problems under consideration. These include, for instance, a discussion on the 
nature of cooperative systems and what this implies for the development of safe cooperative 
functionality, a discussion of functional safety concepts and their importance in KARYON, and 
a discussion of the underlying system model solution that is adopted in KARYON. 

Secondly, the deliverable presents the generic KARYON architectural pattern for developing 
safety critical cooperative and autonomous systems. The architectural pattern is at a sufficiently 
high level of abstraction to allow varied instantiations of the architecture, depending on the 
concrete system that is to be developed. On the other hand, it is sufficiently concrete to be 
usable in guiding system designers in the right direction, by explaining how to structure the 
system and by defining the fundamental architectural components that must be present in any 
concrete system. At this level of abstraction, the details on components such as sensors or the 
Safety Kernel are not important and are not provided. Instead, what is important is to clearly 
explain the role of all these components or architectural blocks, their semantics, the connections 
that exist between them, the properties that are expected from the underlying infrastructure 
where these components are implemented and the properties they exhibit. This is what the 
reader will find in this deliverable. 

Last, but not the least, the deliverable provides examples on how the generic architectural 
pattern would be instantiated to develop system solutions in the avionics and automotive 
domains. The examples are necessarily constrained because KARYON is not focused on the 
development of concrete functions, but are intended to be sufficiently rich to illustrate the 
application of the KARYON architectural solution. 
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1. Introduction	

1.1 Purpose	&	Scope	

The main objective of WP2, as stated in the KARYON Description of Work, consists in “the 
definition of the KARYON safety architecture, providing the guiding principles on how to 
structure a safe system in relation to assumed system and fault models”. 

KARYON focuses on the predictable and safe coordination of smart vehicles that autonomously 
cooperate and interact in an open and inherently uncertain environment. Although it is possible 
to exploit the cooperative functionality for the benefit of each vehicle’s behaviour, with implicit 
gains to vehicles as a whole and to traffic, it becomes necessary to deal with the possible 
negative impact of the uncertainties affecting communication and ultimately creating safety 
problems.  

The purpose of this deliverable is to describe the KARYON architecture, which must be 
understood as a general pattern to be applied in the development of concrete systems and 
cooperative functionalities. The cooperative nature of the considered functionalities and the 
need to deal with functional safety requirements are thus concerns that have been considered in 
the definition of this architectural pattern. One of the fundamental challenges that we address in 
the definition of the KARYON architecture is, in fact, the need to accommodate uncertainties in 
the temporal and value domains, while also providing the conditions for safety requirements to 
be satisfied and functional safety argumentations to be developed in design time. Although the 
focus of the deliverable is on the description of the KARYON architecture, the deliverable aims 
at providing the necessary background and concepts that are important for a good understanding 
of the architectural options. To complement the description, the deliverable also focuses on 
some illustrative examples, in which the architectural pattern is instantiated considering 
concrete use cases. 

1.2 Approach	

There is a whole body of knowledge on how to achieve safe systems, but in general the existing 
solutions and approaches are restrictive regarding the considered operational environments, 
excluding the sources of uncertainty or unpredictability right from the start and thus limiting the 
contexts in which the resulting systems can be used. Uncertainty can also be dealt with by 
making pessimistic worst case assumptions on bounds for the relevant variables. The 
consequence, in this case, is that system resources are over-dimensioned and hence the resulting 
systems are less efficient than what they could, in principle, be. 

In KARYON we consider hybrid distributed system models [22] and we explore the concept of 
architectural hybridization as a baseline design principle [24]. This allows us to define a generic 
architecture that accommodates both complex functions that might be subject to temporal 
uncertainties, and simple functions, with well-defined behaviour, which are fundamental to deal 
with safety concerns. The architecture includes these two different realms of operation, as 
needed to explore the potential benefits of complex components being used as part of the 
cooperative control system, while ensuring that safety is preserved by means of a well-defined 
set of components, in which a Safety Kernel is included. In essence, hybrid distributed system 
models assume that different parts of the system are characterized by different properties (for 
instance, each part having different timeliness properties or different integrity levels with 
respect to some assumed failure modes), and architectural hybridization explicitly separates 
different functions or components of the system into these different parts, to ensure that the 
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assumed properties are indeed satisfied in the real system. Using a system model that, on one 
hand, allows heterogeneous properties to be achieved for different parts of the system (as 
needed when considering operational environments where uncertainty is intrinsic but where 
some predictability is required) and, on the other hand, provides the adequate formal framework 
for the design of protocols and system solutions, is fundamental to meet KARYON objectives.  

The idea of structuring the system in terms of complex control functions and simple control 
functions has also been proposed for achieving control systems with improved performance and 
without compromising control stability, and was called the Simplex approach [19]. In this 
approach, the idea is to have two alternative control functions that might be used for controlling 
some system, where one is designed to achieve improved control at the expense of an increased 
complexity of the control algorithm, while the other uses a simple control algorithm that is not 
designed for ultimate performance. The trade-off for the improved performance of the complex 
control algorithm is that it might not always behave correctly because it will be more exposed to 
errors, and therefore this may bring the controlled system to an unwanted state. The simple 
algorithm provides the necessary redundancy to compensate for problems in the execution of 
the complex algorithm. It will necessary to know the control set points and define allowed 
deviations to determine when it becomes necessary to switch over from the complex algorithm 
to the simple one. The key issue in this Simplex approach is to use simplicity to control 
complexity, which is better than using other fault-tolerance approaches like N-version 
programming [2] and recovery blocks [18], when considering that resources are limited. 

Although the basic concept we follow in KARYON for the definition of the generic architecture 
is the same that is underlying the Simplex [19] and the Wormholes [24] approaches, we exploit 
it in a different manner, which is better suited for the autonomous and cooperative systems 
under consideration.  

For instance, differently from the Wormholes approach, we consider that the simple part of the 
system includes functions that pertain to the application (like in Simplex), not just generic 
services that may be used, whenever necessary, by the applications executing in the complex 
part of the system. But we still define our Safety Kernel, which provides generic services, to be 
implemented in the simple and predictable part of the system, thus exploiting the same benefits 
from such design that exploited in the Wormholes model.  

From the Simplex approach we inherit the idea of implementing control functions redundantly, 
as explained above. It will thus be possible that in a KARYON system some functions: a) might 
be complex, as necessary to achieve the desired performance improvements, b) might not 
always perform predictably, which can happen when considering open environments with 
uncertain sensory information being collected, c) but will have simpler redundant counterparts 
that will execute in a predictable way and will ultimately fulfil the needed safety requirements. 
But differently from Simplex, in KARYON we do not assume that sensors are reliable. 
Therefore, we cannot use sensor information to determine how well the system is being 
controlled in order to decide when to switch to a safe control algorithm. Moreover, in 
KARYON we consider different settings that go beyond a well defined control problem with 
well defined control objectives that might be predefined and checked in run time. In KARYON 
the context is changing and the control objectives are changing as well. They are defined by the 
engineers developing the cooperative functions and are typically dependent on the context. We 
thus define a fundamentally new way of dealing with the management of the system 
configuration, and we introduce the notion of Level of Service (LoS) for that. In addition, given 
that in KARYON we are concerned with faults affecting sensor data, we introduce the notion of 
a continuous characterization of the quality of sensor data, which we translate into a validity 
attribute that is used to manage the system configuration. Finally, and in order to achieve a 
separation of concerns between the development of the nominal control system and the 
development of the mechanisms to manage the system configuration, we say that the 
management is performed by a Safety Kernel, and the definition of this Safety Kernel is an issue 
on its own. 



KARYON ‐ FP7‐288195 
D2.3.1 ‐ KARYON architecture (Public version) 
 

 

 

© 2013 KARYON Project    9/44 

KARY    N

We have to say that there exist many example of systems in which the idea of architectural 
hybridization is present, even if not in an explicit way. This is particularly true in systems and 
applications for which a fail stop safe state can be defined. For instance, in automated guided 
trains or subways a typical safe state is to have the train stopped. For that, some components are 
developed with the single purpose of monitoring some safety constraints, being able to actuate 
on train brakes if necessary. These components are very simple (and hence more reliable) and 
are typically separated from the main (payload) systems, so that they constitute independent 
failure domains. Whenever a safety rule is violated, there is an immediate switch to the safe 
state. In KARYON we address a more complex problem, in which the safe state may not be a 
system stop, and may be a fail operational state. Additionally, we aim at allowing the function 
to be performed in possibly several modes, as a result of different combinations of faults 
affecting sensor data and complex components. Moreover, given that the quality of sensor data 
and the quality of wireless communications are strongly affected by intermittent faults, we need 
to accommodate the possibility of the system to recover from a degraded mode of operation to 
which it might have switched. This requires a more versatile design approach, allowing the 
system to perform in several modes (Levels of Service) and to oscillate between the different 
modes. 

1.3 Relation	to	other	KARYON	work	

The presented architectural approach is strongly connected to some fundamental concepts that 
are being developed in KARYON, but which are addressed in other deliverables.  

Firstly, there was an important preliminary work developed in WP1, concerning the definition 
of requirements on the architecture, which have been considered during the definition of the 
architecture and are hence restated and discussed here, both in an abstract way and in the 
context of concrete instantiations of the generic architectural pattern.  

Secondly, given that KARYON is concerned with faults affecting the accuracy of the sensor 
data that input to the system, the architecture must encompass some means to deal with these 
faults. The approach that is taken is to develop an abstract sensor model, which allows 
considering sensors as abstract entities with a well defined interface providing the sensor data 
with a corresponding validity measure (which can be seen as a measure of how trustworthy this 
data is). The architecture explores this abstraction by including components that deal with data 
validity in order to manage system behaviour. Run time monitoring is thus concerned with 
collecting validity estimates to detect operational changes (caused by faults) to determine when 
to change the operation mode.  

A third important aspect in the overall conceptual definition of the architecture concerns the use 
of environment models, which are used as fusion mechanisms for better evaluating the validity 
of information received from remote nodes via wireless networks. These environment models 
are encapsulated within the abstract sensor model and are discussed in detail in another 
deliverable. 

KARYON is concerned with safety-critical systems. Therefore, the architecture must provide 
the means for handling safety concerns and for allowing safety analyses to be conducted. An 
underlying fundamental concept, the fourth one in this enumeration, is that safety requirements 
that are ultimately allocated to system components are essentially expressed in terms of the 
validity metrics mentioned before. This is a fundamentally new idea underlying the whole 
KARYON concept, which allows capturing the essence of the safety problem being addressed: 
in cooperative systems it is very hard to design solutions covering all possible faults, and hence 
some may happen which will have a negative impact on the validity of the information used in 
the control processes, requiring timely detection and handling in order to exclude implied safety 
risks. Validity is thus a key concept, both to express design time safety requirements allocated 
system components, as well as capture the relevant (health) state of the system in run time. 
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Finally, the Safety Kernel concept plays a decisive role in the management of the Level of 
Service of the cooperative functionalities. In KARYON we acknowledge the fact that it may not 
be possible to predict all possible hazards leading to faults that affect data quality or 
computation timeliness. Therefore, the design approach followed in KARYON is to specify the 
quality or timeliness that are needed to guarantee functional safety in some Level of Service, 
adding the necessary means to detect violations of that specification. The Safety Kernel is the 
part of the system where the safety rules defined in design time and the safety-related 
information that is collected in run time come together, and where decisions on necessary 
changes in the LoS are taken. The concept is present in this document, but it is developed in the 
context of WP4. 

