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Executive	Summary	

The KARYON project (Kernel-based ARchitecture for safetY-critical cONtrol) focuses on the 
predictable and safe coordination of smart vehicles that autonomously cooperate and interact in 
an open and inherently uncertain environment. The main objectives of WP2 are the definition 
the KARYON safety architecture, providing the guiding principles on how to structure a safe 
system in relation to assumed system and fault models. The primary motivation for expending 
particular effort on the analysis and abstraction of failure modes of system components 
originates from the distribution, mobility and complexity of the control systems envisaged in 
KARYON. We argue that this firstly requires fault models that abstract from the subtle and 
diverse behaviours of faulty components and provide a well-defined failure semantics at the 
component's interface. This allows defining a control algorithm without the detailed knowledge 
of individual component failures. The basic idea is to derive a validity of the information by 
analysing and classifying the failure modes of components.  

In the previous report D2.2 the focus was on the development of a failure model and a failure 
semantics for sensor components. We introduced sensor related failure modes and explored 
basic approaches to estimate the validity of sensor data. The data output of a component was 
complemented by an output providing a validity estimate. Thus, the multiple sophisticated ways 
a sensor may fail was mapped to a validity, keeping the knowledge of failures and how to 
handle them close to the sensor component. Because of the uniform representation of sensor 
data it was possible to exploit remote sources of perception without a detailed, intimate 
knowledge of their internal properties. 

This report carries further the idea of an assessment of data and deals with the problem how 
validity is affected by typical computational elements of a control system like failure detectors 
and filters. We strive for answering the question how we can derive the validity of data when it 
passes through such computational elements. In this report we refine the notion of validity and 
present what we call "failure algebra" for a sequential structure of the computational chain. The 
final goal of the investigations is the validity assessment of complex systems that include 
redundancy and fusion. A second objective is to highlight how validities are related to safety 
requirements of a function. See further D4.1 for elaboration of safety requirement formalism 
and a preliminary relation to validity attributes. Validities can help in many ways. The proposed 
failure algebra allows an analytic derivation of the bounds for the validity. These bounds can be 
checked against the requirements of an application function. The requirements are considered to 
be the result of a hazard analysis and associated with an ASIL. Therefore, the designer may 
detect at an early stage of the design that the system will not fulfil its safety requirements. So 
far, the compliance with a certain ASIL has to be proved according the combination of process 
arguments and product arguments provided in ISO26262. If a test fails, it is difficult to estimate 
which component was responsible for the malfunction because of the inherent reachability and 
observability reasons. The way in which we calculate the validity will uncover the influence of 
failure types through the computational components and provides hints on the weak parts of the 
system. It eases the problem, which parameters have to be improved to finally meet the needs of 
the application and thus complements testing. 

At run-time, dynamic validities are generated. These values are the results of the various 
detection and filter components along the processing chain and map them to values. These 
values allow the application to assess the actual data that is provided.  

Because the notion of validity is one of the central concepts, we will discuss this in more detail. 
A validity is the outcome of a multidimensional mapping that takes a failure model, 
assumptions about its coverage and the capabilities of detection mechanisms as an input and 
maps it to a value. This value is an indication of how much confidence can be put in the 
associated sensor value. Validity has a static, design-time and a run-time property. The design-
time property defines the bounds in which a generated validity may be expected and is 
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dependent e.g. on the quality of a sensor, the detection and the filter mechanisms.  The run-time 
validity is the actual outcome of the check and filter components. In the previous report, these 
aspects have been treated as two separate values. The application was able to assess the dynamic 
validity value in the light of what we called system validity. In this report, we try to present a 
way of condensing the system validity and the run-time results into a single value that reflects 
the actual value (indicating the confidence in the sensor data) and the confidence that we can 
have in this value.  
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1. Introduction	
One of the basic concepts of KARYON is the departure from a fully static design time safety 
assessment of the overall complex control system. KARYON aims to balance the performance-
safety trade-off by providing multiple levels of service each of which satisfies the full safety 
needs but at different performance levels. Moving safety assessment from design time to run 
time allows for relaxing overly restrictive assumptions about the required integrity status of the 
overall complex control system. However, it will require the continuous monitoring and 
evaluation of the system integrity during run time as a basis to decide which functional level is 
possible without sacrificing safety demands.  

In KARYON, we investigate an approach that keeps the integrity assessment close to clearly 
separated and identifiable functional components. For every component we propose to 
complement the nominal value generated by a component or by an additional output that 
provides an integrity attribute. This attribute represents a measure for the integrity of the 
respective signal produced by a component.  We call this the validity of a signal. The overall 
structure has been briefly described in D2.2 and D4.1 previously. Figure 1 depicts such a 
component. 

 

 

Figure 1: Estimating the validity by a checking mechanism 

We assume that a component comprises the acquisition and computational components from a 
sensor that captures a real-world entity to the component that outputs an application relevant 
nominal value together with a validity attribute that enables the safety assessment at run time.  

To generate the integrity attribute, the component needs a self-assessment mechanism. The 
checking box in Figure 1 represents this capability. It is based on the failure model that was 
introduced in [D2.2], [1]. It will be further discussed in Section 2.1 in this report. The checking 
mechanism detects a failure without affecting the respective signal. It modifies the integrity 
attribute only. For mitigating or masking the effect of a failure a value may pass a filter. The 
filter is a general abstraction of a component that handles the effect of a failure. Typically a 
detector and a filter are integrated in a fault-tolerance mechanism. We separate the aspects of 
awareness and treatment because these are different concerns and the separation allows for more 
freedom of design, e.g. omitting a filter completely in the component and handling the failure in 
a subsequent stage.  

The run time assessment mechanisms are based on the specification and quantification of design 
time assumptions. During design time an engineer has to answer questions like "which failure 
types are affecting the components and what is their impact?", "How are these failures detected 
and how good the detection mechanisms need to be?" and "How is the data conditioned and 
filtered to compensate the effects of failures?". Taking reasonable assumptions is a very 
important and difficult task of an engineer because they depend on a good estimation of system 
properties and include substantial experience and empirical knowledge. Based on these 
assumptions the engineer decides on the mechanisms for adjusting the quality of the 
component's outgoing data at run-time to the integrity requirements. In our approach, these 
engineering assumptions are quantified in a failure model, a quantification of the detection 
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capabilities and the filter characteristics to allow a comprehensible assessment. This is 
particularly beneficial when such a components is used in a larger setting or will be reused in 
another design. As an example we examine a typical component where the input data is 
provided by a sensor. 

We distinguish two flows of information in Figure 2. The lower part generates the nominal data 
output while the upper part is devoted to the calculation of the validity attribute. In this report 
we will focus on the definition and transformation of the parameters defining the validity. 

 

 

Figure 2: Computational chain for a sensor processing component 

We are considering a data centric failure model [D2.2], [2] which specifies failures in terms of 
how they affect the data e.g. according to an anticipated signal behaviour. The starting point is 
the identification of relevant sensor failures. Sensors deliver continuous values that may be 
affected by many subtle and sensor specific failures. A detailed discussion about sensor failure 
modes is given in [1]. An assessment vector quantifies for each failure type a number that 
characterizes the anticipated severity and the occurrence probability of this failure. This is 
comparable to a risk priority number in the FMEA scheme [3]. Different from FMEA, we 
provide a scheme that allows combining multiple failure types and using this for run time 
assessment, while FMEA maps multiple failure types to the static worst case risk priority 
number.  An extensive discussion of related work is provided in [4]. 

For describing the detector and filter characteristics we provide transformation matrices that 
modify the assessment vector for the respective stage. In case of a detector, the matrix specifies 
the ratio of correctly detected failures versus the wrongly and not detected failures. This 
statically sets the upper and lower bounds for the validity and modifies the assessment vector 
accordingly. The filter matrix defines the impact that the filter may have on the signal, i.e. the 
degree of suppressing a faulty signal. A filter that operates as a failure masking mechanism will 
raise the lower bound for the validity because it eliminates faulty values and thus, may improve 
the validity of the nominal value. Applied to the assessment vector it modifies the respective 
elements related to the affected failure types. The assessment vector finally holds for each 
failure type an element that describes which effect this specific failure will have on the final 
validity attribute. It should be noted that this number includes the capabilities of the detector 
and filter with respect to the particular failure. The integration stage collapses the vector 
representation to a single scalar integrity attribute. This stage uses a selection vector that holds 
weights for each failure type and therefore allows a further restriction to relevant failure types. 
E.g. for long term navigation, single outliers of a localization sensor may not be as relevant as a 
constant offset failure. However, outliers may have a high impact on the validity because of 
their amplitude. Thus, an outlier would decrease the integrity attribute to an inacceptable low 
level although it would not be relevant. Another application may need a high validity of 
differential positions. Here, constant offsets would not play a major role. The selection vector 
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can adjust these different application needs. In the end, we obtain what we call the system 
validity, a measure of how good the detection and filter mechanisms will deal with failures. 

So far, all the information that is captured in the assessment vector, the transformation matrices 
and the selection vector is available at design time and quantifies of the engineering 
assumptions about relevant failure types, their impact, the quality of the detection mechanism 
and the power of the filter in suppressing the effect of failures.  

In the conventional approach, the outcome of this analysis would be compared to a required 
integrity and in the case of a match, the design would be accepted. This implies that the 
assumptions about the failures, the detection and filter capabilities are worst-case assumptions 
and require a substantial amount of resources to keep the bounds. If the design cannot be proved 
to fulfil the static requirements, improvements have to be applied to the sensors, detectors or 
filters. In our architectural pattern, the numerical representation of the validity is exploited to 
detect at run time whether the component will meet the integrity requirements. If the 
dynamically derived validity falls below a certain threshold, we are able provide the 
countermeasures on a higher level, i.e. on the level of provided services that may need to be 
degraded. 

At run time, the detector will provide a result for each failure that it is able to detect. These 
outcomes are stored in a vector with the same dimension as the assessment vector. The elements 
of the assessment vector are applied as weights to this vector to form the validity vector. The 
validity vector represents the actual estimated validity as a result of the detector and filter stage. 
It is transferred to the filter stage where a similar calculation is performed. The final validity 
vector holds a dynamic estimate about the validity of the generated nominal data item with 
respect to each failure type.  Finally, this vector is converted into a single scalar number which 
represents the integrity attribute. The details of the assignment of values and the operations 
defied by the failure algebra are now introduced as follows: 

Chapter 2 deals with the assessment of data and system validity and introduce the various data 
structures that represent and transform the validity attributes. It provides a glossary of 
representation and transformation data structures. They are distinguished in design time and run 
time representations. 

Section 2.1 describes the data structures that transform the validity through the stages 
sensor, detector, filter and integration that were introduced above. Transformations 
describe the knowledge that is available, how this knowledge is transformed in a validity 
representation and how detector and filter modify this validity representation respectively.  

Section 2.2 provides a detailed description and discussion of the representation forms of 
validity. It is followed by a numerical example for an entire computational chain in section 
2.3. 

Chapter 3 deal with the formal definition of the elements of a failure algebra. We define data 
structures and operations to calculate the validity when passed through a chain of computational 
components with detector of filter characteristics.  

Section 3.1 provides the definition of the sensor, detector and filter elements. 

Section 3.2 defines the operations and section 3.3specifies rules about the combination of 
elements. 

Chapter 4 contains a brief discussion about the notion of uncertainty and validity. This is 
ongoing work. The problem is that uncertainty and validity are related. Validity always is 
specified with respect to a given uncertainty. The goal is to accommodate the different 
uncertainty requirements of different applications. 

Finally, Chapter 5 contains a summary of achievements and defines next steps. There are two 
main problems that we intend to tackle during the last phase of KARYON. The first is to handle 
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redundancy and fusion by the proposed validity calculus.  The second will be the consistent 
treatment of uncertainty-validity relation. 

 



KARYON ‐ FP7‐288195 
D2.5 ‐ Definition of failure modes and failure semantics 
 

 

 

© 2013 KARYON Project    12/39 

KARY    N

2. Representation	of	validity	
The validity is an estimate that quantifies the confidence in continuous-valued sensor data. It is 
a measure represented by a numerical value ranging from zero to one. A validity of zero 
indicates the least and a validity of one indicates the highest confidence in the outcome of a 
processing chain. As part of a processing chain we consider a combination of sensor, detector 
and filter components. By applying the validity concept, such a processing chain outputs sensor 
data together with a validity value. Consequently, there is no longer in depth knowledge 
necessary to interpret the provided confidence of a processing chain. Independent of the used 
components to form a processing chain, we state the confidence one can have in the provided 
output via an explicit confidence measure called validity. This is in line with the term failure 
semantics we introduced in Deliverable 2.2 (Chapter 2.2).  

In order to achieve this, we introduce different representation forms to describe the validity of a 
processing chain at design-time as well as at run-time. Table 1 presents a glossary of 
representation forms, used in the subsequent Figures and the discussion. The variable “n” in the 
dimension column, is related to the failure modes. It represents the number of considered 
failures out of a set of relevant failures.  

Table 1: Glossary of representation forms 

Representation Dimension Assigned to Available at Description 

System bounds n x 2 processing 
chain 

design-time bounds within the validity 
can vary 

Assessment 
vector 

n x 1 processing 
chain 

design-time statistic estimate of the 
validity  

System 
validity value 

1 x 1 application design-time statistic estimate of the 
application-specific validity 

Validity vector n x 1 processing 
chain 

run-time validity of current sensor 
data  

Validity value 1 x 1 application run-time application-specific validity 
of current sensor data 

 

By using these representation forms, we are able to state the confidence of a certain processing 
chain by hiding its peculiarities. As a brief introduction, the system bounds define the limits of 
the remaining representation forms used both at design-time and at run-time. Based on the result 
of static failure analysis, the processing chain is quantified by an assessment vector at design-
time. When we focus on run-time, the validity vector informs about the confidence of current 
sensor data. Instead of using static failure analysis, this calculation is driven by actual detector 
and filter results. The system validity value (design-time) and the validity value (run-time) 
represent an application-specific adjustment. A detailed presentation and discussion of these 
representation forms are given in Section 2.2. 

In order to calculate and to update these representation forms, we define transformations as 
listed in Table 2. Transformations are used to modifying the validity attribute according to a 
sensor, detector, filter and an application. Some of these transformations can only be performed 
at run-time, because they are related to actual sensor data. The other transformations quantify 
design time knowledge of the sensor, detector, filter and application. For the sensor, we analyse 
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the set of relevant failures. As a result, we know which failures can occur, what impact these 
failure have on the sensor data and how often these failure will happen. The first question, 
which failures are relevant, determines the dimension of the vector holding the characteristics. 
The second question provides the necessary knowledge to form the impact vector. The third 
question about the probability is captured in the occurrence vector. The characteristics of a 
sensor define the inherent properties of a sensor and are relevant at design-time only. 
Considering a detector or filter mechanism, both design-time and run-time transformation will 
have to be defined. Design-time transformations express how good a mechanism will work and 
quantify the coverage of mechanisms. Run-time transformations map the respective detection or 
filter result on the validity representation. This quantifies the confidence in the respective data. 
The selection transformation is applied at design-time and at run-time. At design time, it is used 
to calculate the system validity. This is a measure for the quality of the mechanisms with respect 
to a defined set of failures.  At run time, the selection vector is applied to determine the actual 
data validity with respect to these relevant failures.  

