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Executive	Summary	

This deliverable is the first report from the work task 4.2 on the Safety Kernel definition. The 
focus is on providing a first definition of the Safety Kernel architecture and its components. 

As a basis for the design of the Safety Kernel, the relevant issues on its operation are presented 
and discussed, namely, the issues on collecting run time safety information, on assessing the 
safety requirements, and on making adjustments on the nominal system component according to 
the required level of service. 

The Safety Kernel is a part of a KARYON system, which is composed by a few key 
components that realize functions that are necessary to manage the overall system behaviour 
and achieve functional safety objectives. Therefore, this deliverable describes the role of the 
Safety Kernel as a whole and of its individual components, their purpose and the functions they 
realise. The interactions between the Safety Kernel components and the functional components 
of the control system are also presented. 

Finally, an example implementation approach is presented, to illustrate how the described 
Safety Kernel architecture can be instantiated and how its components may be realized in 
practice. 
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1. Introduction	

1.1 Purpose	&	Scope	

KARYON focuses on the predictable and safe coordination of smart vehicles that autonomously 
cooperate and interact in an open and inherently uncertain environment. A fundamental idea 
underlying the KARYON approach is to consider a generic architectural pattern exploiting the 
concept of architectural hybridization. This is instrumental to allow dealing with the temporal 
uncertainties in the system operation, and thus deal with the main challenge to predictability and 
safety. In particular, part of the control system functions need not be proven timely in design 
time (which would be a problem due to the temporal uncertainties), provided that another part of 
the system always behaves timely with the required (proven in design time) probability. There 
are thus two distinct parts in the overall system, each with different properties with respect to 
synchrony, following the architectural hybridization concept. Given the uncertainties affecting 
the operation of part of the system and affecting the quality of the data used in control 
processes, the KARYON architecture defines the existence of a Safety Kernel, that is, a set of 
safety-related components that reside in the predictable part of the system and thus behave 
timely, as proven in design time. The set of components that constitute the Safety Kernel are 
responsible to perform monitoring and management tasks, according to rules defined in design 
time, which ultimately ensure the required functional safety goals. The purpose of this 
document is to identify the issues in the design of the Safety Kernel, specify its architecture and 
propose a high-level preliminary implementation. 

Although the objective of KARYON is to deal with cooperative systems, ensuring functional 
safety of cooperative functionalities, the enforcement of some necessary behaviour (as 
necessary to secure safety rules) has to be decided at the vehicle level. This is because there is 
always the possibility that the ability of a vehicle to communicate with other vehicles or with 
the infrastructure is limited, preventing a centralized enforcement of the distributed behaviour to 
be performed. Therefore, a Safety Kernel will exist in each vehicle. 

A cooperative functionality is realized by a set of cooperating vehicles and in each vehicle the 
functionality is decomposed in a number of functions provided by functional components. Each 
of these functions can, in fact, be used in the provision of several functionalities. For instance, a 
function that calculates the front distance can be used in the provisioning of a Platooning 
functionality and, at the same time, to implement a cooperative warning functionality. 
Moreover, a function can either be implemented: 

a) As a single component that executes always the same algorithm, in the same manner, 
with a single performance level;  

b) As a single component that may execute different algorithms or may execute an 
algorithm with different parameterizations, each corresponding to a different operation 
mode and leading to a different performance level;  

c) By multiple components, executing independently and redundantly, where some 
components provide a better performance level than others due to the employment of 
different algorithms.  

Components can be of different categories, depending on their purpose. Sensor components 
interact with the physical environment and produce information to the system, actuator 
components receive information from the system and interact with the physical environment, 
computing components are within the system, can receive and produce information from/to 
other components and, finally, communication components are special in the sense that they can 
either receive and produce information from/to the system, but also interact with the physical 
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environment. The data produced by components, in particular sensor data (but also other 
computed data), can have an attached data validity attribute, which is provided by the 
component on its output. Each data value thus can have a validity attribute. 