1.4 Structure	of	the	deliverable	

We start by introducing, in Section 2, a set of concepts and definitions that are important to give 
some context for the architectural options described in the deliverable. The KARYON 
architectural pattern is then described in Section 3. The description starts by focusing on the 
system and fault models, explaining the architectural components that are considered and 
included in the architecture, how they are structured and related to each other to form the overall 
architecture, and what is assumed concerning the faults that can affect each of these 
components. In addition, the text provides functional and data-oriented views of the proposed 
KARYON architecture, including a description of the necessary functional components, of their 
role within the hybrid architecture, and of the data and control flows that exist in a KARYON 
system. Some important issues that are addressed in other work packages, but which are related 
to the defined architectural pattern, are described in Section 4. Finally, Section 5 provides 
examples of how the generic architecture can be instantiated when considering specific 
cooperative functionalities in the avionics and automotive domains. These examples are 
obviously related to the use cases considered in the project and thus to the test cases that are 
defined in the scope of WP5 and which will serve to demonstrate the project contributions. The 
deliverable is concluded in Section 6. 
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2. Fundamental	concepts	and	definitions	
In order to give the necessary context for the KARYON architecture presented in this 
deliverable, in this section we introduce several concepts, definitions and terminology. These 
are related with the application context focused on cooperative systems, and with the objective 
of achieving solutions with improved performance without sacrificing safety. We also provide 
our view on concepts related to functional safety and to the idea of exploiting hybridization as a 
basic modelling approach. 

2.1 Cooperative	systems	

In KARYON we focus on cooperative systems or vehicles, like automobiles, robots, airplanes 
or Remote Piloted Vehicles (RPVs). We understand by cooperation that systems actively help 
each other in order to achieve some common goal, or to realize some cooperative functionality. 
Cooperation can be used to improve coordination among vehicles. Coordination is more 
general in the sense that it can take place by following pre-established rules dictated beforehand 
and embedded in local control rules. Vehicles can thus coordinate in the traffic by following 
some fixed rules, without the need to communicate with each other. But is communication can 
take place, then vehicles might be able to cooperate in order to reach some further agreements 
on the way they behave. These may allow improving the traffic flow, the safety and the overall 
energy consumption. 

Cooperation entails a number of aspects, like communication, the quality of exchanged data and 
the cooperation scope, which we address next. 

2.1.1 Communication	

When considering cooperative vehicles, communication between vehicles becomes a 
fundamental focal issue. This is in contrast with non cooperating vehicles, even autonomous 
ones, which operate in a fully independent way, without the need to actively interact with other 
vehicles or entities, therefore without needing to communicate.  

Since the ability to communicate is absolutely required to achieve cooperation, it will not be 
possible to cooperate when communication channels are not available or are not functioning 
with the necessary quality. Therefore, there is a problem when dealing with cooperative 
vehicular applications, because, due to mobility, vehicles must communicate using wireless 
communication networks, which are known to be prone to interferences and much less reliable 
than wired networks. And the problem tends to be seen as increasingly difficult when 
considering that these cooperative applications must satisfy functional safety requirements.  

Our basic approach in this respect is to accept the fact that communication might not always be 
possible, devising the solutions that will allow the systems to switch from active cooperation to 
non-active cooperation. That is, when communication is possible, then cooperation may take 
place. Otherwise, no cooperation will take place, although the systems will be actively trying to 
cooperate again and they will all be aware that it is not possible to actively cooperate. 

In KARYON we are interested in the possibility of exploiting the ability to communicate, while 
taking care of the fact that this might not be possible. We thus focus on the dynamic aspects 
associated to communication with varying levels of quality, and on ensuring safety requirements 
despite such dynamics. When communication is not possible, vehicles will be operating just as 
normal autonomous vehicles that might use predefined rules for coordinating. Finding solutions 
to ensure a safe operation in these conditions falls out of the scope of the project, because this is 
covered by state-of-the-art solutions. 
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We note that communication can also take place between vehicles and entities in fixed 
positions, like road-side units or air traffic management sites. Therefore, cooperation might also 
take place even if not based on direct vehicle to vehicle communication. 

Finally, we also note that some non-conventional forms of communication could be used to 
achieve cooperation. For instance, it would be possible to devise sound-based or light-based 
communication means, which could be used to send and receive information as an alternative to 
using radio-based communication networks. However, in KARYON we are only considering 
the typical communication networks used in vehicular scenarios, such as 802.11, 802.15.4 or 
ADS-B. 

2.1.2 Quality	of	information	

When sending and receiving information to/from other entities or vehicles, and being this 
information sent through communication networks with quality attributes varying over time, the 
quality of the information will also vary. In fact, it is important to note that we are considering 
real-time systems and real-time sensor data, like the position, the speed or the altitude, which 
vary over time. Therefore, when transmitting sensor data as required in cooperative 
applications, this data is degrading over time. If network properties such as the communication 
latency cannot be bounded in design time, which is the case we consider, then it becomes 
necessary to deal with the potential degradation of the information quality. 

In KARYON we look at this problem with particular attention. We generalize the problem of 
failures affecting sensor data quality and devise an abstract sensor model for that purpose. 
This model also serves to deal with other failure affecting sensors, not just communication 
uncertainties affecting the collection of sensor data. 

Based on that, in KARYON we consistently use the notion of data validity, as an expression of 
how good is data used in the control processes. The notion is reflected both in the defined 
KARYON architectural pattern, as well as in the way the safety reasoning in developed. 

2.1.3 Cooperation	scope	

Cooperation takes place between a set of cooperating entities. Therefore, one fundamental issue 
concerns the definition of the entities that are included in this set. In other words, it is necessary 
to define the scope in which some cooperative functionality is realised. 

Given that the considered entities (cars, airplanes) are mobile, and that it is usually only relevant 
to cooperate with relatively close entities, it is not possible to define a fixed scope that will hold 
for the lifetime of some functionality. On the contrary, the scope is varying over time. And the 
dynamic characteristics of this variation may constitute a limiting factor on the possibility of 
achieving performance improvements out of the cooperation. 

In KARYON we do not deal with the specific problem of defining the scope of cooperation, that 
is, we do not propose particular solutions for this problem. Instead, we assume that when some 
cooperative function will need to know the cooperation scope, this information will be provided 
by some functional component that will be included as part of the application. 

We note that the problem is not trivial. In fact, it is made difficult by the fact that we are 
considering a distributed system that is essentially asynchronous (in the sense that no strict 
bounds can be defined for the communication latency), subject to failures (because 
communication may not always be reliable), and dynamic, due to the need to consider joining 
and leaving vehicles. There is a considerable amount of work in classical literature of 
distributed systems addressing the problem of group membership [1,4], some of which 
specifically focusing on wireless environments [3]. There are also impossibility results [7], 
setting the bounds of what may be aimed. All of these works can be considered to address the 
issue of defining a cooperation scope.  
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A remark should be made, however, to note that the particularities of automotive or avionics 
scenarios may allow to consider alternative (and practical) approaches to address the problem. 
For instance, if considering the coordinated roundabout or coordinated road crossing cases, it 
seems possible to consider that there may be a central entity that is part of the infrastructure, 
which provides scope information to all vehicles that are in a certain vicinity of this entity. 

2.2 Level	of	Service	

Managing the trade-off between performance improvements and the safety risks this additional 
performance will bring, implies that some risk management process is put in place. The concept 
of Level of Service (LoS) is introduced in this context and must be clearly explained. It is also 
important to explain the exact meaning of “performance” as well as explain some notions 
related to the process of adjusting the LoS. 

In vehicular cooperative systems, in which vehicles are moving in a physical shared space and 
perform a number of possible manoeuvres, we can intuitively characterize how well these 
manoeuvres are executed in terms of a number of metrics like the speed of execution, the 
smoothness of the movement or the distance between the vehicles. All of these are important 
traffic flow metrics, also allowing to evaluate how well the shared space is used and to reason in 
terms of energy (fuel consumption) costs. Other metrics could as well be considered, like the 
passenger comfort during the execution of the manoeuvres, which may be not so important from 
an economic perspective, but will surely be important for the acceptance of involved 
technologies. All of these are performance metrics, and the objective in KARYON is to allow 
these metrics to be improved.  

It is clear that the control algorithms employed in the execution of the cooperative functions 
have to care about the aspects mentioned above. Engineers responsible for defining these 
control algorithms will try to make vehicles move faster, closer, smoothly and following straight 
trajectories. They will also consider (as much as possible) all the possible contexts, including 
road conditions, weather conditions, traffic rules, etc. The resulting control system is what we 
call the nominal control system, which performs the intended functions.  

But system designers also have to make sure that the resulting system will perform the functions 
safely, that is, excluding the possibility that a vehicle will collide into another, or will hit a 
pedestrian (in the case of automobiles), or will fall down to the ground (in the case of aircrafts). 
Therefore, the control algorithms will embed the knowledge about what must be done to 
achieve a safe control. This requires making considerations about relevant physical processes, 
for instance how fast can a car move in order to stop within a certain distance given a certain 
condition of the road, what is the permissible roll angle of an aircraft, given speed and other 
conditions, to avoid losing the necessary lift or complete control of the aircraft, or how frequent 
is it necessary to read short and long range front vehicle sensors to ensure that a pedestrian is 
detected in due time, given a certain car speed and pedestrian movement model. 

When designing the nominal control system, the designer will thus have to make a number of 
assumptions about the physical processes, context, and so on. And the function may eventually 
be proven safe, provided that the assumptions hold in reality. So far we have just talked about 
assumptions that are strictly related to the application semantics, but in fact there are also 
assumptions that need to be made concerning the infrastructure on which the control system is 
running and on the control system itself. In typical designs of safety-critical control systems, all 
the relevant bounds concerning the infrastructure must be known, so that they are taken into 
account in the design. And if some faults are known to possibly occur, they are either treated 
with fault-tolerance solutions that allow providing an adequate fault semantics to the system 
programmer, or they are considered to be irrelevant from a safety perspective, and simply 
ignored. In any case, there should never be any relevant variable, with potential impact on 
safety, whose value is not bounded and known in design time. 
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The resulting nominal control system, designed under a specific set of assumptions, provides a 
certain trade-off between the performance (measure by the metrics enumerated before) and the 
degree of safety. This trade-off sets the Level of Service (LoS) in which the function is 
provided by this nominal control system. In other words, in a given LoS the maximum 
performance and the corresponding safety level are fixed. 