Table 2: Glossary of transformations 

Representation Dimension Assigned to Available at Description 

Impact vector 
(IV) 

n x 1 Sensor design-time impact of each failure on 
the validity 

Occurrence 
vector (OV) 

n x 1 Sensor design-time probability that a certain 
failure occur 

Detection 
trans. matrix 
(TD) 

n x n Detector design-time false positives and false 
negative on each failure 

Detection 
result (RD) 

n x n Detector run-time failure detected, not 
detected and unable to 
detect 

Filter trans. 
Matrix (TF) 

n x n Filter design-time static, proportional and 
elimination parameter on 
each failure  

Filter result 
(RF) 

n x n Filter run-time feedback of filter on the 
validity  

Selection 
vector (S) 

1 x n Application design/run-
time 

selecting relevant failures 
according to an application 
need 

 

The following paragraph presents an overview of how to express the information that finally is 
used to determine the validity. We firstly define properties that are particularly relevant during 
design-time.  Our starting point is the failure model which has been introduced in D2.2.  Figure 
3 depicts the data structures that comprise the aspects of validity. It should be kept in mind that 
the engineer who designs a control system takes certain assumptions about the components of a 
computational chain. In our approach, we try to quantify this engineering knowledge and exploit 
the numerical representation for calculating the validity of data that we can expect.  

The impact vector is strongly related to the assumed failure model. It has an entry for every 
failure type that holds a weight which defines how much this failure will affect the data of the 
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component. A weight may e.g. be related to the amplitude of a failure. Actually, the impact 
vector is a quantification of assumption coverage and specifies which failure types have which 
impact on the overall validity. Next, we have to determine the bounds within which the actual 
validity will vary. The range vector has one entry defining this window related to the type of 
failure. The upper bound is given by the value in the impact vector. The lower bound for a 
sensor is initially assumed to be "0". For computational components it may be >0. These cases 
are discussed below. The assumptions about the occurrence probability is maintained in the 
occurrence vector. It should be noted that the occurrence of a certain failure type may not only 
depend on the malfunction of a component but also on the environment in which this 
component is used. This is particularly true for sensor failures (e.g. a radar sensor will produce 
wrong results in heavy rain). Combining the information about the window of possible validities 
and the occurrence probabilities allows assessing the overall validity of the component. It is 
captured in the assessment vector on a per failure type basis. 

 

 

Figure 3: Schematic representation of validity  

So far, the occurrence vector constitutes a general representation of the system validity derived 
during design time, i.e. what confidence we can put in the mechanisms. For an application, 
however, it may not be necessary to consider all failure types from the model. E.g. for a parking 
assistant, a failure type only occurring for long-range measurements of the distance sensor may 
be not relevant. This becomes evident when having done the break-down of safety requirement 
into the actual architecture where the component under consideration is instantiated. Therefore 
we apply a selection vector that masks out irrelevant failures. It should be noted that this is 
crucial because here the requirements of the application meet the capabilities of the components 
in the processing chain. If an application has a high requirement on short distance 
measurements, a low confidence in long-distance measurements of this sensor will lead to a 
false low confidence that the application can have in this data. The selection that contains an 
application specific weight for each failure type is able to correct this for every application 
individually. From the combination of the selection vector with the assessment vector we derive 
a single value that represents the confidence that we can put into the output of the processing 
chain. We call this value the static system validity value. 

During run-time, the actual sensor value is passed through the respective components. At the 
interface to the rest of an application we generate a dynamic data validity value together with 
the actual data. This was described in D2.2. The data validity is the outcome of the assessment 
in the checking and filtering components. For each component, the assessment vector that has 
been derived during design time is combined with the actual validity that is estimated by the 
respective component. For each of the failure modes that are affected by the component 
(checked in a detector or filtered) there is an entry in the outcome vector. The dynamic validity 
vector holds these outcomes weighted by the assessment vector. In the last step, the selection 
vector is applied that masks the failure modes that are not relevant for the application. As a 
result, we obtain a single scalar data validity value. 
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2.1 Transformations	

Transformations generate a validity representation and transform one validity representation 
into another. We separate transformations from validity representations in order to reach a 
uniform calculus. Transformations are tightly related to a certain component, e.g. the impact 
vector is related to a sensor component, which is used to initialize the validity calculation. As 
another example, the selection vector selects failures from a vectorized representation according 
to an application need, which is, of course, an application-dependent representation. 
Transformations are essential to generate, to update and to scale the validity representation. 
These operations will be further explained in Section 3. In the remainder of this section, we 
introduce transformations for sensor, detector and filter components and for selecting 
application requirements. 

2.1.1 Sensor‐dependent	transformation	

The failure behavior of a sensor is described by an impact vector and an occurrence vector. The 
impact vector characterizes the severity of failures. The probability of failures is captured by the 
occurrence vector.  

2.1.1.1 Impact vector (IV) 

The impact vector informs about to which extent failures affect the intended behavior of a 
component. In general, failure types are defined by the failure model. The failure model 
specifies a set of failures where each failure is further characterized by a severity and a 
probability attribute. The completeness of the failure model is expressed by the assumption 
coverage. A fault-free system will be represented by an assumption coverage of zero. Assuming 
arbitrary failures this will result in an assumption coverage of one. The assumption coverage is 
a means to quantify the completeness of the model. We use it to limit the validity as an 
indication of an improperly defined failure model. The problem is what we define as a failure in 
a sensor-based system and where we have to deal with inherent measurement uncertainties like 
thermal noise and conversion errors. To overcome this difficulty, a failure model is linked to an 
uncertainty margin. An uncertainty margin defines a measurement range within the true 
measurement is supposed to be with a certain confidence. Measurements that deviate within this 
bound from the ideal value are not considered as a failure. Only values that cross the uncertainty 
margin are considered to be relevant and treated as a failure which will lower the validity.  

The remainder of this subsection is to introduce the impact vector representation and the relation 
to the failure model, the uncertainty margin and the assumption coverage. 

The starting point to build an impact vector is the definition of a failure model. This definition 
implies a profound analysis of the failure types as well as their respective significances and 
probabilities. The significance, also referred as deviation or as severity, determines which 
impact a certain failure type will have on the ideal value. Additionally the probability to fail is 
recorded for the listed failure types. The listed failures are modeled using a Markov model, 
which is well known as a memory-less statistically modeling technique. The memory-less 
property fits well to the way in that failures usually occur. To build a failure model, a set of n+1 
states is formed according to the Markov model. The n states are representing the different 
failure types and the additional state is assigned to the failure-free behavior. By the properties of 
this modeling technique, the probabilities to fail are reflected by the transitions of the Markov 
model. The steady state of the Markov model shows the overall percentage that a certain state 
will be active. This knowledge is used to build the occurrence vector, which will be focused in 
the next subsection. Attached to each failure state, a distribution function of the respective 
significance is stored to rate the further on build validity term. Frequent failures with a large 
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deviation from the correct value get the highest significance. Vice versa, sporadic failures with 
slight deviations from the correct value have a smaller impact.  

In practice, we consider permanent, sporadic and statistical failures as introduced in D2.2. In 
this document we consider failures in which the value of the perceived data deviates from the 
ideal value of a real world entity. There are also other properties conceivable, for instance the 
slope, the frequency and spectrum of a signal or the time-entity of a real world entity. Therefore 
our considerations rely on an amplitude-based failure model. This does not imply that the 
validity concept is limited to this kind of failure model.  

The impact vector is defined as an n-dimensional vector representing the failure types (states) of 
the failure model. This consistent representation is a key issue to achieve interoperability when 
communicating the validity across system borders. In particular, the assessment of remote 
sensor data will only be possible if this consistent representation is available. Figure 4 illustrates 
an example of an impact vector together with a failure model. It should be noted that the 
additional state assigned to the failure-free behavior is not part of the impact vector, because the 
failure-free behavior is inherently expressed by the validity exactly in the case when no failure 
occurred and the maximum possible validity (one) is reached. 

Figure 4: Impact vector based on failure model 

This argument is only valid if the failure model is precisely defined. Otherwise the assumed 
failure-free behavior would lead to an uncertain significance on the components output because 
the set of non-modeled failures is inherently mapped to the failure-free state. This would 
obviously limit the usability of the failure model. In fact, it needs to be noticed that each model 
shows a certain degree of insufficiency. In order to inform about the degree of incompleteness, 
the term assumption coverage was introduced by David Powell in the early 90’s [5]. The 
assumption coverage reflects a conditioned probability that the defined failure model covers the 
abnormal behavior when failures occur. In other words, the assumption coverage reflects the 
ratio between the considered failures and the entire set of possible failures. The complete set of 
failures is difficult to define. Because of the many degrees of uncertainty and the lack of 
complete knowledge of the physical characteristics of a sensor, we base the failure model and 
the estimation of the assumption coverage on an empirical approach. Because of an incomplete 
failure model, the assumption coverage will limit the validity. For instance, if the assumption 
coverage is estimated to be 0.8 as shown in Figure 4, the validity can never go beyond 0.8, even 
if none of the considered failures occurred.  

The final aspect to form the impact vector deals with the uncertainty margin of a measurement. 
A high uncertainty margin leads to a simplified determination of the assumption coverage 
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because only failures are considered to be relevant when they exceed the defined uncertainty 
margin. Fewer failures have to be considered if the uncertainty is set to a large margin. Vice 
versa, a small uncertainty requires a more profound analysis to consider the set of possible 
failures. We conclude that there is a relationship between the assumption coverage and the 
uncertainty margin. The higher the uncertainty margin, the higher is the assumption coverage. In 
practice, the uncertainty margin is set according to an uncertainty margin given by the data sheet 
of a sensor. For a further explanation of the relation between uncertainty and validity see 
Section 4. 

 

Figure 5: Occurrence vector based on failure model 

2.1.1.2 Occurrence vector (OV) 

The occurrence vector represents the probability to fail. For each failure listed in the failure 
model, the occurrence vector holds a respective probability. Hence, the occurrence vector is of 
the same dimensionality as the impact vector. A probability of a certain failure ranges from "0" 
representing the case that this particular failure will never occur to "100%" in case of a known 
permanent failure. The exact values are deduced from the steady state of the Markov model, 
which is used to model the failure behavior. As mentioned above, the steady state reflects the 
probability that a certain state, associated to a failure, will be active in total.  

In our data-centric failure model, we assume that a sensor is the only source of failure in the 
processing chain. We do not consider at the moment failures that may be introduced in the 
detector or filter stage. A detector does not change the nominal data value and therefore does 
not modify the probability of a failure.  A filter that mitigates or masks a failure changes the 
nominal data value and therefore may affect the probability of a failure. This is reflected by the 
respective filter transformation that includes the knowledge about filter characteristics. 

In Figure 5, we depict an example of an occurrence vector together with its failure model. In 
this example the failure-free state and three failure states are considered: outlier, noise and 
offset. The probability to leave a state or to go to another state is described by the transition 
matrix shown beside the failure model. In this matrix the first row stands for the probability to 
stay failure-free (86.59%), to go to an outlier failure (0.81%), to go to a noise failure (7.5%) or 
go to an offset failure (5.1%). The remaining rows can be interpreted respectively. We derive 
the steady state from this knowledge (shown right of the transition matrix). The steady state 
indicates how much time the system spends in the failure-free (87), outlier (1), noise (7) or in 
the offset state (5).  

2.1.2 Detector‐dependent	transformation	

The detection characteristics identify the capabilities of a detection mechanism. A detector 
which is not perfect may wrongly detect a failure, even though no failure is present. Vice versa, 
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a detector does not detect a failure even though it affected the nominal value. These situations 
can best be expressed by the notion of true positive, false positive, true negative and false 
negative [6]. A true positive represents a real failure, which was accurately detected. In the case 
of a false positive, the detector has erroneously identified a failure. A true negative describes the 
correct outcome, when no failure occurred. Finally, the false negative reflects the case that a 
failure occurred but was not detected. 

2.1.2.1 Detection transformation matrix (TD)) 

This matrix quantifies design time knowledge. We use the notion of true positive, true negative, 
false positive and false negative to update the validity representation. In an ideal system, where 
no false positives and false negatives appear, we receive a validity of zero in case of a detected 
failure and otherwise a validity of one. Figure 6 visualizes the mapping of detection results on 
the validity representation. The weight of the failure (ݓ௨) describes the impact on the total 
validity and is taken from the impact vector (see 2.1.1.1 above). As shown in Figure 6, the full 
weight enters into the calculation of the validity, when no failure occurred. This case is known 
as true negative (TN). An accurate detected failure described as true positive (TP) leads to a 
weight of zero to the calculation of the validity. 

But in the case of false positives (FP) or false negatives (FP), the weight given to the validity 
calculation must be adapted, as shown in Figure 7. Instead of setting the weight either to zero or 
to the full weight (ݓ௨), we argue for increasing the lower validity bound and for reducing 
the upper validity bound in accordance to the false negatives and false positives. As a result we 
only consider the remaining window of confidence in the data. Even when a failure was 
detected, the confidence does not go to "0" because of the non-zero possibility that this is a true 
positive. The percentage of the false positive (FP) represents the lower bound of the validity. 
The similar argument applies to the upper bound that reflects the lack of confidence in the data 
due to failures that were not detected. The percentage of false negative (FN) represents the 
upper bound of the validity. 

2.1.2.2 Run‐time Detection result (RD) 

The run-time transformation maps the detection result to the validity representation. The 
validity is defined as a confidence measure ranging from zero to one, where a validity of zero 
indicates the least and a validity of one indicates the highest confidence. A detector may have an 
arbitrary representation of its detection results. Therefore, a detection result must be individually 
mapped to a corresponding validity. Such a mapping must clearly distinguish between a 
detected failure, a failure not detected and a failure that cannot be detected by the detector. 
Particularly, the differentiation between "not able to detect" and "not detected" failures plays an 
essential role for the validity calculation. Suppose a set of detectors is unable to detect a failure, 
this should be mapped neither to a validly of zero meaning that a failure is detected nor to a 
validity of one meaning that a failure is not detected. We have to prevent an arbitrary 
interpretation in such a case. To solve this problem, we defined a neutral element to deal with 
the inability to detect failures in a consistent way. When discussing the failure algebra in 

 

Figure 6: Validity representation of an ideal 
detector 

Figure 7: Validity representation of an 
imperfect detector 
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Section 3, we introduce the mapping of a detection result on the validity representation and the 
neutral element.  