There are essentially two ways in which the LoS can be improved. One way is by finding more 
clever ways of defining a control algorithm, in ways not considered before. This is strictly in the 
realm of the theory of control systems and algorithmics of control systems, and is not what we 
are interested in KARYON. This is why we do not go into details concerning specific control 
algorithms or specific functionalities, and only use them as toy examples, namely in the 
definition of use cases for the proof-of-concept demonstrations. The other way of improving the 
LoS is by exploiting the availability of new and emerging technologies, which is what we are 
interested in KARYON. 

More specifically, in KARYON we want to improve performance without reducing safety by 
leveraging on two things: 

 The availability of more resources, namely computational power and an increased 
variety of sensors; 

 The possibility to exploit cooperation between vehicles, which may be seen as an 
additional way of collecting more sensor data. 

It may be argued that with increased resources, the single LoS achieved with a traditional 
approach could also be improved. This is indeed true up to a certain point, and in fact this is 
how safety-critical computer-based systems have been improving over the years (e.g., using 
faster control loops). 

However, the achievable improvements are limited by the increasing complexity of the 
hardware and, in particular, of the software components used in these systems. This complexity 
leads to an increasing number of faults, and it is becoming harder and harder to mask all of them 
in design time, so that the system designer can just focus on the development of the control 
algorithms assuming a favourable failure semantics of the underlying infrastructure. Simply 
adding hardware redundancy, as a solution to deal with faults introduced by complexity, is not a 
panacea because it is not always possible to get rid of common mode failures and the approach 
implies relevant additional costs. And concerning the replication of complex software 
components, the problems are even bigger. 

But the major obstacle to using traditional approaches is that wireless communication, which is 
required for cooperation, is inherently uncertain. This makes it hard to use remote information 
in control algorithms that rely on design time established bounds, in particular when these 
bounds must hold with a very high probability. 

The option followed in KARYON is to consider that there is more than one LoS in which a 
cooperative function can be executed. The lowest LoS is achieved with the baseline solution, 
that is, with a nominal control system that is designed based on well-known bounds on every 
significant variable, on redundancy measures that will enforce some assumed fault model. In 
this LoS the achieved performance (in terms of maximum speed, minimum safety distance, etc) 
will be the same as the performance achieved with a classical design providing just one LoS. No 
additional resources are employed to run the function in this LoS. In particular, no 
communication is envisaged, which means that all vehicles will be acting autonomously, and all 
in the same LoS. In fact, in this LoS the functionality turns out to be non-cooperative, which we 
have previously identified as inevitable when communication is not possible. 

In order to exploit the additional resources, more complex control algorithms are designed, 
additional sensor data is used, and a new nominal control system is defined, which allows 
achieving an improved LoS. In some sense, this is like having more than one nominal control 
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system in place, although it is clear that most components will have a single version and will be 
used in the different combinations yielding the different nominal control system configurations. 

From the perspective of the control system designer that is defining a complex algorithm, it will 
be nevertheless necessary to make a number of assumptions on which this algorithm is relying. 
For instance, the designer may assume a certain bound on the communication latency, may 
assume the availability of some sensor data with a well-known quality, etc. The new algorithm 
will hence allow achieving an improved performance and a higher LoS, as long as these 
assumptions are verified. 

It is clearly possible, by definition, that some of these assumptions might not hold in run time. 
Therefore, in a KARYON system it will be always necessary to monitor the relevant variables 
in order to detect possible violations of the assumptions. And if some assumption does not hold 
anymore, then it will be necessary to switch the system into a configuration in which no 
component relies on the violated assumption. In other words, there will be a set of safety rules 
associated to each non-basic LoS, which will have to hold for the function to be provided in that 
LoS. 

From a safety perspective, it must be shown in design time that the functionality will always be 
safe for all the possible configurations (all LoS) under the assumptions considered in the design 
of components used in each of these configurations. One additional assumption has necessarily 
to be considered, which must be proven to hold in design time with the highest probability. This 
is an assumption on the time that it takes to switch from any higher LoS configuration, to the 
baseline LoS configuration. This time will have to be known and taken into account in the 
design of the control functions, in order to ensure that the functionality will always be safe.  

One final clarification is needed, to explain how the concept of Level of Service is understood 
in a cooperative context. It should be clear, from the previous discussion, that each LoS is 
associated with a certain configuration of the nominal control system. But since in a cooperative 
scenario there are multiple vehicles, then there is a question of what can be expected concerning 
the consistency of each vehicle configuration. 

From a performance perspective, it is better if the LoS, whatever it may be, is consistent across 
the cooperating vehicles, and if this can be assumed in the design of the control algorithms. In 
fact, this allows restricting the possible heterogeneity between control decisions, because each 
vehicle is aware of the limits under which the cooperative function is being executed, which are 
the same limits imposed in each vehicle. On the other hand, if such consistency is not ensured, 
then this will be reflected in the control algorithm, which will have to embed larger safety 
margins to encompass for the potential (and unknown) discrepancy between the control 
decisions taken in each vehicle. This will have a negative impact on the performance achievable 
in each LoS, but it will not be an impediment for achieving cooperative solutions. In KARYON 
we have referred to a LoS that is consistent among cooperative vehicles as a cooperative LoS. 
However, we often simple use LoS to designate the local configuration of the nominal control 
system, irrespectively of the LoS of other vehicles. 

Ensuring a consistent LoS in the execution of the cooperative functionality may seem infeasible, 
because this requires some form of agreement, which may not always be achievable in the 
asynchronous communication environments that we consider. However, it must be noted that 
when communication is not possible between all the vehicles in the cooperation scope, then all 
the vehicles should be executing in the baseline LoS, and thus they will be consistent. On the 
other hand, if communication is possible, then it will also be possible to run some distributed 
algorithm to reach consensus on the cooperative LoS. The only issue is that the switching 
between two LoS may not be done precisely at the same time in all vehicles, and hence an 
inconsistency interval will have to be considered in the design of the control algorithms. 
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2.3 Functional	safety	concepts	

Safety is an intuitive but abstract concept. One may find several different definitions but they 
are similar in intension. Some examples are: 

 Absence of unacceptable, or unreasonable, risk.  

 Freedom from accidents or losses. 

 A property of a system that it will not endanger human life or the environment. 

Safety can be accomplished by many different means ranging from passive safety, e.g. safety 
belt in cars, to active safety measures like functional safety. Functional safety has also many 
different definitions depending on applicable domain: 

 Part of the overall safety of a system or piece of equipment that depends on the system 
or equipment operating correctly in response to its inputs, including the safe 
management of likely operator errors, hardware failures and environmental changes. 

 For the automotive domain, ISO 26262 defines it as absence of unreasonable risk due to 
hazards caused by malfunctioning behaviour of E/E systems [12]. 

 In the avionics domain, the RTCA-DO178B/C’s Design Assurance Level (DAL), 
defines the safety level through the effect a failure will have on an aircraft. 

Safety is a system attribute and can only be determined considering the system as a whole and 
the environment with which it interacts. This implies that functional safety is end-to-end in 
scope, i.e., safety is not a component attribute. 

A vehicle can operate under different modes: human controlled, autonomous, coordinated and 
cooperative. It may also be a possibility of having mixed modes if subsystems are allowed to 
operate under different modes. An operational situation can be defined as a limited view, in time 
and space, of the environment in which the vehicle operates. The operational mode is also 
included in the operational situation. It is the operational situation and its potential sources of 
harm that is analysed for safety. The risk is defined as the product of the probability of 
occurrence of harm, or exposure for harm, and the severity.  The severity is an estimation of the 
danger to human life or environment. In ISO 26262 an automotive safety integrity level (ASIL) 
is determined by a combination of:  exposure, severity and controllability. The controllability is 
defined as the ability for involved persons to timely interact in order to avoid the harm or 
control the harm. It should be noted that all three parameters have a dimension of uncertainty 
(probability, estimation and ability). A safety integrity level is a measure of how much risk 
reduction the system must achieve in order to be safe. Safety integrity level is tightly connected 
to data integrity for functional safety. Data integrity is related to the accuracy, precision and 
consistency of data over its life cycle. Functional safety is therefore related to the means of 
maintaining and assuring data integrity. 

The ability for vehicles to communicate and share information is a necessary condition for 
having a cooperative system of vehicles. A more formal definition of a cooperative (control) 
system of vehicles is a set of individual vehicles which form relations in order to share 
information and act together to achieve a common objective. There can be several objectives for 
cooperation e.g. comfort, traffic management, reduce fuel consumption etc. It can be argued that 
shared information can be used for risk reduction and thus possibly increase safety. A 
cooperative system per se does not necessarily mean that additional risks have been introduced 
in the system and thus a need for risk reduction. Referring to the definition from ISO 26262 
there are no arguments that the internal system of a vehicle should become degraded or 
malfunction just because the vehicle participates in a cooperative system. In fact, this will 
depend on the health of the communication network, as we discussed in the previous section. 
One of the risks introduced by a cooperative system is when the vehicles separation in time and 
space are lower than what had been considered safe when the vehicle operates alone. The 
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vehicles must still be safe from their internal perspective but there are new uncertainties 
introduced about the states of the other vehicles. This uncertainty and risk is reduced by 
communicating and sharing information about important states. Thereby the vehicles can safely 
operate much more tightly to achieve better traffic management and thus better traffic flow. As 
long as the cooperative system has a common view of those states that is good enough for 
current operational situation, the system is safe. If there are uncertainties about the common 
state or different views, then the cooperative system is potentially unsafe. 

The safety analysis is always static and today’s approach is to take the worst case assumptions 
and make the system safe according to those assumptions. A vehicle is a static entity and this 
approach is viable for today’s situation and operating modes. Moving to fully autonomous, 
coordinated and cooperative mode, the controllability factor for involved persons will become 
much degraded. The vehicle will change from a closed system to an open system, i.e. a system 
that interacts with its environment. The system must also be adaptive to handle a dynamic 
environment. The safety analysis must shift from a self-view to a relational-view. Today’s 
safety standards do not address these new situations.  

To be able to take full benefit from coordinated and cooperative systems it seems necessary to 
move from a purely static view on safety integrity levels during design time into partly dynamic 
safety assertions in run time. By doing so, the actual run time operational situation will dictate 
the current need for some of the safety integrity levels. This implies that the safety analysis has 
to be stored in the vehicles as safety rules which map operational situations to safety integrity 
levels. The vehicles must have a representation, an environment model, of current operational 
situation. This must semantically be in accordance to the model of operational situation that was 
used for the static safety analysis. Hence the safety analysis is still static but it is no longer the 
worst case scenario that dictates the needed safety integrity level. The selection of some of the 
safety integrity levels becomes a dynamic run time process as well as the assertion that those 
integrity levels are achieved. If they are not achieved measures have to be taken to avoid the 
unsafe situation. One such measure is to separate the individual vehicles of the cooperative 
system in time and space to be more fault tolerant. 

2.4 Hybridization	

The concept of architectural hybridization plays an important role in KARYON, in particular in 
the definition of the general architectural pattern. KARYON proposed to explore the concept as 
a baseline design principle and therefore we explain the concept in this section.  

We start with an overview of the different and fundamental approaches for defining system 
models. We are essentially interested in showing the difference between homogeneous system 
models, which assume that the entire system enjoys the same set of properties, and hybrid 
system models, in which different properties may be assumed for different parts of the system. 
This is an important difference, with impact on how solutions are designed and on how the 
system will perform. We describe specific advantages of using hybrid system models in 
comparison to homogeneous ones. 

However, simply assuming that a hybrid system model is adequate to represent the real system 
is not enough. This must be reflected on the architecture and it is necessary to materialize the 
assumptions, ensuring that they hold in practice. This is why architectural hybridization is 
essential, as it defines a set of principles for architecting the system and, in fact, enabling the 
construction of hybrid systems. We also elaborate on this, providing some examples of 
architecturally hybrid systems. 
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2.4.1 Hybrid	system	models	

In a general sense, when designing a system or an application, or simply the solution for a given 
problem, it is necessary to clearly identify and specify a set of requirements for that system or 
problem, and a set of assumptions about the properties of the environment for which the 
problem is to be solved. While the set of requirements is what defines the problem, the set of 
assumptions has an implicit impact on the possible solutions, determining, for instance, their 
complexity. The set of assumptions allow to characterize the relevant attributes of the 
environment for which the solutions will be developed, and thus constitute the system model.  

The system model provides an abstraction of the real system, allowing for the separation of 
concerns between the underlying system properties that the solution designer can take as 
granted, and how these properties are provided or enforced. Therefore, when we use the term 
system model we refer to an abstract representation of a real system, hiding details related to 
hardware, network and software components. 

Abstracting is good, but it is important to ensure that the abstraction is accurate with respect to 
the reality it represents. There is an issue of assumption coverage [17] that is relevant when the 
solution is deployed, which is that assumptions must hold with a high enough probability given 
a concrete system and environment. In essence, the right assumptions must be made. 
Additionally, the system model should be simple enough to be useful when designing some 
solution, but it should also be detailed enough to capture the essential characteristics of the 
system and allow better solutions to be defined. 

Assumptions can be defined along several dimensions, depending on what is relevant for the 
problem at stake. For instance, in the distributed systems literature [14] a distributed system 
model includes assumptions about: (i) failures, (ii) synchrony, (iii) network topology and (iv) 
message buffering. In KARYON we define fault models for system components, but are not 
concerned with topology issues not message buffering issues, which we consider to be 
abstracted by the communication subsystems. Since we consider systems that interact with their 
physical environment, the temporal and timeliness aspects are also important, and thus it is 
relevant to devote attention to synchrony assumptions, defined by a synchrony model. In fact, 
fault assumptions can be related and may depend on synchrony assumptions, in the sense that if 
some synchrony is assumed, then it might be necessary to also assume timing faults in the fault 
model. The same could be said regarding security-related assumptions and their implications on 
the fault model. However, in KARYON we do not consider security issues. 

There is a wealth of knowledge on the definition of homogeneous system models, and on their 
use in the definition of algorithmic solutions, architectures and systems. For instance, when 
considering the synchrony dimension, the two well-know models of synchrony that have been 
traditionally used are the synchronous [13] and the asynchronous [11] models. The 
shortcomings of these homogeneous models are clear when dealing with problems where it is 
necessary to reconcile predictability with uncertainty [23], such as we do in KARYON. 

Recalling the KARYON main objective, which is to provide system solutions for predictable 
and safe coordination of smart vehicles that autonomously cooperate and interact in an open and 
inherently uncertain environment, the need for reconciling predictability with uncertainty is 
evident. Let us reason again in terms of the synchrony dimension. Should we consider the 
asynchronous system model, we would have no way of addressing timeliness requirements and 
providing timeliness guarantees for the behaviour of the developed systems. In essence, 
ensuring functional safety would not be possible, given that even simple hazards require some 
(temporally) bounded system reaction, something that cannot be handled when considering an 
asynchronous model. On the other hand, despite the technology improvements in computing 
and communication, we should also not use a synchronous model to characterize the system 
homogeneously. For example, to deal with uncertain wireless communication delays, a 
synchronous model would either postulate a very high bound for the message delivery delay, 
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which could be unacceptable for performance, or else, by postulating a lower bound, the risk of 
violating the assumption could be too high and unacceptable.  

It is possible to move away from the extreme sides of the spectrum of choices (be it about 
synchrony, security, integrity, or others), defining intermediate models for whatever considered 
dimension. For instance, in the synchrony dimension there exist models of partial synchrony, 
such as the Partially Synchronous model [10] or the Timed Asynchronous model [9]. In these 
cases, synchrony is assumed to vary over time and, in this sense, is not an invariant property. 
However, since the property is assumed to be common to the entire system, the synchrony 
model is still homogeneous in the space dimension.  

In contrast with homogeneous models, a hybrid system model allows possibly several stripes of 
the assumption spectrum to be represented, exploiting the space dimension. Then, provided it is 
possible to find a mapping of such hybrid models onto (correspondingly hybrid) architectural 
models that reflect reality (the networking and computational environment), it will be possible 
to exploit the increased expressiveness of the hybrid models to design improved solutions and, 
in particular, to address the conflicting goals of predictability and uncertainty. 

In essence, hybrid system models represent systems in which different parts have different 
properties and can rely on different sets of assumptions (e.g., faults, synchronism). Interestingly, 
it is possible that some of these assumptions, applicable to some part of the system, lie in some 
intermediate point of the possible spectrum. Therefore, hybrid models allow the best to be taken 
from both dimensions: different loci of the system may have different properties, and these 
properties may vary over time. 

In theoretical and practical terms, hybrid models have a number of advantages when compared 
to homogeneous models, as explained in what follows (a detailed discussion can be found in 
[24], focusing in particular on synchrony models).  

Hybrid systems models are: 

 Expressive models with respect to reality— Real systems are not homogeneous. 
Whatever the dimension (synchrony, integrity, etc) they generally have components that 
enjoy different properties, because these components use and depend on different 
resources (e.g., hardware devices, networks). Homogeneous models simply cannot take 
advantage from this, being confined to use worst-case assumptions (e.g., the most 
severe failure mode, the weakest synchrony). 

 Sound theoretical basis for crystal-clear proofs of correctness— By using a hybrid 
model, the heterogeneous properties of the different loci of the system (the space 
dimension) are by nature represented, and we are in consequence forced to explicitly 
make correctness assertions about each of these loci, and about the interfaces to one 
another. In contrast, in homogeneous models (and particularly if they make weak 
assumptions) designers are tempted to make implicit assumptions that are not explicit in 
the model, which may lead to problems ahead. 

 Naturally supported by hybrid architectures— Sisters to hybrid systems models, hybrid 
architectures accommodate the existence of actual components or subsystems 
possessing different properties than the rest of the system. Hybrid models and 
architectures provide feasibility conditions for powerful abstractions which are to a 
large extent not implementable on canonical (homogeneous) models: timely execution 
triggers (also known as watchdogs); secure signatures or highly reliable execution 
kernels. Hybrid models and architectures may drastically increase the usefulness and 
applicability of all these abstractions. 

 Enablers of concepts for building totally new algorithms— A powerful yet simple 
concept behind the first experiments with hybrid models was: use the weakest possible 
model for the generic system; imagine that a “toolbox” of simple but stronger low-level 
services is available, locally accessible to processes (e.g., timely execution triggers; 
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timely executed actions; trusted store); these local services can be distributed via 
alternative channels, to obtain further strength (e.g., synchronous channels; trusted 
global time; trusted binary agreement); devise algorithms which, by working between 
the two space-time realms, the generic and the enhanced subsystem containing the 
“toolbox”, achieve new properties (e.g., making an asynchronous process enjoy timely 
execution).  

Having explained the concept of hybrid system models, and their advantages over homogeneous 
models, in the next we address the architectural hybridization principle, as a fundamental 
enabler of the concept. 

2.4.2 Architectural	hybridization	

Hybrid modelling of distributed systems is the path to achieving incrementally stronger 
behaviour taking the best of two worlds: retaining essentially weak models (of integrity, 
synchrony, security, etc), with consequent benefits for correctness (since assumptions are hardly 
violated); allowing strong models to be considered, which are essential to fulfil predictability 
and safety needs. 

Architectural hybridization was proposed as a new paradigm to architect modular systems, 
based on a few simple principles: 

 Systems may have realms with different non-functional properties, such as 
synchronism, faulty behavior, quality-of-service, etc. 

 The properties of each realm are obtained by construction of the subsystem(s) therein. 

 These subsystems have well-defined encapsulation and interfaces through which the 
former properties manifest themselves. 

As to the construction, architectural hybridization is an enabler of the construction of realistic 
hybrid systems. In fact, it is quite straightforward to build architecturally-hybrid systems, and 
we provide some examples below. 

The first example is of a system with a watchdog subsystem. The watchdog is used to reset or 
restart the overall system when something wrong happens in the main part of the system, 
typically when the main system becomes slow or inactive. The watchdog is essentially a counter 
device, which has a register that is programmed with some value, and a counter register that is 
continuously incremented. When the value in the counter register equals the value in the 
programmable register, the watchdog activates the reset signal. The main system has to 
periodically reset the programmable register to a higher value, to avoid system resets. When the 
main system becomes slow or stops, this will be implicitly detected because the programmable 
register will not be reset on time. In this example, it is easy to see that the system has two 
different parts, and is thus architecturally hybrid: the main system, which is assumed to fail or to 
behave untimely, and the watchdog, which is assumed to behave correctly and timely. These are 
reasonable assumptions, because the watchdog is essentially independent from the main system 
and it is a much simple subsystem. This ensures that faults affecting the main system will not 
propagate to the watchdog, and due to its simplicity the probability of the watchdog failing on 
its own is much lower than the probability of failure of the main system. Interestingly, the 
resulting global system exhibits better properties than the main system alone: it will either 
behave in a timely way or it will restart. In any case, untimely behaviours have been ruled out 
and this may be a useful property in many situations, when a fail-stop behaviour is admissible. 

A second example is of a system with a Timely Computing Base (TCB) [22]. In such a system 
there is a generic part, called payload part, which corresponds to the baseline system where 
application processes execute to provide the intended application functionality. Then there is a 
control part, called the TCB, which like the watchdog is a separate part, but which provides 
richer supporting services to the payload part, like timing failure detection and timely execution 
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of critical functions. It must be noted that the services provided by the TCB are distributed 
services, which implies that hybridization is extended to the network architecture. Clearly, the 
TCB part must be implemented in such a way that it enjoys better properties (reliability and 
timeliness) than the payload part. Some construction principles like interposition (ensuring that 
accessing to critical resources cannot be made bypassing the control part) and shielding (the 
control part is protected from faults affecting timeliness) must be respected to make sure that the 
services can be provided with the expected properties. One implementation of a TCB was done 
using Real-Time Linux and two switched Ethernet networks [5], where one of the networks was 
used exclusively for the TCB, whose services were implemented as real-time tasks. In this 
system, the payload part was the normal Linux part, using the other network. Another example 
implementation of a TCB, in which a completely separate hardware platform was used for the 
TCB subsystem, is described in [16].  