2.1.3 Filter‐dependent	transformation	

A filter suppresses the effect of failures on the nominal data value. Therefore, it may actually 
improve the validity of data. On the other hand, a filter can be designed too aggressive or too 
weak. In the first case actual sensor data may be filtered out. In the second case, sensor data is 
still affected by failures. Consequently, it is essential to find the balance between these two 
extremes. Anyway, it needs to be noticed that a filter usually comes along with considerable 
side effects. For instance, a filter technique to suppress outlier failures may use a moving 
average method. This filter will mitigate the effect of outlier failures but, at the same time, this 
filter will lead to an additional offset and delay. The following subsection introduces a set of 
parameters to clearly describe both the positive and the negative effect which a certain filter 
mechanism may have on the validity. 

2.1.3.1 Filter transformation matrix (TF)) 

This matrix is formed at design time. Expressing the characteristics of a filter technique, we 
make use of static, proportional and elimination characteristics. Additive effects can be 
expressed by static parameters. Independently whether the filter mitigates failures or is just idle, 
additive effects are present. Taking the moving average filter example, the filter output is 
always delayed. The wider the moving average window of this filter was specified, the larger 
the delay. The described additive effects are static and mainly dependent on the filter design. 
The dynamics of a failure do not have any impact on additive effects. Proportional parameters 
are used to express either positive or negative effects of the filter. Mitigating failures are clearly 
a positive effect. Again considering the moving average filter example, the mitigation of outlier 
failures is proportional to the window of the moving average filter. Let us first consider a 
window of one. This leads to a proportional parameter of one, which means there is a one to one 
relation between input and output. Obviously this makes sense because a moving average filter 
with a window of one will not mitigate failures. This is represented by a proportional parameter 
of one. When we enlarge the window of the moving average filter, the capability of the filter to 
mitigate failures improves. This relation can be described by proportional parameters less than 
one. In this case the relation of failures on the output to the input is lowered. In detail, either the 
impact (failure amplitude) or the occurrence rate (probability) of a failure might be reduced. In 
both cases those results represent positive effects. A negative case is expressed by a 
proportional parameter greater than one which means that the amplitude or the occurrence of a 
failure is larger on the output compared to the input. Taking once more the moving average 
example, the capability to mitigate outlier failures results in an additional offset, which is a side 
effect of the applied filter mechanism. When an outlier failure occurs, the discussed filter 
introduces an offset failure or increased noise because of the attenuation effect. This failure was 
not present before. By setting the proportional parameter adequately we are able to express this 
kind of relation. Finally, to express complete elimination of a failure we provide an eliminating 
parameter. However, complete elimination requires substantial effort of redundancy and 
calibration and therefore is achieved rarely.  

During design-time, the introduced parameters are used to define the lower and the upper 
validity bound according to the filter capabilities. The minimum validity is marked by the lower 
bound. A filter can always guarantee that validity cannot fall below this bound. The filter 
however is not supposed to suppress, convert or mitigate any extent of a failure, e.g. any 
amplitude, any slope etc.  The best filter result is expressed by the upper validity bound, which 
can be only achieved if the assumptions on the extent of failure hold. Thus, a filter cannot 
guarantee the upper bound under all operational conditions. The quality of a filter is therefore 
mainly determined by the lower bound for the validity.  
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2.1.3.2 Filter result (RF) 

During run-time the filter feedback selects a validity value out of the pre-defined validity 
bounds, which were assigned during design-time. The filter feedback is an active filter status 
informing about the current mitigation capabilities of the filter. This information can be 
extracted either by the filter only or else by a detection-filter combination in case the filter 
operates as a black box. The lower validity bound will be taken, if the filter shows its worst 
mitigation performance. On the other hand, the upper validity reflects the best achievable result 
that can be delivered by the filter.  

2.1.4 Application‐dependent	transformation	

2.1.4.1 Selection vector (S) 

In a final step, the vectorized validity representation is converted into a single scalar validity 
value. We provide an assessment vector that holds the estimates about the quality of the detector 
and filter with respect to the failure model. The assessment vector has been defined at design 
time. The complementary validity vector has passed through the various stages of the 
processing chain and has been modified as described above. It finally holds a validity estimate 
with respect to every failure type of the failure model that has been generated dynamically at 
run time. For an application it may be more appropriate to have an application specific validity 
value that reflects the estimates for all the failures which are relevant for the application. Several 
applications may require a validity estimate even though they have different requirements and 
failure sensitivities. For instance, a navigation application may be sensitive against all failures 
listed in the failure model. Another application is to avoid collisions, which only requires 
dealing with major deviations like outlier failures.  

To express these different requirements, we provide a selection vector that is applied to the 
assessment vector and the validity vector. To compress the vectorized information to a single 
value, the selection vector is of the same dimension than the system and the validity vector. We 
obtain a system validity that is a measure for the quality of the mechanisms and a data validity 
that characterizes the confidence in the nominal data. The system validity is derived during 
design time. It characterizes a system property and is used to check whether the mechanisms are 
appropriate to fulfill the demands of an application. The selection vector masks out the failure 
types that are not relevant for the application and otherwise would inappropriately lower the 
overall system validity. In the example, the selection vector of the navigation application 
considers the entire set of failures while the selection vector provided by the obstacle avoidance 
application marks out all failures except outlier failures. 

The data validity value is derived during run time by applying the detector and filter 
mechanisms. It represents a measure for the actual individual data item. The selection vector is 
the same as for calculating the system validity. At run time it allows only to consider the 
relevant outcomes of the computational components. The different representation forms are 
detailed in the next chapter. 

2.2 Representation	forms	

The section introduces the validity representation forms: 

 System bounds, 

 Assessment vector, 

 System value, 
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 Validity vector and 

 Validity value. 

Figure 8: Forms of validity representation 

 

The representation forms describe the validity of a system, which consists of a sensor and any 
combination of detection or filter mechanism. At design-time, we start to define the bounds of 
the validity with respect to the capabilities of the system (sensor, detector or filter). In case of an 
ideal system, equipped with perfect detection and filter mechanisms, the validity ranges from 
zero to one. Any kind of insufficiency leads to a limitation of these optimal bounds. 
Consequently, the system bounds reflect the quality of the system and at the same time they 
determine the anticipated validity that can be expected from this system. The system bounds are 
the starting point for both the design-time assessment and the run-time validity calculation. At 
design time, we derive assumptions about these system bounds by a careful analysis of the 
failure types their impact and occurrence (impact vector, occurrence vector) as described in 
Section 2.1. From this information, we derive the assessment vector that maps this information 
to the system bounds. At run-time, the outcome of detection or filter mechanisms allows 
calculating the exact data validity of an individual actual sensor reading. To consider application 
needs, we perform a failure selection on both design-time and on run-time as presented above. 
Out of the assessment vector a single validity, called system validity value, can be computed. 
During run-time, the application dependent validity is called validity value. Figure 8 
summarizes the validity representations and shows the classification of design/run-time and 
application independent/dependent validity forms. Subsequently, we provide a detailed 
description of the representation forms. 
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2.2.1 System	bounds	

The system bounds specify an anticipated validity range within the output of a system will vary 
during run-time. The lower bound of this range defines the validity in case of a failure. In the 
ideal case this will be set to zero, which means that the failure is reliably detected. On the other 
side, the upper bound of the system bounds marks the best case. An upper bound of one would 
represent the guaranteed fault-free case. Unfortunately, because of the deficiencies of the 
sensor, detector or filter components, these bounds will not be reached. The system bounds are 
defined as a matrix of the dimensionality (2 x n), where one column describes the lower bound 
and another column specifies the upper bound for each of the n failure types. The system 
bounds are successively updated according to the properties of the sensor and several detection 
and filter mechanisms. This will be described in Section 2.1.  

The system bounds indicate how good a system can distinguish between a failure-free and a 
failure state. To specify the bounds more precisely, we need to quantify assumptions about the 
system. We use the well-known concepts of assumption coverage and coverage of the 
mechanisms to define these bounds. Assumption coverage quantifies the completeness of the 
failure model. This has an impact on the upper bound of the system bounds because every 
failure that is not considered but may occur will decrease the validity of the data item. The 
representation of system bounds is defined as a "2 x n" matrix where the columns hold the lower 
and upper bound of a failure and each the row in associated with a failure type. Assuming a 
failure model, which contains three failure types, this will lead to a dimensionality (2 x 3) of the 
system bound. The matrix is initialized with system bounds derived from the information of the 
impact and the occurrence vector described in 2.1. 

The coverage of mechanism describes the quality of detection and filter mechanisms. Therefore, 
the coverage of mechanism affects both the upper system bound. The quality of a detector is 
characterized by false positives and false negatives (see Sec. 2.1.2). In the case of a false 
positive, the detector has erroneously identified a failure. The false negative reflects the case 
that a failure occurred but was not detected. Thus, even when a failure is detected, there is a 
non-zero confidence in sensor data. This confidence is given by the probability of false 
positives. Therefore, the validity of a failure type will not drop to zero even if a failure is 
detected. The percentage of the false positive (FP) represents the lower bound of the system 
bound. The false negative (FN) represents the case that a failure was not detected. Taking into 
account these measures, the upper bound is expressed by the percentage of false negatives.  

Filter mechanisms have an impact on the lower system bounds because a filter mitigates the 
impact of a failure or even masks the occurrence of a failure. In case of mitigation, the lower 
bound will be increased. The validity cannot fall below this increased bound because the failure 
is to some extent less crucial. E.g. if a filter substantially decreases the amplitude of a certain 
failure the overall error is lower and the confidence can increase in this case.  

2.2.2 Assessment	vector	

The assessment vector is a design-time estimate of the validity. During run-time, the outcome of 
a mechanism is exploited to calculate the dynamic validity. When generating the validity, we 
make use of the knowledge defined by the occurrence vector in Sec. 0. We argue that a validity 
of one implies no failures at all. On the other hand, a validity of zero is a 100 percent probability 
of a failure. Applying the occurrence vector that holds the probabilities of failure to the system 
bounds we derive the assessment vector. 

The components of an assessment vector are not binary (failure or failure-free). Instead they 
represent a set of continuous values according to the analyzed failures of the sensor. This 
reflects the quality of the used sensor versus the respective failures. For example, a sensor of 
low quality will lead to a lower validity when compared to a high quality sensor, which of 
course will exhibit a lower probability to fail.  
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Detection mechanisms do not affect the assessment vector because a detector does not change 
the data and thus has no effect on set of failures. The probability of a failure stays the same. In 
contrast to a detector, a filter mechanism may lower the probability of a faulty data item at its 
output. In Sec. 2.1.3, we argued that a filter either mitigates the impact of a failure or even 
reduces the probability of a failure. It should be noted that mitigation has effects on the system 
bounds (see Sec. 2.2.1).  

A filter may transform a sever failure into a less severe failure. In this case, the probability of 
the severe failure drops down to zero and the probability of the less severe failure goes up to the 
probability that the severe failure had before. The filtering process might lead to an unwanted 
effect that a filter lowers the probability of one failure and raises the probability of another one. 
These are effects that have to be treated thoroughly to keep the main objective of a filter 
mechanism: increasing the validity.  

2.2.3 System	value	

The system value generated out of the assessment vector described above. This system value is 
similar to the RPN (risk priority numbers) of the FMEA (failure mode and effect analysis) 
without the specific disadvantages. A detailed discussion of the advantages of our approach can 
be found in [4]. Here we briefly summarize the results. A RPN ranges from 1 to 1000, where 1 
belongs to the best and 1000 to the worst case respectively. The multiplication of the amplitude 
of a failure, the probability of a failure and the detectability of a failure results in the RPN of a 
system. Each of these three factors, vary from 1 to 10. RPNs are informally defined, which may 
cause a problem when used beyond system borders. Because there is no single failure model as 
a root of RPN calculation, it is not guaranteed that there is an agreement about failures and 
impacts. Further, the FMEA does not distinguish between false positives or false negatives for a 
detector. Because of the lack of clear separation between false positive and false negative, every 
misbehavior of a detector is mapped to a single case. Moreover, only considering detectability is 
misleading. Because a detected failure does not necessarily mean that the failure can be handled. 
Therefore, the controllability of a failure is as essential as the detectability. In addition, the RPN 
is limited to the system assessment during design-time. There is no possibility to take detection 
or filter results into account for a run-time assessment. Despite to the fine-grained failure 
analysis, the RPN merely reflects the most serious failure case. Because of all that, our approach 
to validity calculations shows many important improvements. To generate the system value 
from the assessment vector we introduce the selection vector. Two cases must be distinguished.  

Firstly, the set of relevant failures considered by the failure model is larger than the set of 
relevant failures of the application. In this case, the selection vector allows us to mask out all 
failures that are represented in the assessment vector but are not relevant for the application. To 
generate the system value, we select and rebalance the relevant failures in a way that the 
significances of the selected failures are bounded by the assumption coverage.  

Secondly, the set of relevant failures considered by the failure model is lower than or equal to 
the set of relevant failure of the application. If the assumption coverage of the failure model is 
close to one, we generate the system value by calculating the sum of the assessment vector. But 
if the assumption coverage is expected to be significantly lower than one, we have to deal with a 
serious issue, given that there may exist an unconsidered failure in the failure model, which 
might be considered as a relevant failure by the application. In this situation, the generation of 
an application specific system value is prohibited. 

2.2.4 Validity	vector		

The validity vector informs about the current validity of the sensor data during run-time. Based 
on the system bounds, we determine the validity vector in consideration to the outcome of the 
used detection and filter mechanisms. In fact, the system bounds define a range of validities 
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taking into account the knowledge of the failure model and the characteristics of the applied 
detection and filter mechanisms. This knowledge is used to determine the precise validity 
according to each failure type while run-time.  

First of all, the validity vector needs to be initialized using the outcome of a component. 
Concerning a detector the detection result will be taken, but the validity vector is also assigned 
to a sensor, which does not have a comparable outcome. The initialization of the validity vector 
is rather problematic, because there is no knowledge or mechanism available in a pure sensor 
device informing about the validity on run-time. A plausible argumentation is to initialize the 
validity vector with the mean value of the validity bound defined by the impact vector. Such an 
argumentation is neutral and will be neither interpreted as a failure nor considered to be failure-
free.  

By focusing on the detection, the outcome of a detection mechanism will be either: failure is 
detected or failure is not detected. In an ideal system, we expect to receive a high validity when 
no failures occur and in case of failures a decrease of the validity. This idea can be implemented 
by taking the upper bound of the assessment vector if the detector does not detect any failure. 
On the other side, a detected failure leads to a validity, which is given by the lower bound of the 
assessment vector.  

A similar approach is applied for filter components. According to the filter feedback, the 
validity vector is set. The filter feedback expresses the ratio to mitigate a certain failure. A high 
filter feedback relates to the highest possible filter performance, which is described by the upper 
bound of the assessment vector. Otherwise the lowest bound of the assessment vector is taken to 
assign the validity vector.  