One final example is a system with a Trusted Timely Computing Base (TTCB), in which 
hybridization is used not only to achieve a timely subsystem, but also a trusted subsystem, 
capable of providing security-related services like trusted random number generation and 
trusted block agreement [8]. Although the TTCB described in [8] was also implemented in 
Real-time Linux with specific changes in the kernel to enforce security properties, other COTS 
trusted hardware, such as the Trusted Platform Module (TPM) [20], can be used to obtain 
tamperproofness. In fact, a TPM can be seen as a special subsystem with better (security) 
properties which, when used in a generic (unsecure) system, ends up forming an architecturally 
hybrid system. 

As to the usefulness of architectural hybridization, and considering the previous examples, it is 
clear that the overall system will be improved by making it able to use the services of a better 
component or a better subsystem. For instance, in the case of the TCB it is possible to perform 
timely actions despite the asynchrony of the payload system, or to detect and react in a timely 
way to possible delays occurring in the payload part. On the other hand, with a TTCB it is 
possible to drastically augment resilience to intrusions, making it possible to solve fundamental 
problems such as consensus in the presence of uncertain attacks and vulnerabilities [15]. Note 
that in homogeneous systems, where the same fault, synchrony or security model applies to the 
entire system, the only way to achieve the intended (e.g., synchrony, security) properties is by 
enforcing these properties in the entire system, which is typically an over killer. With 
architectural hybridization, only the restricted part of the system that has the better properties 
needs to be constructed with the aim of achieving those properties, which is much easier. And 
still, the provided services will make it easier to solve many problems that would otherwise not 
be solvable. 

In KARYON we apply architectural hybridization to structure the system in two parts: the part 
where complex functions might execute without the need to ensure, in design time, that they 
will meet some timeliness requirements, and the part where the baseline system will be 
implemented, which encompasses all the components that are needed to provide a baseline LoS 
and the components that will be in charge of managing the system configuration in order to 
secure the safety requirements. While in this deliverable we provide, in Section 3, a description 
of KARYON architectural pattern in which this hybrid structure is visible, a more detailed 
discussion of the means to enforce architectural hybridization is provided in the scope of Safety 
Kernel definition, in deliverable D4.2 of WP4. 
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3. KARYON	architecture	
This section is dedicated to the description of the generic KARYON architecture. We start by 
providing a description of the nominal control system architecture, describing the architectural 
components and explaining how we structure the system in accordance to the considered hybrid 
system model. Then we describe the considered fault model, also referring to the abstract sensor 
model which is considered for abstracting sensor faults. The complete architectural pattern 
including the Safety Kernel is then described, with an explanation of the interactions between 
the architectural components and providing details on the functional role of the Safety Kernel 
components. After that we discuss the architecture from the perspective of information flows, 
introducing the main data abstractions that we need to consider and explaining the data flows 
between the functional components. Finally, we refer to the requirements listed in the previous 
section, discussing how the presented architecture contributes to address those requirements.  

3.1 Nominal	control	system	architecture	

The bottom line for the definition of the KARYON architecture is the knowledge that we are 
essentially dealing with control systems, involving elementary components such as depicted in 
Figure 1. 

 

Figure 1: Basic control loop. 

A basic control system involves sensing, processing and actuation. We say that this is the 
nominal control system, because it includes the strictly necessary components to realise the 
desired control activities. This view abstracts the existing software and hardware components, 
as well as the communication channels connecting the components. In this view, there is an 
implicit feedback that develops through the environment. That is, through actuation it will be 
possible to change the behaviour of the controlled entity (which in KARYON is a vehicle), and 
this change will be perceived through the observation of physical variables that develop through 
the environment, like the ground relative speed or the distance to some physical object.  

It is well-known that it is easier to ensure control stability, in which controlled variables are kept 
within desired bounds, when the system and the environment are well defined and all variables 
can be characterized in a precise way. From a modelling perspective, this translates into 
considering synchronous models, well-defined failure modes, known event patterns, etc. 
Control stability is fundamental to meet safety requirements, whenever these are defined. 

Solutions for stable and safe control under precisely defined conditions are well known in fully 
described in the literature. They imply a detailed system analysis at design time (i.e., statically), 
to prove that the necessary safety conditions are met. However, in KARYON this simple model 
is not enough, in particular because we consider a distributed system that requires 
communication elements to be added to the picture. 

In a first step, we enrich the initial simple model by making explicit the fact that in a control 
system there may exist, in fact, several sensors, computing elements and actuators. We also 
make explicit that this basic system composed of sensing (Sense), computing (Compute) and 
actuation (Actuate) components, is the nominal control system, as shown in Figure 2. In fact, 
the nominal system is the target system that we want to improve, so that the cooperative 
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functions that are realised by using the components of this system will achieve a better 
performance, as defined in Section 2.2. 

 

Figure 2: Nominal control system. 

We consider that with the represented components it is only possible to provide local 
functionality, because none of the components supports the interaction with other nominal 
systems, which would be necessary to provide cooperative functionality. Therefore, in order to 
explicitly represent the need to communicate with other nominal systems, which is needed in 
KARYON, we add communication components to the nominal system model.  

The new model is shown in Figure 3 and it now includes all the component types that we need. 
Sensing and actuation components implement the interface between the system and the 
environment. Sensing components consume information from the environment and produce 
information to the system. Actuation components, on the other hand, consume information from 
the system and produce information to the environment. Computing and communication 
components are just different in the sense that they consume and produce information from and 
to the system. 

 

Figure 3: Nominal system for cooperative functionality. 

Communication components provide networking functionality, that is, they provide the means 
to connect a nominal system to other nominal systems. This communication is performed 
through operational networks, which may differ from the internal networks that are used to 
connect the nominal system components regarding synchrony and reliability. Interestingly, it 
would be possible to use sensors and actuators to abstract the collection of data from, and 
production of data to, remote nominal systems. But in this way we make explicit the fact that we 
consider distributed systems that need to communicate. 

It is important to say that the set of components that constitute the nominal system can be used 
in the provision of multiple functionalities. Adding a new functionality can thus be done by 
reusing some of the existing components and, possibly, adding just a few new ones. 

When considering the need to support cooperative functionalities, and when adding 
communication components to the nominal system, we are implicitly adding uncertainty, which 
cannot be handled at design time. In fact, since communication will be done though wireless 
networks, this implies that it will be hard and inappropriate to assume fixed upper bounds for 
communication latency. Again from a modelling perspective, we are moving away from purely 
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synchronous models and strong failure modes, which would allow us to use the well-known 
techniques for building real-time safety-critical systems. But this is what we proposed to do in 
KARYON, that is, exploiting cooperation to achieve improved functionality, while dealing with 
the increased uncertainty that this will bring to the system. 

Besides exploiting cooperation, the objective is also to exploit the possible use of more complex 
control algorithms and of a richer variety of sensors. As we have discussed previously, this 
implies that functionality will be provided with more than one LoS, which must be reflected in 
the system architecture. In particular, and given that we introduce complex components whose 
behaviour might not be proven in design time to satisfy some bounds, the architecture will not 
be homogeneous anymore. As illustrated in Figure 4, the nominal system is separated in two 
parts by a so called “hybridization line”. 

 

Figure 4: Nominal system for improved performance. 

The hybridization line separates the system in two parts, denoting the application of the 
architectural hybridization paradigm. This allows making explicit the fact that different 
properties are assumed for each of the parts above and below the line.  

In general, as depicted, all kinds of components, from sensors to actuators, could in principle be 
found either above or below the hybridization line. For instance, some additional distance 
sensors could be added which would provide more precise distance information under good 
lighting conditions. However, these sensors will not perform well at night, and therefore it 
would not possibly to assume fixed error bounds on the information collected from these 
sensors. Similar examples could be given for processing and communication components. 
Concerning actuation components, the situation is different because these are the final 
components in the control flow, which means that uncertainties affecting actuators will be 
directly reflected in uncertain actuation on the environment. This is undesirable and would 
require special solutions based on interposition or on the use of redundancy to overcome 
uncertainty. We nevertheless leave actuation components on both sides of the hybridization line 
to express the theoretical possibility of using complex actuators, despite the fact that in the 
proposed architecture we do not provide specific measures to deal with actuator uncertainties. In 
fact, in the fault model described ahead, we consider that actuators are reliable and predictable. 
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3.2 Fault	model	

In KARYON we consider that some components can experience faults, which will have an 
impact either on timeliness or on the quality of data. In fact, one of the main motivations of the 
project is to provide solutions for dealing with the effects of faults, which are likely to occur 
when adding complexity to the system and when relying on wireless networks. In what follows, 
we describe the faults assumed for the components represented in Figure 4. 

Sensor components can experience various faults affecting their output. When sensors are above 
the hybridization line, these faults can be both in the time and in the value domain. Otherwise 
they can be only in the value domain. 

Faults in the time domain include crash faults, i.e., when a sensor does not provide further 
output, and timing faults, when a sensor produces a late output. Because a sensor data is a time-
value entity (i.e., the value of the entity is varying over time), a timing failure, if not detected, 
may be appear as a fault in the value domain further ahead in the system (e.g. a late position 
information is a wrong position information). Sensor failures are abstracted in a data centric 
way and expressed by a validity estimate. 

There is a subset of sensors that is always correct to the needed extent. This is necessary to 
provide the baseline LoS, and prove safety in design time. The required sensor properties, 
namely reliability, must be achieved by construction, for instance using redundancy. 

Computing components above the hybridization line can fail by stopping or producing late 
outputs, but they do not produce value faults (and no Byzantine behaviours are accepted, like 
sending inconsistent values to sets of other components). Below the hybridization line, it is 
assumed that all computing components are as correct as necessary (by implementation). In 
other works, in the case of these components all the potential risks to safety have been removed 
in design time. 

Communication components can be modelled just like sensor components. In fact, it is possible 
to apply the abstract sensor model (explained in D2.2) to communication components and 
express communication faults by a validity estimate. Above the hybridization line, 
communication components can either crash of produce timing faults. If no abstract sensor 
model is used, then timing faults will have to be handled in the same way as with computing 
components. In principle, all communication components will be above the hybridization line, 
because it is hard to achieve timely communication in wireless networks with sufficiently high 
probability, as usually necessary in the considered applications. 

Actuator components are assumed not to fail. In KARYON we are essentially worried with 
faults affecting the correctness of perception, rather than the correctness of actuation. Failures in 
the mechanical system including the mechanical parts of the actuators are outside the scope of 
KARYON and are not considered (this is actually the point in fault-tolerant control that changes 
the control laws for the plant to deal with this class of failures). The hardware/software 
controlling an actuator is not considered fault-free a priori. Depending on the SIL that is 
required to run a specific control function, the adequate reliability (validity of data controlling 
the actuator) has to be ensured. 

3.3 Complete	architectural	pattern	

In order to deal with the possible faults affecting the timeliness of computing components or the 
quality of sensor data, it is necessary to include in the architectural pattern some components 
that will be in charge of managing the system configuration, that is, of adjusting the LoS of the 
functionalities using the faulty components. 
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Figure 5: Complete KARYON architectural pattern. 

In addition to the nominal system we add a Safety Manager component and associated Design 
Time Safety Information and Run Time Safety Information components. They constitute what we 
have been generically referring to as the Safety Kernel. We also highlight the fact that these 
components are located below the hybridization line. This is necessary because it is fundamental 
to make sure that the Safety Kernel enjoys the properties of the “better” part of the system and 
can thus be proven in design time to satisfy all the requirements that were defined as an 
outcome of the safety analysis. This structuring is in accordance with the principles of the 
architectural hybridization paradigm. 

The Safety Kernel is separated from the nominal system in order to make it clear that the 
components belonging to the Safety Kernel are generic, i.e., they can serve any particular 
application. On the contrary, each component of the nominal control part is application-
dependent. In other contexts, namely in the definition of the Safety Kernel architecture in D4.2, 
we draw a line separating the Safety Kernel from the nominal system, to which we call 
“Semantics line” precisely because the only the nominal system components are dependent on 
the application semantics. 

We now examine the proposed architectural pattern under the light of the hybrid modelling 
approach, we provide a functional description of the Safety Kernel components, and we discuss 
the overall system behaviour in order to adjust the level of service of each functionality to match 
the available conditions and meet the safety objectives. 

3.3.1 Exploiting	hybridization	for	improved	performance	

Above the hybridization line we have the nominal system components that implement complex 
algorithms or realise functions whose results may be uncertain, namely due to faults. These 
components can be used to achieve improved performance, without the need to ensure that they 
will always satisfy some requirements concerning timeliness or concerning the quality of the 
data they produce. These components are used in combination with other components that may 
be below the hybridization line. Altogether, they constitute the nominal control system that 
provides the intended functionality (or several ones), possibly with a variety of LoS for each 
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functionality, each of them corresponding to a certain combination of components or, in other 
works, a certain system configuration. It is not possible to prove at design time that the 
functionality will be safe in some arbitrary LoS independently of the anticipated conditions and 
faults. That is, some functionality provided with a certain LoS might not be safe if the 
conditions degrade, namely when there are failures affecting some components and leading to 
degraded data quality. However, it must be possible to statically prove that the functionality will 
be safe in a certain LoS, provided that some assumptions are satisfied. In other words, it is 
necessary to define in design time the safety rules that must be satisfied for each functionality to 
be safely provided in each LoS. In addition, it is necessary to make sure that the LoS will be 
adjusted in run time to guarantee that safety rules are always satisfied. In this pattern, the lower 
LoS will always correspond to a configuration in which all the components are below the 
hybridization line. 

Above the hybridization line it is possible to explicitly accept weaker fault and synchrony 
models, which can be satisfied with less expensive resources, also allowing the use of a wider 
range of technologies (e.g., wireless networks, soft real-time schedulers) that are compatible 
with those weaker assumptions. The system will be dynamic and adapt in response to faults and 
to the available integrity level. 

Below the line the system will be static. All the functional components must be statically proven 
to satisfy a set of safety requirements, and if any faults could possibly affect these components, 
the necessary fault tolerance measures will need to be implemented to handle these faults. This 
means that these components, and the Safety Kernel in particular, will always operate correctly 
with respect to the assumed system and fault model for this part of the system. In addition, since 
the components that are needed for providing some functionality with the baseline LoS are all 
below the hybridization line, the functionality will also be provided in a safe way. 

When adding complex components (above the hybridization line) or simply alternative 
components for executing some functions (below the hybridization line), the Safety Manager 
becomes fundamental to manage the system configuration, allowing the system to switch 
between levels of service depending on the observed run time safety information. 

3.3.2 Functional	description	of	Safety	Kernel	components	

In contrast with the baseline model of a control system, shown in Figure 3 or in Figure 5, in 
Figure 5 it becomes clear that there is an additional control loop, in which the nominal system is 
being controlled by the Safety Kernel, more specifically by the Safety Manager component. In 
the execution of this control loop it is necessary to use design time and run time safety 
information. 

3.3.2.1 Run Time Safety Information 

According to the considered hybrid system model, we assume that some nominal system 
components might exhibit untimely behaviour. Other components, below the hybridization line, 
may behave timely but may still be affected by faults that will be reflected on the quality of data 
they produce, which flows to other system components. For instance, a sensor that may fail in 
several different ways will produce sensor data with varying validity, depending on the concrete 
faults that may have occurred and their direct impact on the sensor data values. And a 
communication link experiencing interferences may omit or delay the delivery of some 
messages, which will degrade the validity of data that depends on the timeliness of this 
communication.  

A crucial aspect of the proposed architecture is that instead of requiring the enforcement of 
some data validity or integrity levels, it just requires awareness about the validity of the data 
flowing in the system. From a more practical perspective (which will be discussed further 
ahead), we do not need to enforce predictability, because we use mechanisms to monitor the 
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relevant variables and detect timings faults, which is all that is needed to decide the LoS under 
which some functionality should be executed. The set of collected information is represented in 
the architecture by the Run Time Safety Information component, which also abstracts the 
concrete mechanisms that must be put in place to do this information collection. 

It should be noted that it is possible to collect different kinds of information that may serve to 
derive the validity of data and directly reason about safety. In fact, it may be possible that some 
of this data directly reports on the health of components, explicitly providing indications about 
the occurrence of faults affecting the component behaviour. For instance, it may be possible to 
know that some component crashed, simply stopping producing information.  

Finally, we also note that knowledge about the context, meaning the physical surrounding 
environment, is usually important to reason about safety when considering vehicles that move 
and interact with this physical environment. This means that not only the validity of data is 
important for safety, but data itself is necessarily important (if this data describes the physical 
context). However, since this data is to be used in the control algorithm, changes in the context 
can be reflected on how the function is performed rather than on the LoS. 

3.3.2.2 Design Time Safety Information 

From the safety analysis of each cooperative functionality, safety requirements are derived and 
allocated to system components. Given that a functionality can be provided with several LoS, 
and given that in a lower LoS the performance of the functionality is limited as a means to 
exclude some risks, the integrity requirements associated to a lower LoS will be less stringent 
than the integrity requirements associated to a higher LoS. For instance, for a functionality to be 
performed by vehicles at a possibly high speed or with lower safety distances (as allowed in a 
higher LoS), it will be necessary to make sure that all sensor information used in the control 
processes will be highly accurate (high validity) and that all components required to provide this 
LoS are performing as expected (e.g., timely). On the other hand, at low enforced speed or with 
a large enforced safety distance (determined by a lower LoS), the requirements on the accuracy 
of data will be less stringent (low validity will be accepted), and the dependence on some 
components (possibly untimely) will be excluded. This means that even if some failures are 
affecting the health of components or the accuracy of data, the functionality can be provided in 
this LoS. 

It is clear that for a functionality to be provided with a certain LoS some requirements 
concerning the validity of data and timeliness must be satisfied. And there is a different set of 
safety requirements that must be satisfied for each LoS. 

We remind that there are other safety requirements which must be considered by the designer of 
the control algorithms (implemented in nominal system components), as previously explained in 
Section 2.2. These are requirements specific to the application or functionality, which are taken 
into account in the control algorithms. And they may be different for each LoS in which the 
functionality might be provided. For instance, this means that the actual speed of a vehicle is not 
only determined by the LoS (which only sets a bound on the maximum speed), but by other 
control rules defined in the control algorithms (which take into account context information, 
like road or weather conditions). 

When designing a control algorithm that will be used in some specific LoS, the designer will 
know that assumptions concerning timeliness and sensor data validity will be satisfied, so 
he/she can rely on this knowledge in the design. And it will be the responsibility of the Safety 
Kernel to make sure that a certain LoS is enforced, in accordance to the observed timeliness and 
sensor data validity. 

The Safety Kernel therefore needs to know what is required for all functionalities to be provided 
safely in each LoS. This is determined in design time and hence the design time safety 
information consists of sets of safety rules establishing the conditions for functional safety 
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assurance in each LoS. One functionality will only be safe in a given LoS (above the baseline 
one), if the associated set of safety rules are satisfied at run time. As discussed above, this 
necessarily depends on the validity of data and on the timeliness of complex components, which 
may be affected by faults. Therefore, in order to manage the LoS it is necessary to have both the 
set of safety rules and the collected run time safety information.  

Note that when a function is provided in the lowest (baseline) LoS it is not necessary to verify if 
safety rules are met, because this has been done at design time. In other words, the requirements 
on the system health and validity of data associated to the provision of a functionality in the 
lowest LoS, must be guaranteed at design time. 

For each LoS there is an associated set of safety rules. It must be proven at design time that if 
the safety rules are met, then the function will be safe in this LoS. The same has to be done for 
all LoS and all sets of safety rules. However, it is not necessary to prove that these conditions 
will be met at run time. In fact, this is what distinguishes a higher LoS from the lowest LoS. For 
the latter it is necessary to prove that: a) the function will be safe if safety rules are met and; b) 
safety rules will be satisfied in run time. The corollary is that the function will be safe in the 
lowest LoS. 

In run time, what needs to be done is to compare the current state of the system (conveyed by 
the run time safety information) with the safety rules for the current LoS. This is one of the 
tasks of the Safety Kernel. 

3.3.2.3 Safety Manager 

The role of the Safety Manager is to control the mode of operation of the nominal system 
components and hence adjust the LoS of each function. In order to do that, the Safety Manager 
needs to know the actual state of the nominal system, which is provided by the run time safety 
information. Then, given this state and given the safety rules defined at design time and stored 
as design time safety information, it decides whether the current LoS can be kept, or if the 
conditions determine a change (either to a lower or to a higher LoS). This basic behaviour is 
illustrated in Figure 6. 

The Safety Manager is periodically evaluating rules and determining possible adjustments of the 
LoS for some functionality. The period must be well-known so that it may be possible to prove 
that the function will be provided safely. 

 

Figure 6: Safety Manager basic behaviour. 

Given that there is a different set of safety rules for each LoS, the current LoS will determine 
which set of rules will be firstly evaluated. If some rule is not satisfied, it becomes necessary to 
change the operation mode of nominal components, to force a switch to a lower LoS and 
prevent the system to enter in an unsafe situation. On the other hand, if all rules are satisfied, 
then the Safety Manager will need to evaluate rules for the next higher LoS (if it exists). 
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Depending on the outcome, it may be possible to switch to the next higher LoS, or keep in the 
same LoS. 

Given that the Safety Manager executes in a timely manner, and that it will execute with a 
known period, it will be possible to know, in design time, how much time it may take to switch 
from any higher LoS to the baseline one. This amount of time must be known by the function 
designer and must be taken into account in the design of the control algorithms, namely in the 
establishment of safety margins. 