2.2.5 Validity	value	

The validity value is an application specific generated value out of the validity vector. In 
general, an application is incapable to exploit the details of the validity vector. The application 
is mainly interested in a single value informing about the confidence of the sensor data. Exactly, 
this need is fulfilled by the validity value. The generation of the validity value does not differ 
from the system validity value introduced in Section 2.2.3. In general, two cases have to be 
distinguished.  

First, the set of relevant failures considered by the failure model is larger than the set of relevant 
failures of the application. In this case, we have to sort out the failures in the validity vector 
which are not relevant for the application. To generate the validity value, we select and 
rebalance the relevant failures in a way that the significances of the selected failures are 
bounded by the assumption coverage. Subsequently, to receive the validity value, we sum up the 
validity vector. 

Second, the set of relevant failures considered by the failure model is lower than or equal to the 
set of relevant failure of the application. If the assumption coverage of the failure model is close 
to one, we generate the validity value by calculating the sum of the validity vector. But if the 
assumption coverage is expected to be significantly lower than one, we have to deal with a 
serious issue, given that there may exist an unconsidered failure in the failure model, which is 
considered as a relevant failure by the application. In this situation, the generation of an 
application specific validity value is prohibited. 
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2.3 Example	

In this subsection we present an example to illustrate the concepts introduced in Section 2. In 
this example, we consider a sensor, a detector and a filter as a processing chain. This processing 
chain will be then linked to different applications. The example explains the dynamics of the 
validity concept and highlights the respective representation forms. 

Figure 9 depicts the overall structure showing the design-time representation forms above and 
the run-time representation forms below the processing chain. We use bar charts to present these 
representations graphically. For each failure type, we provide a respective bar. The first row 
lists outlier failures, the second row noise failures and the third row offset failures. Gray bars 
represent the theoretical bound of these failures. These bounds are modified by the components 
of the processing chain and therefore, the actual bounds within a validity can vary are shown in 
blue. Beside these charts, we provide the corresponding numerical representation by using 
matrices and vectors. We will now proceed through the processing chain starting from the 
sensor. 

Sensor: 

The sensor is characterized by the impact and the occurrence vector from static failures analysis. 
These vectors are used to initialize the system bounds and the assessment vector for the static 
validity calculation and the validity vector that is updated at run-time. System bounds, 
assessment and validity vectors characterize the sensor and express the expected quality of the 
sensor. The following equation shows the validity calculation for the sensor failures. 
Multiplying the impact vector with the inverse of the occurrence vector (component-wise) 
results in a vector that initializes the system bounds matrix, the assessment vector and the 
validity vector.  

௨ௗ௦݉݁ݐݏݕܵ ൌ ௩௧ݐܿܽ݉݅ ⊛ ሺ1 െ ௩௧ሻ݁ܿ݊݁ݎݑܿܿ ൌ 
0.51
0.13
0.16

൩ 	⊛	
1 െ 0.07
1 െ 0.06
1 െ 0.11

൩ ൌ 	 
0.47
0.12
0.14

൩ 

Detector: 

Detector capabilities are expressed in terms of false positives and false negatives. The system 
bounds are modified respectively. We set the lower bound according to false positives and the 
upper bound according to false negatives. As described earlier, the assessment vector is not 
further modified by the detector.  

During run-time the detection result will be used to calculate the validity vector. In case of a 
failure the lower system bound will be taken. The upper system bound is used when no failure 
has been detected. Figure 7, we illustrate both cases.  

Filter: 

The filter component in our example was designed to mitigate outlier failures. As a side effect 
the filter mechanism produces additional offset failures. Noise failures are not affected due to 
the filter. Exactly this is expressed by the system bound. The validity entry (first row) regarding 
outlier failures is increased and the validity entry (third row) regarding offset failures is 
decreased. It should be noted that the only validity bounds are modified, which are affected by 
the filter. This allows us to exploit detection results also after a filter has been applied. 
Therefore, the second row (noise failure) of the system bound is not changed by the filter. The 
system bounds are applied to modify the assessment vector. Outlier failures and offset failures 
which are modified by the filter also modify the assessment vector. The noise entry of the 
assessment vector is left unchanged.  
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Table 3: Sensor characteristics 

 Impact vector Occurrence vector 

Outlier 0.51  0.07 

Noise 0.13  0.06 

Offset  0.16  0.11 

 

Table 4: Detector characteristics 

 False positive False negative 

Outlier 0.17  0.01 

Noise 0.07  0.02 

Offset  0.01  0.01 

 

Considering the validity calculation at run-time, the filter removes or mitigates the effect of 
outliers and offset failures as it has been specified by the impact of filter characteristics on the 
bounds at design time and hence, there will not be a dynamic change of the validity with respect 
to outlier and offset failures during run time. Only a detected noise failure will change the 
validity. 

Integration stage (application): 

In this stage, the validity representation as a vector that reflects validities according to the 
respective failures is converted into a single validity value. As we explained in Section 2.1.4.1, 
this mapping will be applied at design-time to form the system value and at run-time to generate 
the validity value. A selection vector expresses which failures will be considered for the 
mapping. This may change according to application requirements. In our example, we assume 
two applications which have a different sensitivity against failures. Application A, shown in 
Figure 9, gets affected by any failure listed in the failure model. In this case all failures will be 
considered. The following equation performs the conversion of the assessment vector into the 
system value. The selection vector simply controls, which failure type will be included in the 
single validity value. The impact vector is necessary to calculate the validity weights and the 
assumption coverage is used to limit the upper bound of the resulting calculation. Note that 
operations followed by a dot have to be performed element-wise.  

݈ܸܽ݉݁ݐݏݕݏ ൌ ሺܸܣ/. 	′ሻܸܫ ∗ ሺܽܿݒ ∗. ሺܸܫ ∗. ܵሻ/. ሺܸܫ ∗ ܵሻሻ 

In case all failures are selected, this equation performs like a sum, because the devisor of the 
first quotient is then equal to the result of the second quotient. When all failures are selected, the 
resulting weight of the second quotient corresponds exactly the weight which was used to 
calculate the input (assessment vector). Therefore, the system validity for Application A is just a 
sum of all validity entries of the assessment vector, as shown in the following equation.  

݈ܸܽ݉݁ݐݏݕݏ ൌ 0.5  0.12  0.09 ൌ 0.71 

Considering the calculation of the validity value at run-time, the validity vector will be taken 
instead of the assessment vector. The respective equation is shown below.  
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݈ܸܽݕݐ݈݅݀݅ܽݒ ൌ ሺܸܸ/. 	′ሻܸܫ ∗ ሺܽܿݒ ∗. ሺܸܫ ∗. ܵሻ/. ሺܸܫ ∗ ܵሻሻ 

While Application A is considered, the selection vector stays the same. Therefore, the sum of 
the validity vector results in the validity value. The following equation shows the calculation of 
the validity value for Application A in case of no failure.  

ݕݐ݈݅݀݅ܽݒ ൌ 0.5  0.12  0.09 ൌ 0.71	ሺ݅݊	ܿܽ݁ݏ	݂	݊	݁ݎݑ݈݂݅ܽሻ 

The calculation of the validity value in case of a failure can be done in the same way, as 
illustrated below. 

ݕݐ݈݅݀݅ܽݒ ൌ 0.5  0.01  0.09 ൌ 0.6	ሺ݅݊	ܿܽ݁ݏ	݂	ܽ	݁ݎݑ݈݂݅ܽሻ 

The application-specific validity value (ݕݐ݈݅݀݅ܽݒ) changes very little when a failure is present. 
This is because the outlier failure has been filtered and only detected noise failures affect the 
validity value. In case of no failure the validity value does not reach its maximum (0.8) because 
of the false negatives of the detected noise and the additional offset due to the filter operation 
which finally results in a lower validity.  

Application B, presented in Figure 9, may be sensitive against outlier failures only. In this case 
the power of the selection will come into play. By analyzing the following equation, the first 
quotient provides the ratio of the actual validity within the defined limit given by the impact 
vector. This, of course, has to be performed element-wise. The second quotient is to calculate 
the new validity weight for the selected failure types. By multiplying the assumption coverage 
(acov), the new weight will be limited. The new weight is the result of the division of the 
impacts of selected failure types to the entire set of selected failure types. This is nothing else 
than a reallocation of selected failure types on the validity bound reaching from zero to the 
assumption coverage.  

݈ܸܽ݉݁ݐݏݕݏ ൌ ሺܸܣ/. 	′ሻܸܫ ∗ ሺܽܿݒ ∗. ሺܸܫ ∗. ܵሻ/. ሺܸܫ ∗ ܵሻሻ 

The following equation shows the calculation of the system validity for Application B.  

݈ܸܽ݉݁ݐݏݕݏ ൌ ൬
0.5
0.51

൰ ∗ ൬0.8 ∗
0.51 ∗ 1
ሺ0.51 ∗ 1ሻ

൰ ൌ 	0.78 

By using this calculation, the validity value for Application B can be performed accordingly.  

In summary, Application B profits from the applied filter, whereby Application A suffers under 
the negative effect of the filter. To draw a conclusion of these results, Application B will be 
provided by sensor data of high quality (0.78 out of 0.8). These achievements are due to the 
mitigated failure amplitude of outliers and the fact that outliers appear rarely. Application A 
also profits from an increased validity due to mitigated outlier failures but at the same time the 
validity regarding offset failures is lowered as a side effect of the applied filter mechanism. This 
leads to a slightly decreased validity compared to Application B.  

The necessary operations to perform these calculations are part of the failure algebra introduced 
in the following section.  

  



KARYON ‐ FP7‐288195 
D2.5 ‐ Definition of failure modes and failure semantics 
 

 

 

© 2013 KARYON Project    28/39 

KARY    N

 

Figure 9: Schematic representation of an example 
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3. Elements	of	the	failure	algebra	
The failure algebra forms a mathematical basis to calculate the validity of a sequence of 
components that we call a processing chain. Such a processing chain may result in a highly 
complex system, which consists of several detector and filter components. In a conventional 
system, where all these parts are known at design time, the assessment of the entire system 
might be feasible. In KARYON, we have to address systems in which essential parts are not 
known beforehand. This is because remote sensor information is used that is further processed 
by an application. As outlined before this is the major motivation to introduce the validity 
measure. In the previous section, we introduced representation forms for different aspects of an 
overall validity that can be evaluated by the application. These representation forms define the 
numerical basis towards a failure algebra. We now need to define operations and rules to 
transfer one representation form into another. Moreover the operations are key to deal with non-
pre-determined knowledge of processing chains. By taking the advantage of a failure algebra, 
the effect of each component of a processing chain becomes effective, even if the sequence of 
components would be unknown. An inductive update of the validity results in the confidence 
measure of the entire processing chain.  

In this section, we mathematically define the failure algebra and explain in detail the operations 
as well as the rules.  

3.1 Definition	

The failure algebra is defined by a set of validity representations (first equation below), a set of 
transformations (second equation below) and a set of operations as shown in the third equation 
below. The validity representation (݈ܽݒ_݁ݎ) ranges from zero to the assumption coverage, 
which limits the validity representation due to the imperfection of the underlying failure model. 
In first equation below, the validity representation is defined as a set of the system bounds (SB), 
assessment vector (AV), system validity value (SV), validity vector (VV) and validity value 
(V), which are described in Section 2.2. The transformation (ݏ݊ܽݎݐ) holds the necessary 
information in order to update and to transform the validity representation specified in the 
second equation below. 

݈ܽݒ_݁ݎ ൌ ሼܵܤ, ,ܸܣ ܸܵ, ܸܸ, ܸሽ, ݈ܽݒ_݁ݎ ൌ ሾ0,  	ሿ߳Թݒܿܽ

ݏ݊ܽݎݐ ൌ ൛ܸܫ, ܱܸ, ௗܶ, ܶ , ܴௗ, ܵൟ,  		Թ߳	ݏ݊ܽݎݐ

ܾ݈ܽ݁݃ܽ_݁ݎݑ݈݂݅ܽ ൌ ሺሼ݁ݎ௩,  ሽ,⊗,⊛,⊕,⊙ሻݏ݊ܽݎݐ

3.1.1 Sensor		

The occurrence vector and the impact vector are defined to characterize a sensor component. In 
Figure 10, we show the generation of the impact vector. Out of the static analysis we receive the 
steady state. By omitting the failure-free state of the steady state, the occurrence vector can be 
inferred. 

  

Figure 10: Numerical representation of the occurrence vector  
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The impact vector is defined in a way that the sum of all failures plus the assumption coverage 
(acov) produce a validity of one.  An example how the impact vector might be built is given in 
Figure 11.  

 

Figure 11: Numerical representation of the impact vector 

The system bounds, the assessment vector and the validity vector are calculated by an element-
wise multiplication (⊛) of the impact vector (݅݉ݐܿܽ௩௧) with the inverse result of the 
occurrence vector (1 െ  ௩௧), as shown below. It needs to be noted that the lower݁ܿ݊݁ݎݑܿܿ
and the upper validity of the system bounds are set to the same value. This indicates the 
inability of a pure sensor to detect a failure, for any further details see Section 2.1.1.  

௨ௗ௦௪݉݁ݐݏݕܵ ൌ ௨ௗ݉݁ݐݏݕܵ 	ൌ ௩௧ݐ݊݁݉ݏݏ݁ݏݏܣ ൌ ௩௧ݕݐ݈ܸ݅݀݅ܽ
ൌ ௩௧ݐܿܽ݉݅ ⊛ ሺ1 െ  ௩௧ሻ݁ܿ݊݁ݎݑܿܿ

3.1.2 Detection		

A detection mechanism modifies the system bounds and the validity vector. The characteristics 
of the detector have an impact on the system bounds (design-time). During run-time, the 
detection will be used to calculate the validity vector. The assessment vector is not affected by a 
detector, compare Section 2.1.2.  

By using the matrix multiplication (⊗), the element-wise addition (⨁) and the element-wise 
multiplication (⊛) the system bounds are updated according to the detection characteristics. 
The first term of the following equation selects the failure types, which will not be detected by 
this mechanism. So the vector (݀݁݊݅ݐܿ݁ݐ) holds the failure types a detector is able to detect, 
where one stands for unable to detect and zero stands for able to detect. This allows us to update 
the system bounds by using a conventional summation (⨁) because a value of zero will be 
overwritten by the new validity bounds, otherwise the value will be taken over without any 
further modification. The second term sets the lower and the upper limit of the system bounds in 
accordance to the false positive and false negative of the detector, which will be done by a 
matrix multiplication (⊗). The described operation has to be performed for both the lower and 
the upper entry of the system bounds representation.  

௨ௗ݉݁ݐݏݕݏ ൌ ൫݉݁ݐݏݕݏ௨ௗ ⊛  (௧௦݊݅ݐܿ݁ݐ݁݀	ሺ	൯⨁݊݅ݐܿ݁ݐ݁݀	

Below we show an example of the detection capability vector (݀݁݊݅ݐܿ݁ݐ). The first row is 
used for failure types, which can be detected. The second row represents the case when a 
detector does not detect a particular failure type.  