The specific solutions to collect run time safety information and to trigger reconfigurations or 
simple adjustments of the nominal system components are not discussed in this deliverable. 
They are explained in deliverable D4.2, concerning the Safety Kernel architecture. 

3.4 Information	flow	view	

The description provided so far was essentially focused on the components and their functions, 
explaining why they need to be located above or below the hybridization line. Now we pay 
more attention to the interactions between the components, providing a data-oriented 
perspective of the KARYON architecture. 

Central to this view is the notion that we have two fundamentally different kinds of data. On 
one hand, there is application or service related data, which is necessary for the provisioning of 
the intended cooperative functionality. Considering the basic model of a control system 
presented in Figure 1, this is the data that flows from the environment through the sensors, 
computing components and actuators, back to the environment. In the absence of relevant risks, 
this basic control model would be enough and there would be no need to consider any other 
kind of data. However, given that the nominal control system is subject to faults, we need to 
handle these faults and, for that, we need to collect information regarding the health of the 
system. Therefore, besides the sensor data that flows through nominal system components, there 
will be a flow of data concerned with data quality or timeliness. In fact, the purpose of the 
abstract sensor model that we elaborate in KARYON is to abstract sensor faults and to provide 
this quality information, through a validity attribute. 

These two different kinds of data are shown in Figure 7 as “Service data” and “Quality data”, 
and are included in the Run Time Information Database, which is just an abstraction to 
represent all run time produced data. Static information, on the other hand, is abstracted by the 
Design Time Safety Information Database, which specifically contains the safety rules derived 
in design time. 

In addition to the information databases, in the figure we represent the components of the 
nominal control system and the Safety Manager. This data centric view is necessarily very 
abstract, in accordance with the functional view presented earlier. Since we do not consider 
concrete functions that could be used in some cooperative application, we just know that there 
will be information flowing among these components, but we do not define concrete flows. 
What is relevant is that all the information (service and quality data) produced by sensing, 
communication and computing components constitutes run time information that may be 
required by other components, and should be made available to them. There may be several 
possible approaches to implement the communication between each component, but these need 
to be defined at the implementation level. The only requirement on the implementation is that it 
must be possible to support information exchange among all components. Therefore, the idea 
that there is an abstract common information repository, perfectly serves to represent this 
requirement. In the figure we represent all the data flows, irrespectively of their nature. In what 
follows, we provide more detailed views and explanations of each data flow. 
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Figure 7: KARYON architecture (data centric view). 

The flow of service data is just like the flow of data in a typical control system. This is clearly 
visible in Figure 8, in which only the service data flow and the relevant components are 
represented. 

 

Figure 8: Service data flow. 

Data is gathered by sensing components from the environment and by communication 
components from operational networks. These components then provide the collected 
information to computing components (through the Run Time Information Database), which 
process this information and produce new service data that may be either consumed by other 
computing components, by communication or by actuation components. Communication 
components send this information through operational networks, while actuation components 
use the information to actuate on the environment, thus closing the control loop. 

Differently from service data, which refers to environment variables, quality information refers 
to the operational conditions of the nominal control system. This data originates from sensing, 
computing and communication components, all of them possibly subject to faults, as mentioned 
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in Section 3.2. This is illustrated in Figure 9, which shows the specific quality data flow through 
the relevant components. 

 

Figure 9: Quality data flow. 

In the figure it is possible to observe that computing components can also consume quality 
information, for instance to consider this information in the algorithm or to propagate this 
information to the output, possibly modified depending on the operations performed by the 
component. The main purpose of producing and gathering quality information is to make it 
available to the Safety Manager, as also represented. 

An important issue concerning the quality data is that it should be trustworthy. In other words, it 
is useless for the Safety Manager to use information about the validity of sensor data or the 
timeliness of components if this data may be imprecise. The confidence on this quality data 
must be established at design time, and it must be assured by the implementation. This issue is 
addressed in detail in deliverable D2.2.  

One final observation is that there is no output from the Safety Manager. This is due to the fact 
that the Safety Manager output cannot be considered service data, nor quality data. The flow of 
information that gets out of the Safety Manager is a control flow, which is directed to the 
relevant components that need to be reconfigured. This flow is represented in Figure 5. The 
concrete mechanisms and solutions to realise adjustments of the LoS, as well as the interfaces 
between the Safety Kernel and the nominal control system, are developed in task T4.2 and 
preliminary presented in deliverable D4.2. 
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4. Implications	on	services	and	mechanisms	
In this section we identify and we provide a brief discussion of a set of issues that are implied 
by the KARYON architecture described in Section 3. These issues are addressed in other work 
packages, namely WP3 and WP4. Additionally, other work in WP2 is concerned with the 
definition of an abstract sensor model, encapsulating the sensor failure modes, and with the 
definition of an approach to use environment models in sensor fusion. 

Characterization of quality information 

Given that we assume that part of the system can be affected by faults (described by considered 
failure modes), which will be reflected on the quality of data, one issue is that it is necessary to 
find adequate forms for characterizing and representing the “quality” of data. We have already 
introduced this issue as a fundamental one, in Section 2.1.2, referring how and where we deal 
with it in KARYON, but here we elaborate a little more on the issue, already with the 
knowledge of the proposed KARYON generic architecture. 

This sensor data, which is used in algorithms of the nominal control system, is provided by 
sensors and by communication components. It represents the state of physical variables, like 
distance, speed, temperature, heading, etc. Therefore, when using a data value representing 
some of these physical variables, there is an error between this data value the real physical 
value. 

The error is affected by faults, which introduce fixed deviations from the correct value, and is 
also increasing over time, given that the real physical entity is changing while the value is not 
updated (thus getting older and, at worse, more inaccurate). This is why it is necessary to 
continually update the value, to prevent the error to become too large. Under controlled 
conditions it is possible to make sure that errors are bounded, which allows the design of 
solutions that may be proven safe for the assumed maximum error. In KARYON we want to 
keep track of the validity of data, which requires the ability to characterize this error at run time. 
This requires mechanisms for detecting faults, for fusing data, for being able to compare sensor 
data with expected data, etc. so that it may be possible to elaborate on the accuracy, or validity 
of that data. Furthermore, it will be necessary to find a generic way to represent this validity 
through some quality metrics, which might be easily used along with some algebra to reflect 
changes in this quality along the processing flow within the system. This is achieved with the 
abstract sensor model developed in KARYON, which encapsulates the mechanisms that are 
needed to derive the validity attribute. Sensor fusion solutions also allow dealing with the 
changes in validity along the processing chain. 

It is also important to note that since the quality of data depends on the passage of time, it is 
important to preserve information regarding the time at which some data may have been 
collected. Once again, temporal information is also to be taken into account in the scope of the 
abstract sensor model. 

Mapping between quality and integrity 

While the aim is to be able to derive the quality of sensor data, assigning some validity attribute 
to it, reasoning about safety has to be done by considering desired safety integrity levels with 
respect to the considered hazards. There is an issue of matching the available quality to the 
needed integrity, which is a fundamental issue that is addressed in KARYON. The problem is 
made even more complex due to the fact that KARYON considers cooperative functionality, 
which the existing standards (like ISO 26262) do not explicitly cover.   

For the KARYON architectural pattern to be applicable, the issue must be addressed. KARYON 
is dealing with the issue mainly in the scope of Task 4.1, and the outcomes will be used in 
conjunction with results from Task 2.2 to define the safety rules that will be stored in the Design 
Time Safety Information Database. 
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LoS management timeliness 

One important aspect for reasoning about safety concerns the timeliness of the reconfiguration 
actions.  

The timeliness constraints are fundamental as they dictate the maximum amount of time that 
will take to complete a mode change. If one adds the maximum amount of time that it takes to 
collect integrity information (that is, the collection period) and check if safety rules are being 
satisfied, the resulting sum will provide a bound on the maximum amount of time that it will 
take to accomplish some needed adaptation. This amount of time will have to be taken into 
consideration when defining the safety rules and will also need to be considered by the designer 
of the control algorithms in the nominal control system. In fact, given that the  functionality 
needs to be always safe (independently of the LoS), this  means that when some failure affects 
the validity of data the functionality needs to stay safe during transition from one LoS to another 
LoS. Therefore, it is the functionality designer that has to ensure, knowing the LoS and the time 
it takes to switch to a new (guaranteed safe) LoS, who has to define the control strategy that will 
ensure the safety over this time. 

From a systems perspective, and reasoning in terms of requirements to the Safety Kernel part of 
the system (which is responsible for managing the LoS changes), it is necessary that the Safety 
Kernel architecture allows satisfying the required timeliness constraints. This issue is addressed 
in detail in Task T4.2.  

Actuation safety 

As mentioned in the project proposal, the Safety Kernel part of the system “safeguards the 
control commands and checks them against the derived set of safety rules”. This must be 
regarded as a general statement concerning the role of the Safety Kernel, which indeed is in 
charge of managing the LoS according to the observed integrity of system components and data, 
so that actuation commands are adequate to the situation and the necessary ones to ensure 
safety. 

However, in real systems, it is not possible to exclude that actuation commands are affected by 
faults, or even that actuators are faulty. These faults, if not treated adequately, can lead to unsafe 
situations. But in KARYON, and as stated in Section 3.2, in the fault model we do not consider 
the possibility that actuators are faulty or that control commands are invalid. This problem can 
only be addressed with solutions based on redundant actuation physically redundant sensors, 
which fall out of the scope of the project. KARYON focuses on the problem of faults affecting 
the data collected from sensors, and timing faults affecting the timeliness of processing 
components. These are the ones that are intrinsically related to the considered cooperative 
systems, which rely on external information to achieve the intended performance improvements, 
as well as on more complex algorithms to process the rich amount of available data.  
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5. Example	applications	of	the	architectural	pattern	
In this section we jump into a lower level of abstraction, performing a simple but important 
exercise: we consider specific examples in the avionics and automotive domains, to illustrate 
the kind of functions that are found in the nominal control system, and to show how they are 
integrated with the KARYON specific components. In addition, the examples illustrate the 
application of the LoS concept, which is fundamental to achieve the desired performance 
improvements (and to allow cooperation to take place), without endangering safety. 

5.1 Avionics	domain	

The example in the avionics domain is the one that will be considered for the purpose of 
developing a simulation (in the scope of WP5). Therefore, in this deliverable we just provide an 
outlook of the example, fundamentally discussing how the architectural pattern is applied in this 
case. We do not delve into details of the simulation itself, or the test cases that will be 
considered to illustrate the behaviour of the application under fault-free and faulty scenarios, as 
these are detailed in deliverable D5.1. 

In the considered example, the scenarios will include aircrafts and a Remote Piloted Vehicle 
(RPV), which at some points will be sharing the same airspace. Different manoeuvres can take 
place, and a fundamental safety requirement is necessarily that the involved airplane and the 
RPV will be kept within distance to avoid any collision. To ensure that, there will be function in 
the RPV to collect information from external entities, like other aircrafts, satellites or the Air 
Traffic Management (ATM). There will be other functions involved in the process of deciding 
the RPV trajectory and deriving the appropriate control commands, as shown in Figure 10. 