݊݅ݐܿ݁ݐ݁݀ ൌ 	 ቀ
0
1
ቁ ≅ 	 ቀ ݐܿ݁ݐ݁݀	ݐ	݈ܾ݁ܽ

ݐܿ݁ݐ݁݀	ݐ	݈ܾ݁ܽ݊ݑ
ቁ 

In addition, the transformation matrix of a detector is depicted below. Each row affects the 
system bounds of a particular failure type, in this example ranging from one to ‘n’. The first row 
shows how the lower bound can be set to the false positive rate and the upper bound can be set 
to the false negative rate. The second row will be used when a detector is unable to detect this 
particular failure. This row serves as a neutral element in the validity calculation. The last row 
just highlights the dimensionality of this transformation.  
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௧௦݊݅ݐܿ݁ݐ݁݀ ൌ 	 ൦

ܨ ଵܲ ܨ ଵܰ
0ଶ 0ଶ
⋮

ܨ ܲ

⋮
ܨ ܰ

൪ 

Next, we illustrate the usage of the introduced system bounds update. By using an element-wise 
multiplication, the first term selects system bounds, which are not affected by the detector. The 
remaining failure types are set to zero. Then, we make use of an element-wise addition to 
calculate the resulting system bounds. The transformation matrix holds zeros for failure types, 
which cannot be detected (second row) and otherwise the respective false positives and false 
negatives. Due to the neutral elements (zero rows), we are able to provide the update of the 
system bounds by using a conventional addition instead of a tailored operation.  

௨ௗ݉݁ݐݏݕݏ ൌ ൭
0.47 0.47
0.12 0.12
0.14 0.14

൩ ⊛	
0
1
0
൩൱ ൌ 	 

0 0
0.12 0.12
0 0

൩⨁	
0.08 0.5
0 0

0.01 0.15
൩ 	ൌ 	 

0.08 0.5
0.12 0.12
0.01 0.15

൩ 

So far, we explained how the system bounds are updated. Next, we present the generation of the 
validity vector, which states the confidence of actual sensor data during run-time. The first term 
of the following equation provides the same functionality as explained above. The second term 
is used to map a detection result on the system bounds, which finally results in the validity 
vector.  

௩௧ݕݐ݈ܸ݅݀݅ܽ ൌ ൫ܸ݈ܽ݅݀݅ݕݐ௩௧ ⊛ ௨ௗ௦݉݁ݐݏݕݏ	ሺ	൯⨁݊݅ݐܿ݁ݐ݁݀	 ⊗  (௦௨௧݊݅ݐܿ݁ݐ݁݀

In order to give an understanding how this mapping works, we present an example of the 
detection transformation. The first column represents the case when no failure has been 
detected. Third column is used when a failure is detected and the second column serves as a 
neutral element when no detection result is provided.  

௦௨௧݊݅ݐܿ݁ݐ݁݀ ൌ 	 ቂ
0 0 1
1 0 0

ቃ 

An example of a validity vector is presented below. The assumed detector is only able to detect 
outlier and offset failures, this setting has been assumed to highlight the dynamics of the 
concept. The first term selects failure types the detector does not detected because those values 
will be taken over without any further modification. The second term maps the detection result 
on the system bounds. Remember the lower bound is related to the case when a failure has been 
detected and the upper bound is related to the case when no failure has been detected. Now we 
see in the interim step of the calculation that the first term and the second term are mutually 
exclusive. This allows us to calculate the resulting validity vector by using a simple summation 
(⨁). Undetected failures are listed in the result of the first term. The detection result determines 
the result of the second term. The following calculation shows a detected offset (third row), a 
not detected outlier (first row) and how the validity for a respective failure type can be taken 
over (second row) in case a detector does not detect such failures.  
 

௩௧ݕݐ݈ܸ݅݀݅ܽ ൌ ൭
0.47
0.12
0.15

൩ ⊛	
0
1
0
൩൱⨁	൭

0.08 0.5
0.12 0.12
0.01 0.15

൩ ⊗ ቂ0 0 1
1 0 0

ቃ൱ 	ൌ 	 
0

0.12
0
൩⨁	

0.5
0

0.01
൩

ൌ 	 
0.5
0.12
0.01

൩ 

It needs to be noticed that the presented calculation, only work for single detection stages. For 
instance, the validity for a sequence of sensor detector, filter and detector cannot be calculated 
by using the above calculation. The multiple usage of detectors can be clearly distinguished by 
comparing the upper system bound with the lower system bound. In case the upper system 
bound and the lower system bound are set to the same value, no detector has been applied so 
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far. If the upper system bound and the lower system bound differ from each other, another 
detector has been applied, which is the subject of future work.  

3.1.3 Filter	

The characteristics of a filter mechanism are described by the filter transformation matrix (TF), 
which affects the system bounds. In Figure 12, the effects of a filter on the system bounds are 
visualized. Mitigated failures lift the lower system bound because filtered failures occur with a 
smaller impact. Side effects of a filter lower the upper system bound as an indication that this 
failure will occur.  

 

Figure 12: Filter characteristics affecting system bounds 

Mitigation: 

The following equation shows how the lower bound can be updated.  It needs to be noticed that 
the resulting lower system bound (݈ݎ݁ݓ௪) is transposed. First of all, we extend the system 
bounds by an additional column holding the number one. This technique is known as 
homogenous coordinates and is used for expressing the effect of static parameters. How to make 
use of homogenous coordinates is shown in the first row of the transfer matrix (multiplicand).  

൦

ଵݎ݁ݓ݈ 1_ݎ݁ݑ 1
ଶݎ݁ݓ݈ ଶݎ݁ݑ 1
ଷݎ݁ݓ݈
ସݎ݁ݓ݈

ଷݎ݁ݑ
ସݎ݁ݑ

1
1

൪ 	⊗	
1 1 െ ܲ 1
0 ܲ 0
ܵ 0 0

				
0
1
0
൩ ൌ

ۏ
ێ
ێ
ێ
௪ଵݎ݁ݓ݈ۍ
௪ଶݎ݁ݓ݈
௪ଷݎ݁ݓ݈
௪ସݎ݁ݓ݈

`

ے
ۑ
ۑ
ۑ
ې
 

For calculating the updated lower system bound, we select the lower system bound by 
multiplying with ‘1’. The upper system bound will be omitted when we calculate the update, 
therefore we multiply the upper system bound with the number zero. Now comes the advantage 
of homogenous coordinates, we multiply the number one with the static parameter (last entry in 
the first row of the transfer matrix). This results in the summation of the lower system bound 
with the static parameter, as illustrated below.  

௪ଵݎ݁ݓ݈ ൌ 	 ሺ݈ݎ݁ݓଵ ∗ 1ሻ  ሺݎ݁ݑଵ ∗ 0ሻ  ሺ1 ∗ ܵሻ ൌ ଵݎ݁ݓ݈  ܵ 

The second row of the filter transformation matrix expresses the effect of a proportional 
parameter. In this case the lower and the upper system bounds are affected. In addition, the 
updated lower system bound have to range from the lower to the upper system bound as 
depicted in Figure 12, which requires adding the lower system bound to the resulting value 
once. Below we show the detailed calculation of a proportional updated lower system bound.  

௪ଶݎ݁ݓ݈ ൌ ൫݈ݎ݁ݓଶ ∗ ሺ1 െ ܲሻ൯  ሺݎ݁ݑଶ ∗ ܲሻ  ሺ1 ∗ 0ሻ
ൌ ଶݎ݁ݓ݈ െ ଶݎ݁ݓ݈ ∗ ܲ  ଶݎ݁ݑ ∗ ܲ ൌ ଶݎ݁ݓ݈  ܲሺݎ݁ݑଶ െ  ଶሻݎ݁ݓ݈
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The third row of the filter transformation matrix represents the neutral element, which is used 
when a filter mechanism does not affect this particular failure type. In this case, we take over 
the lower system bound without any modification. The fourth row of the filter transformation 
matrix shows the elimination of a particular failure type. By setting the lower system bound to 
the upper system bound, the elimination is expressed. As a consequence, the validity is always 
set to its maximum.  

Side-effects: 

The side effects are expressed in a similar manner as the mitigation introduced above. Instead of 
selecting the lower system bound in the filter transformation matrix, we select the upper system 
bound to express the side effects of a filter. The following equation shows the update of the 
upper system bound by multiplying the system bound with the filter transfer matrix. In 
accordance to the mitigation example, the first row of the filter transformation matrix shows the 
usage of a static parameter, the second row expresses proportional effects, the third row 
represents the neutral element and the fourth row demonstrates the case when a failure will be 
present in any case. In contrast to the mitigation, the fourth row is not called elimination 
because side effect express negative effects and does not mitigate or suppress a failure. The 
depicted filter transformation matrix should be considered as an example to address the variants 
of the validity calculation.  

൦

ଵݎ݁ݓ݈ ଵݎ݁ݑ 1
ଶݎ݁ݓ݈ ଶݎ݁ݑ 1
ଷݎ݁ݓ݈
ସݎ݁ݓ݈

ଷݎ݁ݑ
ସݎ݁ݑ

1
1

൪ 	⊗	
0 െܲ 0
1 ܲ 1
ܵ 0 0

				
1
0
0
൩ ൌ ൦

௪ଵݎ݁ݑ
௪ଶݎ݁ݑ
௪ଷݎ݁ݑ
௪ସݎ݁ݑ

`

൪ 

Updating the assessment vector: 

After the new system bounds have been calculated, the assessment vector is updated. Therefore, 
the occurrence of a failure is mapped on to the updated system bounds. First of all, the actual 
occurrence rate must be determined, because the actual occurrence rate can differ from the 
occurrence vector (OV) due to already applied filter mechanism as part of the processing chain. 
The following equation show how the occurrence rate can be obtained.  

௧ܿܿ ൌ
௩ݐ݊݁݉ݏݏ݁ݏݏܣ
௩ݐܿܽ݉݅

 

In the second step, the assessment vector can be calculated by multiplying the updated system 
vector with a transformation matrix holding the actual occurrence ratios. The first row of this 
transformation matrix is used when a filter mitigates a failures and the second row is used to 
deal with side-effects. Remember the validity of mitigated failures ranges from the lower system 
bound to the upper system bound, because of this the additional number one (first entry in first 
row) is necessary. This effect was also explained above and is depicted in Figure 12.  

௩ோௐݐ݊݁݉ݏݏ݁ݏݏܣ ൌ ݉݁ݐݏݕܵ ⊗	
1 െ ௧ܿܿ െܿܿ௧
௧ܿܿ ௧ܿܿ

൨ 

3.1.4 Application		

The sensitivity of a specific application to the defined failure types is expressed by the selection 
vector. For each failure type a respective entry is assigned in the selection vector. In the case a 
failure affects the application, the respective entry in the selection vector will be then set to one 
and otherwise the entries in the selection vector will be set to zero. The following example 
shows a selection vector holding in every entry the number one. The respective application to 
this selection vector exhibits a sensitivity to all failure types. Such a selection vector has been 
used to calculate the application specific validity for Application A, compare the example in 
Section 2.3.  
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ଵܵ ൌ 	൭
1
1
1
൱ ൎ 	൭

ݎ݈݁݅ݐݑ	ݐ	݁ݒ݅ݐ݅ݏ݊݁ݏ
݁ݏ݅݊	ݐ	݁ݒ݅ݐ݅ݏ݊݁ݏ
ݐ݁ݏ݂݂	ݐ	݁ݒ݅ݐݏ݊݁ݏ	

൱ 

Another example demonstrates the selection vector representative for an application, which is 
sensitive to outlier failures only. Therefore, the entries in the selection vector regarding noise 
and offset failures are set to zero. The following selection vector has been used to determine the 
validity for Application B, see the example in Section 2.3. 

ܵଶ ൌ 	൭
1
0
0
൱ ൎ 	൭

ݎ݈݁݅ݐݑ	ݐ	݁ݒ݅ݐ݅ݏ݊݁ݏ
݁ݏ݅݊	ݐ	݁ݒ݅ݐ݅ݏ݊݁ݏ	ݐ݊
ݐ݁ݏ݂݂	ݐ	݁ݒ݅ݐݏ݊݁ݏ	ݐ݊

൱ 

3.2 Operations	

In order to update and to calculate the validity representations (݈ܽݒ_݁ݎሻ, we define the update 
operations (⊗,⊛,⊕) and the selection operator (⊙). The first update operator (⊗) represents a 
conventional matrix operation and is used to update validity representation forms like the 
system bounds, the assessment vector or the validity vector. Therefore, the actual validity 
representation form will be multiplied with the respective transformation matrix. In Section 2.1, 
we introduced transformations for a sensor, detector, filter and an application. In accordance to 
the present component, the update will be performed by using the respective transformation 
matrix.  

The remaining update operations (⊛,⊕) are needed to calculate interim representations and to 
deal with the situation that a mechanism does not operate on all failure types. Both operations 
are performed element-wise, where the operation (⊛) conforms a multiplication and the 
operation (⊕) is equivalent to a summation.  

Finally, the selection operator (⊙) is defined to calculate a validity value ( ) out of a validity 
vector ( ). This calculation is controlled by a selection vector ( ), which defines the relevant 
failures of an application. If all failures are considered to be relevant, the selection operator is 
similar to a sum of the current validities. Otherwise, the validity vector needs to be rebalanced. 
Because, an unbalanced validity vector would lead to a significant limited validity value even 
though no failure has occurred. In fact, this situation leads to an erroneously interpreted validity 
by the application. In the following equation, we define the rescale process using element-wise 
operations indicated by the dot. First of all, we have to normalize the current validities (ሺܸܸ/
.  ሻ), which are originally weighted according to the impact vector. Then, we have to calculateܸܨ
the new weights due to the selection (ܵ). In detail, we select (ܸܫ ∗. ܵ) the failures in the impact 
vector which are relevant for the application. To calculate the new weight (ሺܸܫ ∗. ܵሻ/. ሺܸܫ ∗ ܵሻ), 
we have to divide the selected failures by the sum of selected failures. Subsequently, these 
weights are bound in accordance to the assumption coverage (ܽܿݒ). Otherwise, the rebalanced 
validities would range from zero to one, which represents the ideal case only. 

ܸܸ	 ⊙ ܵ ൌ ሺܸܸ/. ′ሻܸܨ ∗ ሺܽܿݒ ∗. ሺܸܫ ∗. ܵሻ/. ሺܸܫ ∗ ܵሻሻ 

3.3 Rules	

We define operations to be commutative, associative or nothing. In case only detection 
mechanism has been applied, the defined operations are stated to be commutative and 
associative as shown below. The reason this property can be fulfilled lies in the nature of a 
detection mechanism, because a detector only reads the sensor data and affect the validity by 
detecting failures. Consequently, the order of detection does not matter.  
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ܸ ௗܸଵ ⊕ ܸ ௗܸଶ ൌ ܸ ௗܸଶ ⊕ ܸ ௗܸଵ 

ܸ ௗܸଵ ⊕ ሺܸ ௗܸଶ ⊕ ܸ ௗܸଷሻ ൌ ሺܸ ௗܸଵ ⊕ ܸ ௗܸଶሻ ⊕ ܸ ௗܸଷ 

In contrast, the validity calculation for filter mechanism does not reach the commutative or 
associative property. This fact is expressed in the equation below. A filter mechanism modifies 
the sensor data, which can be associated to a write operation on sensor data. Therefore, the 
given sensor data varies from filter to filter. 

ܸ ܸଵ ⊕ ܸ ܸଶ ് ܸ ܸଶ ⊕ ܸ ܸଵ 

ܸ ܸଵ ⊕ ൫ܸ ܸଶ ⊕ ܸ ܸଷ൯ ് ሺܸ ܸଵ ⊕ ܸ ܸଶሻ ⊕ ܸ ܸଷ 
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4. Relation	between	validity	and	uncertainty	
Relying on the reliable perception of the environment raises two questions: 

1. What is the typical deviation of a physical entity or environment condition in the real world 
from its respective digital value used by an application?  

2. What is the confidence that the individual, observed value does not exceed this typical 
deviation? 

The first question is related to uncertainty, the second to validity. Although these parameters are 
related this relation is not straightforward. Uncertainties may occur in the time and in the value 
domain and are related to measurement errors i.e. to the precision of sensor and network latency 
properties like steadiness and tightness [7]. Because sensor data are time/value entities and are 
subject of aging, there exist a mutual dependency between the latency of a network and the 
uncertainty of a value.  In the value domain, uncertainty simply denotes the error margin. To put 
it more formally, a value with an uncertainty is defined as: 

Vobserved = Vreal ±  where  is the accumulated uncertainty. 

Related to network latency this can be expressed in terms of temporal validity. A value is 
temporally valid if:  

|f(t0) ‐ f(t0+tacq + ttr)| <  

where f(t0) is the real world value at the time of observation, tacq is the time it takes to obtain a 
digital representation and  ttr is the time to transmit the sensor data. This equation relates 
temporal properties to the uncertainty margin . 

Uncertainty is a static assumption that is based on the environment, sensor and network 
properties. In the data-centric view, uncertainty and failure are the same. Uncertainty specifies 
static bounds on an interval of deviation, but does not help much to decide about the quality and 
correctness of an individual value at run time. The uncertainty assumption is typically used to 
provide a robust control algorithm that can tolerate any deviation within the uncertainty 
margins. A confidence interval indicates how sure we are that the true measurement really is 
within the defined uncertainty margin. Therefore, an uncertainty margin has to be defined 
together with a confidence interval. The main problem is that a confidence interval is based on 
static probabilities only. There is no concept expressing how much an individual value exceeds 
the uncertainty bounds. Some applications may be robust to tolerate slight deviations, whereas 
another application may also accept more substantial deviations. Such differences can only be 
addressed by a more precise knowledge concerning the confidence in an uncertainty margin. 
Finally, a confidence interval cannot express detection or filter characteristics.  

For deciding whether a value is within the defined error bounds, we introduced the concept of 
validity as described above. Validity quantifies the confidence that can be put in an individual 
sensor value. As outlined in this report, the validity value is a multidimensional mapping. It 
takes a failure model, assumptions about the coverage and the capabilities of detection and filter 
mechanisms as an input and maps it to a single value. This value is an indication of how much 
confidence can be put in the actual sensor value to be within assumed error margins. 

It should be clear that the concepts of uncertainty and validity are different. Nevertheless there 
is a relation. If the demands on uncertainty are very low, i.e. a large error margin can be 
accepted, the confidence that a value is within these wide margins may be high. Vice versa, if 
there are very stringent needs with respect to the uncertainty bounds, a high validity may not be 
easy to achieve. A similar problem has been described as coverage stability [8] in the real-time 
network domain. Relaxing the demands on timeliness will increase the probability that these 
demands can be met.  
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The further elaboration of the relation between validity and uncertainty will be a topic of further 
investigations.  
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5. Conclusions	and	next	steps	
This is the second deliverable on failure semantics for distributed sensor systems. The first 
deliverable introduced failures modes and failure semantics as a result of careful analysis and 
classification of sensor failures. In D2.2, we elaborated the concept of an abstract smart sensor 
that provides a pair <data, validity> as output. The validity represents a uniform description that 
provides an estimation about the quality of information that is delivered by a sensor. This 
quality estimation enables the spontaneous use of external, remote sensors in a safety critical 
control application. This was possible mainly because of two properties. Firstly, during design-
time the system validity describes the effectiveness of mechanisms to handle a set of relevant 
failures. Secondly, the event validity holds the outcome of these mechanisms at run-time. 
Although it progresses the state-of-the-art, the proposed scheme still had deficiencies because 
linking two different representation forms (system validity and event validity) to a safety kernel 
rule turned out to be not easy to achieve. Therefore we proposed to extend those measures to a 
failure algebra. By comparing the system validity with safety rules at design-time, we require a 
similar representation form to check the health status of the system at run-time. Therefore, we 
announced working in the direction of joining the system validity and the event validity.  

In D2.5, we introduced a uniform validity description, which is in line with the terms introduced 
in D2.2. We defined appropriate operations as part of the failure algebra which allow us to map 
the outcome of a mechanism on the same validity representation, which is used at design-time. 
We have to note that this estimation is based on a tight relation and interplay between design 
time analysis and run time checking. During design-time we derive the system validity which 
describes and quantifies the coverage of failure assumptions and the effectiveness of 
mechanisms. This is captured in the assessment vector and the respective transformation 
matrices. At run time, the event validity is calculated by applying the quantified design time 
knowledge on the actual data flowing through the computational chain. The resulting data 
validity holds the outcome of these calculations. This overcomes the gap between design-time 
and run-time. We now allow a flexible assessment of the computational chain even though 
sensors with different quality are used or an arbitrary combination of detection or filter 
mechanism will be applied. Further improvements have been made in D2.5 regarding the 
quantification of the failure model and the applied mechanisms. The questions “How well does 
the failures model cover relevant failures?” and “What is the effectiveness of an applied 
mechanism to handle defined failures?” are explicitly expressed by the validity term. The 
quantification and representation of transformation information, the validity representations and 
the definition of appropriate operations finally form the failure algebra.  

Although we made an important step towards a powerful design time analysis and run time 
assessment of data validity, there are still open research questions. Further investigations have 
to be made regarding redundancy and fusion. Also, we will direct our investigation to the notion 
of uncertainty. The problem is in adjusting the uncertainty margins to the requirements of 
different applications. Finally, an important subject of future work is to specify clearly the 
relation between validities and ASIL’s. The validity quantifies the confidence in the system, 
whereas the ASIL expresses the required quantification to reach a safety goal. These questions 
will guide us during the last year of KARYON. 

 



KARYON ‐ FP7‐288195 
D2.5 ‐ Definition of failure modes and failure semantics 
 

 

 

© 2013 KARYON Project    39/39 

KARY    N

References	
 

[1] S. Zug, A. Dietrich and J. Kaiser, “Fault-Handling in Networked Sensor Systems,” 
in Fault Diagnosis in Robotic and Industrial Systems, G. Rigatos, Ed., St. Franklin, 
Australia, Concept Press Ltd., 2012.  

[2] K. Ni, N. Ramanathan, M. Chehade, L. Balzano, S. Nair, S. Zahedi, E. Kohler, G. 
Pottie, M. Hansen and M. Srivastava, “Sensor network data fault types,” ACM 
Transactions on Sensor Networks (TOSN), vol. 5, no. 3, pp. 1-29, 2009.  

[3] D. H. Stamatis, Failure mode and effect analysis: FMEA from theory to execution, 
Asq Press, 2003.  

[4] T. Brade, S. Zug and J. Kaiser, “Validity-based failure algebra for distributed sensor 
systems,” in IEEE 32st Symposium on Reliable Distributed Systems, Braga, 
Portugal, 2013.  

[5] D. Powell, “Failure mode assumptions and assumption coverage,” in Fault-Tolerant 
Computing, 1992. FTCS-22. Digest of Papers., Twenty-Second International 
Symposium on, 1992.  

[6] J. Davis and M. Goadrich, “The relationship between Precision-Recall and ROC 
curves,” in Proceedings of the 23rd international conference on Machine learning, 
2006.  

[7] P. Verissimo and L. Rodrigues, Distributed systems for systems architects, vol. 1, 
Springer, 2001.  

[8] A. Casimiro and P. Verissimo, “Using the timely computing base for dependable 
qos adaptation,” in Reliable Distributed Systems, 2001. Proceedings. 20th IEEE 
Symposium on, 2001.  

 
 



Validity-based failure algebra for distributed sensor

systems

Tino Brade, Sebastian Zug, Jörg Kaiser

University of Magdeburg

Institute of Distributed Systems

Magdeburg, Germany

Email: {brade,zug,kaiser}@ivs.cs.uni-magdeburg.de

Abstract—Distributed applications dealing with data from net-
worked sensors need some indication about the quality of remote
information. This paper describes how to derive a dynamic
validity value that represents a measure for the confidence in
remote sensor data. In contrast to conventional systems which
treats a typical processing chain as a whole, this paper describes
how individual characteristic of sensing, detection and filter
mechanisms can be assessed and how this assessment can be
evaluated to a single validity value. In particular the paper defines
respective operations combining the run-time validity estimates of
every stage in a processing chain. The combination is evaluated
by rules as part of a failure algebra. The paper presents the
generation of an application specific validity value which is finally
demonstrated in a robotic application.
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I. INTRODUCTION

Distributed computer systems interacting with the physical

world which are known as cyber-physical systems (emphasiz-

ing the control aspect), ubiquitous systems, or ambient intel-

ligence (emphasizing the spontaneous and pervasive nature)

rely on the reliable perception of their environment. Smart

sensors provide the application related information and typi-

cally comprise some processing and networking capabilities.

For instance, robots or cars may collaborate based on using

data from smart sensors that are dynamically discovered and

used in order to improve and to extend the knowledge on

the environment. This dynamic use raises the question of the

confidence in remote sensor data in the presence of sensor

failures. This problem is already difficult to handle for local

sensor data [1] because sensor failures may lead to arbitrary

values and often can hardly be mapped to a binary outcome

of a detection mechanism. Applications may have different

requirements on the precision of sensor information and sensor

data that slightly differ from the correct values may still be

helpful. In a previous paper we developed a classification of

sensor failures [2], their impact, and how we can derive a

notion of sensor data validity, which allows the application

assessing the information from a distributed system of smart

sensors. However, our initial scheme is not sufficient when

sensor data is propagated through a chain of computational

units that filter, fuse and combine simple sensor data to derive

(and distribute) more complex properties of the environment.

In this paper, we will deal with this problem and propose

a concept to estimate the validity of sensor data in a more

general way. The paper describes a calculus of how this

validity can be determined when sensor data passes through

a chain of computational units. A validity value is a multi-

dimensional mapping. It takes a failure model, assumptions

about the coverage and capabilities of detection mechanisms

as an input and maps it to a single value. This value is an

indication of how much confidence can be put in the associated

sensor value. We argue, that for the assessment of a priori

unknown remote sensor data such a validity estimate is crucial

and eases the design of cooperative applications.

The starting point for using external sensors is a description

of the properties contained in a sensor data sheet. This allows

interpreting the remote sensor data by specifying typical data

like the type, measurement range, the calibration, the degree

of non-linearity and the absolute measurement error of the

sensor. However, especially the information concerning the

measurement error is overly pessimistic because it constitutes

a static upper bound. Additionally, it represents the worst-case

deviation of a correct sensor and does not cover failures. Al-

though an application has to be aware of these sensor specific

error bounds they have to be extended by assumptions about

relevant failures outside the scope of sensor specifications.

Existing solutions consider local sensors and often rely on

replication of identical resources based on time and space

redundancy. When using remote sensor information, the set

of available sensors will provide a certain redundancy but will

frequently change and sensor data may have different quality

or even be erroneous. Therefore we cannot make a priori

assumptions about sensor characteristics when defining the

distributed application and fusing sensor data with unknown

validity will not lead to an improvement of perception. The

validity estimation will enable the application to select the

most reliable information from a set of sensors.

To overcome this situation, sensor data need to be enriched

with explicit information about the validity. By using validi-

ties, we were closing the gap between the static knowledge

provided by data sheets during design-time and the many ways

to fail during run-time. Defining the validity needs to consider

the various detection and filter techniques comprised in a

smart sensor. Therefore calculating a validity must consider

all parts of the computational chain like the raw sensor and

the subsequent failure detection and filter operations. The



dynamics of these systems further require rules to make sure

under which conditions the calculated validities are consistent.

Finally, we have to focus on the transfer of a calculated validity

to the application. Each application might consider a different

set of relevant failures as described by the failures model.

For instance, some sensor data are affected by outliers, noise

and offset failures, which all are captured by the validity

value. The application using these data, however, needs only

to be protected against outlier failures. Therefore, we have

to provide means to compare the application requirements

against the failures considered in the validity resulting in the

generation of an application specific validity value.

The validity representation combined with operations and

rules is what we call a failure algebra. The failure algebra

tackles tree major issues of smart sensor applications:

• Firstly, we close the gap between the static design-time

knowledge and the many ways to fail during run-time.

• Secondly, we identify the impact of a distributed detector

or filter mechanism.

• Thirdly, we map the confidence of sensor data provided

by the validity to the requirements of an application.

The paper is structured as follows. We start to refer the state

of the art concerning the motivated issues. Then, we introduce

the validity representation and define the failure algebra. The

evaluation is based on a robotic scenario dealing with obstacle

avoidance and navigation requirement. Finally, we conclude

the present approach and point out the future work.

II. STATE OF THE ART

A state of the art concerning the failure algebra does not ex-

ist. But approaches are present dealing with failures produced

by the sensor. Another approaches also consider the detection

techniques or the filter mechanism. This leads to different

granularities on the components of a processing chain. In

Fig. 1, we list the referred approaches in accordance to their

considered granularity. An arrow over a component implies

that the failure handling for this component is considered.

Furthermore, these granularities can be linked to different

views. One perspective focus on the sensor and tries to adapt

against the need of an application. In this case, we direct the

arrow in Fig. 1 from a sensor to the application. In contrast,

approaches are found analyzing the sensor system from the

application, which are illustrated by directing arrows from the

application to the sensor. Another point of difference becomes

substantial, by considering the design phase and the run-time

phase of smart sensor applications which are shown using

different arrow shapes. In order to assess the feasibility of

an approach for the failure algebra, we define two criteria.

• First, the coverage criteria informs about the capability to

consider all relevant failures in the concerned granularity

range.