 

 

Figure 10: Safety Kernel Integrated with RPV Functionalities. 
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The components that are part of the nominal control system are the following:  

 Communication: GPS, ADS-B Rx, ADS-B Tx and ATM; 

 Computing: Conflict Manager, Position Estimator, 4D Trajectory & Navigation 

 Sensing and actuation: RPV Dynamics and Control 

It must be noted that the GPS and the ATM components could as well be considered sensor 
components, in the sense that they are only providing input to the system. The ADS-B 
component, on the other hand, is both used to feed information to the system as well as to 
consume information (to be sent externally). The RPV Dynamics and Control component 
represents both an actuator (which drives the dynamics of the RPV) and a sensor, in this case an 
inertial sensor. 

The Safety Kernel is depicted as a single block, abstracting the components of which it is 
composed.  

It is clear from the figure that the control commands eventually sent to actuators will depend on 
the output of the 4D Trajectory and Navigation component which, on its turn, depends on the 
output of the Position Estimator and Conflict Manager components.   

In this example, none of the components is considered to be above the hybridization line. That 
is, all the components are considered to be timely, which in a real implementation is something 
that would have to be proven in design time. Therefore, the only faults that are considered are 
those that affect the validity of input data. In this case, input data is coming from the 
communication components, and this data can be affected by faults in the communication. 
Interestingly, in the figure it becomes clear that these components are modelled as abstract 
sensors, providing a validity measure on their output. To explain how communication faults can 
affect the validity of data produced by these components, we provide a simple example. 
Consider that at some moment it becomes impossible to communicate through the ADS-B 
component. In this case, given that no information is received, there will be a point in time 
when this component is supposed to provide information on its output, and it will provide some 
output with a low associated validity. The actual data that will be sent to the output of the ADS-
B components and its validity are not relevant. 

Concerning the definition of Levels of Service, it is visible in the figure that two of the 
computing components have an input named “SK Enforced_Mode”. This input is made 
available because the two components (Position Estimator and Conflict Manager), can operate 
in more than one mode, leading to the provision of different LoS. 

The role of the Safety Kernel in this example is the following. It collects (periodically) the 
validity measures from the communication components (which means that all of them might be 
subject to faults and thus might provide data with varying validity), deciding, based on that and 
on the safety rules (not explicitly shown, but included within the Safety Kernel block), which 
mode of operation should be selected for the two computing components. 

The LoS management control cycle, and its role in guaranteeing that the functionality will be 
safe, can thus be explained as follows. We have already seen that a fault in communication will 
lead to a decrease in the validity of the output of the communication components. This will 
happen in a bounded amount of time, because the output of these communication components 
has to be periodically updated. The Safety Kernel also executes periodically, matching the 
collected validity information against the safety rules defined in design time, to determine the 
adequate LoS for each functionality. The Safety Kernel will then apply the necessary mode 
changes corresponding to the LoS that need to be enforced, which have also been defined in 
design time. The time it takes for the Safety Kernel to perform the needed operations in each 
cycle will be bounded, which means that the mode changes will also be applied to the respective 
components in a bounded amount of time. Since the entire system has been designed and proven 
to be timely, it is known that the mode changes will become effective in due time. Depending 
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on the new mode of operation, the Conflict Manager and the Position Estimator components 
will execute different algorithms, possible using different input data. For instance, if a failure 
leads to a degradation of the positioning information sent by the GPS component, this may lead 
to a mode change in which the GPS data will not be used, and only the data from the inertial 
sensor will be used. In this case this certainly corresponds to a lower LoS, which ultimately 
should lead to an increase of safety distances and possibly a change in the RPV trajectory. In the 
new mode of operation, the output of the Position Estimator component will be a position that 
will have a larger associated error, and this is how the trajectory definition may be affected. 
Clearly, since all components are below the hybridization line, all of these implications will 
occur in bounded amounts of time. It is thus possible for the designer of the functionality to 
calculate the safety distance that should be considered as adequate in the highest LoS, knowing 
that when there is a problem with the GPS the new safety distance will be enforced after a 
certain well known maximum amount of time.  

In summary, this example illustrates how the KARYON architectural pattern is applied in the 
case of a functionality in the avionics domain, also illustrating the mechanisms and interactions 
that allow the system to perform safety despite faults affecting the quality of input data.   

5.2 Automotive	domain	

This section presents the application of the KARYON architectural pattern to the automotive 
domain, materialising the functions that are usually included in the nominal control system. The 
functionalities for each element are depicted and the compatibility of this architecture with an 
example cooperative automotive application is shown. 

5.2.1 	Instantiation	of	the	architectural	pattern	

The functional view of the KARYON generic architecture is presented in Figure . 
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Figure 11: Functional view of the Nominal KARYON Architecture. 

The blue functions are those which compose the Safety Kernel. Table 1 provides a brief 
description for each function illustrated in this figure. 

Function  Task 

On-board Sensing The sensors installed on the vehicle to provide information about the 
position of the vehicle and other objects on the road. GPS, TV 
camera, LIDAR, inertial sensors and speed sensors are some 
examples of such sensors. 

Remote Sensing It includes the infrastructure and other vehicles which share their 
captured information. For those information it's assumed that there's a 
remote sensor interacting via wireless communication. 

Data Fusion Combines the information collected from different sources. 
Simultaneous localization and mapping (SLAM), multi-body SLAM, 
track-to-track fusion, Bayesian filtering and map matching are some 
possible techniques to apply. 

Environment 
Modelling 

Centralizes the information coming from different components and 
also facilitates access to the information via views specified to each 
component in the system. 

On-board 
diagnostics 

Detects the faults and malfunctions of on-board devices. 

Decision Making  Determination of the Level of Service according to the data 
model. 

 Identification of the applicable driving functions relevant to 
the specific traffic area. 

 Dynamically assignment of the functions’ priorities 
according to the context. 

Neuro-Fuzzy, Evolving Neuro-Fuzzy and tree-based neural fuzzy 
inference system are some possible techniques to apply. 

Knowledge base Contains the rules and regulations. RDF(-S) and OWL can be used as 
languages. 

Automatic Driving 
Algorithms 

The driving functions and manoeuvres algorithms that can be 
performed autonomously independent of other vehicles intention.  

Cooperative Driving 
Algorithms 

The manoeuvres algorithms which require the information/action 
regarding other vehicles intention. 

Actuators and 
Vehicles Systems 

Actuators which execute the low level commands given by trajectory 
planner. Steering, traction, and braking systems are some of such 
actuators. 

Trajectory Planning According to the path and the driving primitive specified in decision 
making, it plans and adjusts the trajectory to follow. 

Peer planner The other vehicles function which is responsible for negotiating on 
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driving primitives and trajectories to be followed. 

Timing Failure 
Detector 

Monitors data arrival times such as data received from 
communication or on-board sensors. It detects the failures according 
to rules defined in knowledge base. 

LoS Evaluator Evaluates the local Level of Service which belongs to the this vehicle 
independent of other vehicles. It's just based on on-board systems 
state and sensors data quality. 

Safety Manager Collects the local LoS of other vehicles and decides on acceptable 
LoS. The output is called Cooperative LoS that shall be used as basic 
parameter of decision making. 

Peer Safety Manager The other vehicles function which is responsible for negotiating on 
driving primitives and trajectories to be followed. 

SK Rules Safety Kernel Rules 

Table 1: Functions description. 

 

5.2.2 Platooning	and	Platoon	Merging	Example		

Platooning, as one of the most complex cooperative functions, is a comprehensive example to 
illustrate the compatibility and consistency of the provided architecture. Figure 11 displays a 
scenario in which some vehicles are running in a platoon. There is a vehicle (C) intending to 
join the existing platoon and also another vehicle (D) which is going to merge to this platoon. 

 

Figure 11: Platooning example scenario. 

Should A facilitate the joining manoeuvre of C or the merging of D? Or should it keep the 
Platooning distance? According to Error! Reference source not found., the decision is left to 
Decision Making function. But the decision is necessarily determined by the Level of Service, 
which must be known to let vehicles decide how they can cooperate in a safe way. 

Let us focus on vehicle D. Figure 12 illustrates how this vehicle senses the environment in order 
to obtain the necessary data for performing the intended functions. 

 



KARYON ‐ FP7‐288195 
D2.3.1 ‐ KARYON architecture (Public version) 
 

 

 

© 2013 KARYON Project    40/44 

KARY    N

 

Figure 12: Sensing the Environment and gathering information from other sources. 

As it is shown, D is gathering information from different sources. This information is combined 
by Data Fusion and centralized in Environment Model. In decision making, the sub-function 
LoS evaluator uses this information to determine the local Level of Service. Figure 13 provides 
a simple scheme showing how the appropriate LoS is chosen. 

 

Figure 13: Criteria for LoS Determination. 

Having the local LoS, the negotiation on cooperative LoS is performed so that the cooperative 
LoS is determined by the Safety Manager. Then the Trajectory planner starts a new round of 
negotiations with other’s Peer Planner based on cooperative LoS. Let’s consider the following 
table as assumed priorities by this moment: 

Primitive  A  B  C  D  E 

Platooning 3 1 N.A. N.A. 1 

Platoon joining 2 2 2 N.A. 2 

Platoon merging 1 3 1 1 3 

Table 2: Primitives priorities for each vehicle. 

 

Regarding this table the vehicles A, B, C, D and E are involved in three cooperative driving 
primitives: 

 vehicles A and C should let D merge the platoon: A will prepare some space for D, and 
C will not occupy that space. 
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 vehicle B maintains the platooning distance. 

 vehicle E keeps platooning. 

Therefore the merging primitive must be applied as displayed in Figure 14. 

 

Figure 14: Platoon Merging Primitive. 

This figure shows the vehicles A and E Platooning when D is going to merge. A is going to 
facilitate the merging of D and the trajectory Planner is responsible to provide the appropriate 
trajectory. Figure  illustrates the resulting trajectory.  

 

Figure 16: Trajectory planning. 

As result vehicle A slows down to facilitate merging of D. Vehicle E slows down too to keep 
the safe distance in the platoon following A, and D drives with constant speed to merge into the 
platoon. Finally, these objectives are provided as low level commands to actuators to follow the 
trajectory. 
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6. Conclusion	
This document provides the generic KARYON architecture and describes in detail the 
fundamental concepts underlying the architectural decisions. From the deliverable it should be 
clear how the project aims at structuring a cooperative system so that it might be possible to add 
more complex algorithms, to use wireless networks for collecting remote information and to 
rely on an arbitrary range of sensor, without compromising functional safety.  

The proposed architectural pattern will be applied in de definition of the proof-of-concept 
demonstrations. Some examples of how the pattern is reflected in concrete use cases are 
presented in the present document. 

The architectural solutions presented in this deliverable have to be understood in connection to 
other solutions developed in other work packages and presented in other deliverables, namely in 
D2.2, D2.4 and D4.2.  
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