• Second, the completeness criteria provides detailed infor-

mation about the covered failure types in order to assess

them separately.

a) Category 1 - Sensor oriented on design-time: The

definition of an uncertainty margin [4] is a general way

to describe sensor failures by a static bound, encircled in

Fig. 1 as number one (1). The deviation of a real sensor

data to an ideal observation system determines the size of

the uncertainties. The coverage criterion is only fulfilled as

long as the reference system is fault-free. Because experi-

mental designs typically suffer under random and especially

systematic failures, which must be avoided for the reference

system in order to satisfy the coverage criterion. But in any

case, the uncertainty approach is not capable to meet the

completeness criteria. Uncertainties only allow to separate

between fault-free and faulty sensor data. Because there exist

no possibility to separate failure types in case of faulty sensor

data. An alternative approach uses signal models [5] (1), which

define the allowed sensor data. Signal models consider every

deviation from model-based knowledge as a failure. By the

nature of this assumption, all relevant failures will be covered.

But concerning the completeness, signal models provide no

further information to separate the occurred failures. As a

result, signal models are stated to be incomplete. A systematic

approach to analysis the failures of a system is provided by

Failure Mode and Effects Analysis (FMEA) [3] (2). FMEA

uses three parameters to assess a system. The probability of

occurred failures, the deviation of a failure compared to the

intended operational state and the capabilities of the system to

detect failures are expressed by parameters ranging from zero

to ten. Whereas zero indicates no criticality and the number ten

is used for the worst case. By multiplying these parameters,

FMEA reflects the robustness of a system. The all-embracing

approach of FMEA covers all failures which might happen.

Therefore, FMEA satisfies the coverage criterion. But after the

multiplication of the parameters, there is no chance to consider

separate failure types. FMEA only reflects the most probable

failure or the most deviating failure or the worst detectable

failure, which leads to an incomplete representation. Zug et

al. [15] (3) solves the incompleteness issue of FMEA by using

a vectorized representation of each failures type. Therefore,

this approach inherits the coverage criteria from the FMEA

approach. Due to the vectorized representation, Zug et al.

are able to fulfill the completeness criteria. The last approach

sounds promising, but this approach is not applicable during

run-time and does not consider the detection mechanisms of

a smart sensor application. Further, it is still an open issue to

fuse the vectorized representation into a single validity value.

b) Category 2 - Sensor oriented on run-time: Confidence

intervals are used to inform about the reliability of sensor

data. This approach fits well to distinguish between roughly

disturbed sensor data and usable sensor data. For instance,

Elmenreich el. al. [7] (4) uses 12 confidence classes whereas

Piontek et. al. [16] (4) differentiate 16 confidence intervals.

To satisfy the completeness criteria, the confidence intervals

have to be detailed enough to hold the various failure types.

On the other side, there is no instance making sure that all

relevant failures are considered. Subsequently, both approaches

cannot fulfill the coverage criteria. A similar approach is
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Fig. 1. Schematic representation of the state of the art

known as SEVA sensor [8] (4), which uses validities instead of

the mentioned confidence intervals. Due to the representation

range, the SEVA sensor fulfills the completeness criteria. But

there exists also no linkage to a failure model to ensure that

all relevant failures are covered. The SEVA approach does

not satisfy the coverage criteria. The presented approaches are

applicable during run-time but none of them present a fulfilled

coverage criteria which is needed for a validity representation.

c) Category 3 - Application oriented on design-time:

Techniques to analysis a system from an application oriented

view are FMEA [3] (5), Fault tree analysis (FTA) [9] (5) and

Root cause analysis (RCA) [10] (5). These approaches start the

analysis with a malfunction on the side of the application and

identify the source cause of this malfunction by analyzing each

component. Therefore these techniques cover all components

available in a smart sensor application. But the coverage

criteria to identify all relevant failures is mainly depended on

the set of malfunctions. Further these approaches do not sep-

arate failures, which is required for the completeness criteria.

Another technique uses a process model [12] (6) to define the

intended system behavior. Sensor data are considered to be

faulty if sensor data deviate from an expected behavior which

is defined by the process model. By the nature of a process

model the coverage criteria is meet. Because every deviation

from the intended system behavior is classified as a failure. But

a clear separation between failure types is missing with respect

to the completeness criteria. A critical situation occur if the

process model is imperfectly defined. In such a case, reliable

sensor data might be erroneously sorted out. For instance, the

crash of the Airbus A-320 was due to a wrong interpretation

of sensor data which finally blocks to switch from the flight

mode to the landing mode [17]. An alternative technique to

assess incoming sensor data is known as data analysis [11]

(6). This approach uses orthogonal transformations to convert

a correlated set of data into a linearly uncorrelated set of

data. The transformation does not rely on signal model and

is able to reduce the incoming dimension even if the sources

are superimposed by failures. Regarding the coverage and

completeness criteria, the data analysis is able to provide

both but the usefulness of data analysis is limited by the

set of incoming sensor data. The presented approaches are

able to partly fulfill the coverage criteria and the completeness

criteria without any further information regarding the sensor.

This underlines our motivated aim. But these approaches are

struggling to separate the failure types, which is a need for

the validity representation. On the other side, the presented

approaches are only applicable during design-time.

d) Category 4 - Application oriented on run-time: A fail-

ure classification without detailed knowledge on the sensing

device is known as limit checking [14] (7). By employing

the limit checking approach a threshold is used to separate

reliable data from failures. To set this threshold, the knowledge

about the uncertainty of sensor data can be exploit. But this

technique only works for applications without dynamics. The

coverage criteria is limited by the adjustment of the right

threshold. Due to an unclear separation of single failure types

the completeness criteria is not satisfied. Another technique

to deal with failures is known as Fault detection and isolation

(FDI) [13] (8). FDI uses the initial idea of a process model to

describe the intended behavior of a control loop, which takes

also the detection and the filtering into account. Due to the

same basic approach, FDI satisfies the coverage criteria. But

the degree of failure separation is application depended and

not generally supported. It is application specific, whether FDI

is adequately fine grained to be stated as complete.

In the end, none of the referred approaches are able to

fulfill the coverage as well as the completeness criteria by

considering all components of a smart sensor application.

Further, the representation form we are aiming for needs to be

applicable both on design-time and on run-time, which could

not be found. Because of that, we introduce in the following

section a representation scheme satisfying those criteria.
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III. VALIDITY REPRESENTATION

The validity of sensor data describes the level of confidence

an application can have in these data. A validity of zero

indicates the least and a validity of one indicates the highest

confidence in the sensor data, respectively. In order to calculate

the validity of sensor data, we have to consider the components

of a sensor system like sensor, detector, filter and the applica-

tion need. In detail, the validity of sensor data is affected by

the characteristics of a detector or a filter mechanism. Because

of that, we have to describe these characteristics in order to

calculate the validity of sensor data, which propagates through

a processing chain of several detection and filter mechanisms.

This leads us to static validity bounds within the validity

will vary during run-time. Further, these representation forms

needs to be linked to a failure model informing about the

considered failure types and their respective properties. Each

representation form is illustrated in Fig. 2, which highlights

a general sensor application given as an example. In fact, our

approach is not limited to a specific set or a certain order of

detection and filter mechanisms.

A. Failure vector

The failure vector lists the relevant failures of the smart

sensor application. The key to build a failure vector are the

definition of a failure model and the significance of each

failure. It needs to be noticed that each model shows a certain

degree of imperfection. The degree of imperfection is reflected

by the assumption coverage.

Assumption coverage reflects the ratio between the con-

sidered failures and the entire set of possible failures. The

complete set of failures is rather difficult to define. It could be

specified either by an analytical breakdown or by an empirical

approach. If the details of the system are known the analytical

approach could be utilized as it is the case for mechanical

engineering purposes [18]. Because of the many degrees of

uncertainty and the lack of complete knowledge of the physical

characteristics of a smart sensor, we choose to the empirical

approach.

In [19], we elaborated a failure model to cover failures of a

smart sensor application. To figure out the significance of the

defined failure types, we use a modified FMEA technique [2].

Frequent failures with a large deviation from the correct value

get the highest significance. Respectively, sporadic failures

with slight deviations from the correct value have a smaller

impact.

Using the knowledge about the failure model and the

significances, we define the failure vector as an m-dimensional

vector filled with the significances of the m failure types

defined by the failure model. The sum of the failure vector is

inherently limited by the assumption coverage, which specifies

the imperfection of the used failure model. In Fig. 3, we show

an example dealing with offset, outlier and noise failures. The

corresponding significances are illustrated by the width of bars,

in Fig. 3a. Whereas the acov bar identifies the assumption

coverage. The corresponding failure vector is specified in

Fig. 3b.

B. System vector

The system vector (SV ) specifies an anticipated validity

range in which the output of a processing chain will vary

during run-time. Without loss of generality, we assume that

a processing chain consists of exactly one sensor and several

detection as well as filter mechanisms. Because due to the

nature of a detector or filter mechanism, they are used to

operate on exactly one set of sensor data.

First of all, we initialize the system vector with the failure

types and significances described by the failure vector. By

using the characteristics of each component in the processing

chain, the system vector is updated while propagating through

the processing chain. In detail, the system vector assigned to

the input informs about the anticipated validity of the sensor

data, which is fed to a component. Whereas the system vector

is updated in order to express the effect on the validity due

to employing a component. Consequently, an application is

enabled by using the system vector to sort out inadequate

sensor data in advance. The following paragraphs address the

impact of the detector and filter characteristics on the system

vector.

a) Detector characteristics: The detection characteristics

identify the capabilities of a detection mechanism to detect

a failure. Considering a detector there may be the situation

that a detector detects a failure, even though no failures are

present. Vice versa, failures are present and a detector does

not detect a failure. These situations can best be expressed

by the notion of true positive, false positive, true negative

and false negative [20]. A true positive represents a real

failure, which was accurately detected. In the case of a false

positive, the detector has erroneously identified a failure. A

true negative describes the correct outcome, when no failure

occurred. Finally, the false negative reflects the case that a

failure occurred but was not detected.

We use these notions to update the system vector. In an ideal

system where no false positives and false negatives appear, we

would expect to receive a validity of zero in case of a detected

failure and otherwise a validity of one. But in the case of

false positives or false negatives, the validity range needs to be
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Fig. 2. Schematic representation of the validity representation

restricted. This allows us to consider the remaining confidence

in sensor data although it was detected as a failure by the

detector. The remaining confidence is given by the probability

of false positives. Therefore, the validity of a failure type will

not drop to zero even if a failure is detected. The percentage

of the false positive (FP ) represents the lower bound of

the validity range. The false negative (FN ) represents the

uncertainty that a failure is present but not detected by the

detector. Taking into account these uncertainties, the upper

bound of the validity range is given by the percentage of false

negatives. This allows to describe the uncertainty of a failure

that remained undetected.

Td = [Tdmin;Tdmax] (1)

Tdmin =

⎡
⎣ 1− FP1, . . . , 1− FPm

FP1 , . . . , FPm

⎤
⎦ (2)

Tdmax =

⎡
⎣ −FN1, . . . , −FNm

FN1 − 1, . . . , FNm − 1

⎤
⎦ (3)

In order to update the system vector, we define a transfer

matrix Td holding the detection characteristics, which is shown

in Eq. 1. First, we modify the lower bound of the system vector

by using the false positives (FP ) defined in Eq. 2. Second,

the upper bound of the system vector is adjusted according to

the false negatives (FN ) specified in Eq. 3. In detail, FP1 and

FN1 corresponds to the first failure type whereas the FPM

and FNM belongs to the m-th failure type in accordance to

the failure model.

By applying this knowledge to the afore-mentioned ex-

ample, in Fig. 4a we depict the validity restriction due to

false positives (FP) and false negatives (FN) on the outlier

failure type. Furthermore, we show the effect of detection
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Fig. 4. Definition of the system vector (SV)

characteristics on the system vector in Fig. 4b.

b) Filter characteristics: The filter characteristics ex-

presses the impact of a filter mechanism on the sensor data.

After a detection mechanism identified a failure, a smart sensor

application usually employs filter techniques to mitigate the

adverse effect of a failure. But a filter technique may come

along with considerable side effects. For instance, an outlier

failure filtered by using a moving average technique will add

an offset and also a delay to the original signal.

To express the characteristics of a filter technique, we use

parameters to describe the effect of the filter on each failure

type. A filter technique may affect the validity of a failure

type in a static fashion, in a proportional way or leads to an

elimination of a failure type. The static parameter is used to

express a modification by a fixed number. Static parameters

are well suited to describe delay effects. The proportional

parameter is generally used to express the mitigation of a

failure due to a filter method. In this case, the validity will be

affected by a percentage. The capability of a filter to suppress



the effect of a failure type is expressed by the elimination

parameter. An elimination might occur if the non-linearity of

a sensor is flawless calibrated.

Tf = [Tfmin;Tfmax] (4)

Tfmin =

⎛
⎜⎝

1 2 3 . . . M

0 −P 1 . . . 1

1 P 0 . . . 0

0 0 S . . . 0

⎞
⎟⎠ (5)

Tfmax =

⎛
⎜⎝

1 2 3 . . . M

1 −P 0 . . . 0

0 P 1 . . . 1

0 0 −S . . . 0

⎞
⎟⎠ (6)

In Eq. 4, we assign the filter characteristics (Tf ) in order

to alter the lower and upper validity bound given by the

system vector (SV ). In detail, we express the positive effect a

filter mechanism can have by raising the lower validity bound

up. The respective matrix representation is defined in Eq. 5.

Each row in this matrix affects a respective failure type. For

instance, we show with the first row the elimination of a

failure. The second row is used for proportional alterations. In

the third row, we show a static parameter using a homogenous

coordination. A neutral element is specified by the M-th row,

which is used if the filter mechanism do not affect a particular

failure type. The same parameter set is applied for the upper

validity bound in Eq. 6, which is to express the negative effect

a filter mechanism will have. To sum up, the Eq. 5 is used to

increase the validity and to express the mitigation of a occurred

failure due to the filter operation. With respect to the negative

side effects of a filter mechanism, we defined Eq. 6 in order

to drop the upper bound of the validity down.

C. Validity vector

The validity vector informs about the current validity of

the sensor data during run-time. Based on the validity bounds

given by the system vector, we determine the validity vector

in consideration of the outcome of the used detection and

filter mechanisms. In fact, the system vector defined a range

of validities taking into account the knowledge of the failure

model and the characteristics of the applied detection and filter

mechanisms. This knowledge is used to determine the precise

validity according to each failure type while run-time.

First of all, the validity vector needs to be initialized

using the outcome of a component. Concerning a detector the

detection result will be taken, but the validity vector is assigned

to the sensor, which does not have a comparable outcome.

The initialization of the validity vector is rather problematic,

because there is no knowledge or mechanism available in a

pure sensing device informing about the validity on run-time.

A plausible argumentation is to initialize the validity vector

with the mean value of the validity bound defined by the

system vector. Such an argumentation is neutral and will be

neither interpreted as a failure nor considered to be failure-

free.

By focusing on the detection, the outcome of a detection

mechanism will be either: failure is detected or failure is not

detected. In Eq. 7, we show how an outcome of a detector

could be represented. In an ideal system, we expect to receive

a high validity when no failures occur and in case of failures

a decrease of the validity. This idea can be implemented by

taking the upper bound of the system vector if the detector

does not detect any failure. On the other side, a detected failure

leads to a validity, which is given by the lower bound of the

system vector. Therefore, the first row in Eq. 7 selects the

upper bound of the system vector. Whereas the second row

chooses the lower bound of the system vector. The inability

to detect a certain failure type is shown by the M-row, which

leads to a negative outcome and clearly separates the cases not

detected failure (1-row), detected failure (2-row) and unable

to detect a failure (M-row).

Rd = Rf =

( 1 2 . . . M

0 1 . . . 0

1 0 . . . −1

)
(7)

Smart sensor applications trust in the capabilities of filter

mechanisms to suppress the impact of a failure. Following

this idea, we argue that a filter technique is used to boost

the validity. The outcome of a filter mechanism (Rf ) is

represented accordingly to the detection defined in Eq 7.

D. Validity value

The validity value is an application specific generated

value out of the validity vector. In general, an application

is incapable to exploit the details of the validity vector. The

application is mainly interested in a single value informing

about the confidence of the sensor data. Exactly, this need is

fulfilled by the validity value. The generation of the validity

value has to distinguish two cases.

First, the set of relevant failures considered by the failure

model is larger than the set of relevant failures of the applica-

tion. In this case, we have to sort out the failures in the validity

vector which are not relevant for the application. To generate

the validity value, we select and rebalance the relevant failures

in a way that the significances of the selected failures are

bounded by the assumption coverage. Subsequently, to receive

the validity value, we sum up the validity vector.

Second, the set of relevant failures considered by the failure

model is lower than or equal to the set of relevant failure of the

application. If the assumption coverage of the failure model

is close to one, we generate the validity value by calculating

the sum of the validity vector. But if the assumption coverage

is expected to be significant lower than one, we have to deal

with a serious issue. Because there may exist an unconsidered

failure in the failure model, which is considered as a relevant

failure by the application. In this situation, the generation of

an application specific validity value is prohibited.



IV. FAILURE ALGEBRA

The failure algebra is to calculate the impact a certain

detector or filter might have on the validity of sensor data. We

start to define the failure algebra and specify the operations

to transform the validity representation forms described in

Sec. III. Furthermore, we present rules for these operations

in order to describe the conditions under which the validity

calculation will be consistent and reproducible.

A. Definition

The failure algebra is defined by a set of validity represen-

tations (val rep), a set of transformations (trans) and a set

of operations as shown in Eq. 10. The validity representation

(val rep) ranges from zero to the assumption coverage, which

limits the validity representation due to the imperfection of the

underlying failure model. In Eq. 8, the validity representation

is defined as a set of the failure vector (FV ), system vector

(SV ), validity vector (V V ), validity value (V ), which are

described in Sec. III. The transformation (trans) holds the

necessary information in order to update and to transform the

validity representation specified in Eq. 9.

rep val = {FV, SV, V V, V }, rep val = [0, acov] ∈ � (8)

trans = {S, Td, Tf , Rd, Rf}, trans ∈ � (9)

({rep val, trans},⊗,�,⊕,�) (10)

B. Operations

In order to update and to calculate the validity represen-

tations (rep val), we define the update operator (⊗), the

detection operator (�), the filter operator (⊕) and the selection

operator (�).

The update operator (⊗) conforms to a matrix multiplication

and is used to update the system vector and to calculate the

validity vector. Second, the detection operator (�) updates the

validity vector using the detection result. We define in Eq. 11,

that a detection result (V Vd) will overwrite a validity, which is

initialized by a sensor (V Vi) or is changed due to a filter mech-

anism (V Vf ). This definition holds because a detector informs

about the existence of a failure, which is neither achieved by

an initialization nor by a filter mechanism. In the case of

an already performed detection shown in Eq. 12, we apply

the mean of two detector outputs (V Vd1, V Vd2) weighted

according to their false positives and false negatives given by

the system vector (SV1, SV2). This prevents a distortion of an

accurate detector by a less precise detector. By considering

Eq. 13, a negative validity (−V V2) does not affect an existing

validity (V V1). Because a negative validity indicates that a

detector or filter does not operate on a particular failure type.

Third, the filter operator (⊕) affects an existing validity (VV)

according to a mathematical sum, as specified in Eq. 14.

V Vi � V Vd = V Vf � V Vd = V Vd (11)

V Vd1 � V Vd2 = meanSV 1,SV 2(V Vd1, V Vd2) (12)

V V1 �−V V2 = V V1 ⊕−V V2 = V V1 (13)

V V ⊕ V Vf = sum(V V, V Vf ) (14)

Finally, the selection operator (�) is defined to calculate

a validity value (V ) out of a validity vector (V V ). This

calculation is controlled by a selection vector (S), which

defines the relevant failures of an application. If all failures are

considered to be relevant, the selection operator is similar to a

sum up of the current validities. Otherwise, the validity vector

needs to be rebalanced. Because, an unbalanced validity vector

would lead to a significant limited validity value even though

no failure has occurred. In fact, this situation leads to an

erroneously interpreted validity by the application. In Eq. 15,

we define the rebalance process using elementwise operations

indicated by the dot. First of all, we have to normalize the

current validities (V V/.FV ), which are originally weighted

according to the failure vector. Then, we have to calculate

the new weights due to the selection (S). In detail, we

select (FV ∗ .S) the failures in the failure vector which

are relevant for the application. To calculate the new weight

((FV ∗ .S)/.(FV ∗S)), we have to divide the selected failures

by the sum of selected failures. Subsequently, we have to

bound these weights according to the assumption coverage

(acov). Otherwise, the rebalanced validities would range from

zero to one, which is only representing the ideal case.

V V � S = v = (V V/.FV )′ ∗ (acov ∗ .(FV ∗ .S)/.(FV ∗ S))
(15)

C. Rules

We define operations to be commutative, associative or

nothing of both. The detection operation � is stated to be

commutative as well as associative as shown in Eq. 16 and 18.

The reason this properties can be fulfilled lies in the nature of a

detection mechanism. Because a detector only reads the sensor

data and affect the validity by detecting failures. Consequently,

the order of detection does not matter. In contrast, the filter

operation ⊕ can never reach the commutative or associative

property. This fact is expressed in Eq. 17 and 19. A filter

mechanism modifies the sensor data, which can be associated

to a write operation on sensor data. Therefore, the given sensor

data varies from filter to filter.

V V1 � V V2 = V V2 � V V1 (16)

V V1 ⊕ V V2 	= V V2 ⊕ V V1 (17)

V V1 � (V V2 � V V3) = (V V1 � V V2)� V V3 (18)

V V1 ⊕ (V V2 ⊕ V V3) 	= (V V1 ⊕ V V2)⊕ V V3 (19)



TABLE I
DEFINITION OF THE FAILURE MODEL

Outlier Noise Offset acov

Deviation (cm) 16 1.6 1.9 2.4

Significance (per cent) 51 13 16 20

V. SCENARIO

We evaluate the proposed failure algebra by using a general

robotic application. The first task deals with obstacle avoid-

ance, whereas the second task is to determine the position of

the robot. Regarding the used equipment to master these tasks,

we employ an infrared distance sensor (SHARP GP2D12 [21])

to observe the surroundings of the robot. Because of several

failures on the delivered sensor data, we add a detection as well

as a filter mechanism to this smart sensor application. By using

the validity representation, we address the impact a detector

and a filter will have and how to exploit this knowledge.

Considering this composition, we guide the reader through the

different validity representations and demonstrate the usage of

the defined operations.

A. Failure vector

In order to keep our failure model manageable, we solely

consider outlier, noise and offset failures, which lead us to an

assumption coverage of 80 per cent. The remaining 20 per cent

are due to unconsidered failures like delay, drift and etc. The

precise significances of this failures types are determined by a

reference system fusing laser, sonar and camera results [22]. In

Tab. I, we specify the deviation and the significance for each

failure type. By using this knowledge, we assign in Eq. 20

the failure vector (FV) for our smart sensor application. The

defined failure vector represents the significance of an outlier,

noise and offset failure.

FV =

⎡
⎢⎢⎣

0.51

0.13

0.16

⎤
⎥⎥⎦ (20)

B. System vector

The system vector (SV ) is initialized by the failure vector

(FV ) and ranges from zero to the defined significance, as

shown in Eq. 21. In detail, a failure lead to a validity of zero.

Respectively, the validity is set to the defined significance if

no failure occur.

Because of these failures, we employ a detector as well as

a filter mechanism. To determine the effect on the validity,

we elaborate the respective characteristics by simulations

combined with failure injection procedures [23].

SVi = f(FV ) =

⎡
⎢⎢⎣

0 0.51

0 0.13

0 0.16

⎤
⎥⎥⎦ (21)

TABLE II
CHARACTERISTICS OF THE HIDDEN MARKOV MODEL (HMM) DETECTOR

Outlier Noise Offset

False positive (per cent) 0.17 0.07 0.01

False negative (per cent) 0.01 0.02 0.01

TABLE III
CHARACTERISTICS OF THE KALMAN FILTER

Parameter Outlier Noise Offset

Static 0 0 -4

Proportional 4.4 7 0

Elimination 0 0 0

Considering the detection mechanism, we implement a

hidden markov model (HMM) [24] in order to detect the

defined failures. The HMM shows false positives as well as

false negatives as described in Tab. II. The set of false positives

and false negative lead to a bounding of the validity range as

expressed by the system vector (SVn) in Eq. 22.

SVn = SVi ⊗ Td =

⎡
⎢⎢⎣

0.08 0.5

0.01 0.12

0.01 0.15

⎤
⎥⎥⎦ (22)

Our evaluated smart sensor application uses a Kalman fil-

ter [25] to mitigate the impact of failures. The characterization

of the filter mechanism is specified in Tab. III. By applying

this characteristics to update the system vector, we receive an

increased validity for outlier and noise failures. But the validity

regarding offset failures drops slightly down due to the auto-

regressive implementation. The updated system vector (SVk)

presented in Eq. 23 describes the anticipated validity as a result

of the filter.

SVk = SVn ⊗ Tf =

⎡
⎢⎢⎣

0.35 0.5

0.07 0.12

0.01 0.11

⎤
⎥⎥⎦ (23)

The presented update of the system vector can be sum-

marized as the following. First, the initialized system vector

(SVi) specifies the validity range and points out the possible

failures. Assuming an ideal detector this validity range will

not be touched. Because the set of failures on sensor data

stays the same due to a detector. A detector rather informs

about a failure. Therefore, we receive a slightly limited validity

range (SVn) because of the false positives and false negative.

A possibility to significantly increase the validity are filter

techniques. A filter is able to suppress a failure, which leads

to a raised validity (SVk). This can be interpreted as a validity

guarantee, which will be maintained during run-time.



C. Validity vector

The validity vector informs about the current validity on

run-time. In Fig. 5a, we depict the raw sensor data obtained

by an SHARP GP2D12 infrared distance sensor. These sensor

data are fed to the HMM in order to detect outlier, offset

and noise failures. The outcome of the HMM is visualized

in Fig. 5b. We receive three detected outlier failures, which

can be seen by the accordingly decreased validity. Then, we

notice an offset failure between timestamp 150 and 200, which

is due to an improper calibration. Moreover, we have to deal

with noise failures occurred sporadically. In order to express

these detection results, we use the validity bounds predefined

by the system vector. By applying this knowledge, we obtain

the validity vector (V V ) shown in Fig. 5b.

D. Validity value

Finally, we generate a one-dimensional validity value out of

the m-dimensional validity vector. By analyzing the sensitivity

of our robotic applications against the defined failures, we

achieve a specific selection vector (S) for each application.

These selection vectors specify the set of relevant failures

and are used to generate the validity value. Considering

the obstacle avoidance task, we identified outlier failures to

be relevant. Whereas noise and offset failures do not have

a significant impact. This requirement is expressed by the

selection vector (Sob) in Eq. 24. In Fig. 5c, we show the

resulting validity value which is fed to the obstacle avoidance

implementation. Therefore, the validity only drops down if an

outlier occur.

Regarding the second task which is responsible for naviga-

tion, we figured out a sensitivity against all defined failures.

This leads to the selection vector (Snav) defined in Eq. 25.

The resulting validity value is illustrated in Fig. 5c, where the

validities of the validity vector are summed up.

In the end, both applications are explicitly informed about

the confidence of sensor data. The analysis of the applications

identified relevant failures, which match with the failures

defined by the failure model. Therefore, the employed sensor

cannot be used to perform the considered tasks without any

further detection or processing. Using the validity representa-

tion, we mastered the mismatch of sensor and application.

Because the validity informs the application whether the

current sensor data can be used.

Sob =

⎡
⎢⎢⎣

1

0

0

⎤
⎥⎥⎦ (24)

Snav =

⎡
⎢⎢⎣

1

1

1

⎤
⎥⎥⎦ (25)
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VI. CONCLUSION

In this paper, we described a new approach to calculate the

validity for distributed sensor systems. The proposed approach

is not limited to a specific set or a certain order of processing

components e.g. detection or filter mechanisms. Consequently,

an implicit assumption to handle sensor failures is not needed

anymore. In detail, our approach informs about the current

confidence an application can have in remote obtained sensor

data. In addition to the sensor data, we provide a validity value,

which can be linked to an application need. Because each

application might consider a different set of relevant failures.

Our approach consists of:

• First, an appropriate representation describing the validity

of a processing chain.



• Second, a definition of operations on the validity com-

bined with rules for the calculus.

Both are necessary to calculate the validity of sensor

data, which propagates through a distributed processing chain

equipped with several detection and filter mechanisms. But this

calculation requires a detailed knowledge on the processing

chain characteristics, which is determined on design-time and

leads to static bounds on the validity. In order to exploit

this knowledge for the validity calculation, we also have to

consider the outcome of a processing chain, which is available

on run-time. At this point, we profit from the defined failure

algebra operations to bridge the gap between both worlds. In

fact, the representations can only be used in conjunction with

a failure model, where the relevant failures are defined and

the calculated validity gets comparable and interoperable.

The key to broaden the usage of the failure algebra is an

enlargement of operations. Future work will investigate on

the fusion of validities fed by different sensors. Because the

proposed failure algebra only deals with sequential processing

chains. Further, the consideration of redundant sensor config-

urations as a special case of the sensor fusion seems to be

promising. Another research will be directed on the validity

calculation of two detection results, where the current mean

calculation can be recognized as an interim solution. Then,

the system vector needs to be idempotent to deal correctly

with a repeated detection of the same implementation. Be-

cause a detector does not gets more precise if this particular

mechanism is repeated. Additional research will investigate on

the initialization of the validity vector, where the mean of the

failure vector is not a satisfactory solution. Finally, we will

provide an implementation of the failure algebra integrated as

a framework in Simulink.
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