Depending on the specific operation mode of each function, or on the components that are 
selected for realizing some function, the functionality that depends on these function will be 
performed with different Levels of Service (LoS). The overall goal of the Safety Kernel is 
precisely to manage the combination of operation modes or selected components, which is 
necessary to enforce the required LoS of each functionality, at each moment, in order to make 
sure that all functional safety requirements are satisfied. These requirements have to be 
established in design time, resulting from the safety analysis that has to be performed for each 
functionality, which dictates safety requirements that are allocated to each functional 
component. We note that the LoS is a measure of maximum performance level of the 
cooperative functionality (e.g., how close vehicles can be to each other, or how fast they can 
go), but does not necessarily imply a certain effective performance level (e.g., vehicles can stay 
far from each other even if the LoS of the functionality is high). This is because the actual 
control decisions depend on context data, like traffic density or weather conditions, which can 
be such that even if the LoS of the functionality is high, the actual performance may have to be 
low. 

In the design of the Safety Kernel, several issues need to be considered, of which we highlight 
the following three:  

 The Safety Kernel will execute a set of functions on its own, which are required to 
support cooperative functionalities that may be executed with several Levels of Service 
(LoS); 

 It will have to deal with timing failures of some functional components, namely 
complex components whose timeliness may not be easily verified in design time; 

 It will have to deal with the fact that the validity of sensor data may not be guaranteed at 
design time and thus might vary in run time; 

 It will perform the management of operation modes and component configuration based 
on the observed timeliness of complex components and on the observed data validity, 
and considering pre defined safety rules associated to each LoS of each functionality. 

This is the first report on this topic and its purpose is mainly to define the architecture of the 
Safety Kernel. 

1.2 Relation	to	other	work	

The work presented in this deliverable is closely related to the general architecture defined in 
WP2 and to the work done in task 4.1 about safety requirements and constraints. Namely, the 
specification of safety rules is an expected outcome of task 4.1. 

The generic design specification for the Safety Kernel defined in this document will later be 
instantiated in the demonstrators in WP5. 

Besides the tight cooperation with other work tasks in KARYON, the state of the art in the 
research field, and the state of practice in the industrial community, has been used as an input.  

Safety critical systems are typically built considering models in which assumed properties (e.g., 
synchrony, faults) are applied to the whole system and do not change over time. Therefore, 
these models are said to be homogeneous. On the contrary, we advocate that in order achieve 
performance improvements without sacrificing safety it is necessary to consider hybrid 
distributed system models [14]. These allow to better capture the real properties of the 
environments in which vehicles operate and in which functionality is implemented. More than 
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that, we believe that architectural hybridization [15] is the natural way to architect systems in 
accordance to the considered hybrid system models. One simple example of a system well 
described by a hybrid system model is a system with a watchdog. The watchdog is used as a 
safeguard to make sure that if something goes wrong in the system then it will be possible to, at 
least, make the system stop in order to prevent some wrong or unsafe behaviour. Clearly, while 
the system is assumed to possibly fail, the watchdog is assumed to always operate correctly. 
Therefore, the watchdog is a subsystem with better properties than the rest of the system, which 
is possible because it is a simple component. 

Mixed criticality [13] is the concept of allowing applications with different levels of criticality 
to coexist on the same system. In this case, one may want that the properties and assumptions 
that hold for one application be different from the ones that hold for another application, which 
is not easily achieved in a system based on a homogeneous model. Mixed criticality models 
show affinity with hybrid system models, in which assumptions and properties may vary on 
different parts of the system or may hold only for a period of time. 

The GENESYS project [16] acknowledged the hybrid nature of systems and developed a 
component-based generic platform for embedded real-time system. However, GENESYS is 
significantly focused on the problems related to composition and component interfaces, whereas 
our interest is on understanding how uncertainty can be characterized and how the performance 
can be managed while making sure that safety requirements are always satisfied. 

The recovery block concept [17] follows a hybrid model, where multiple versions for the same 
function are developed. First it runs the more complex version of the function (with extra 
features and more prone to errors). If an error is detected, then a simpler implementation is 
executed. Simplex [18] follows a similar approach by defining an architecture composed of two 
system controllers:  one simple and proven safe, and one with additional features, but unreliable. 
It tolerates faults in the unreliable controller using a decision module that observes the plant to 
verify if the controller is being able to keep the controlled system within the desired operational 
envelope. If not, it switches the execution to the reliable controller, trading off performance for 
safety. 

The solution is thus designed by assuming that faults are ultimately reflected on some undesired 
external behaviour, which can be reliably observed through the existing sensors. In KARYON 
we look to the problem differently, because we consider that sensor data may not always be 
valid due to faults affecting sensor, or due to uncertainties affecting the timeliness of 
communication and hence the promptness (and validity) of the other sensor data received from 
remote vehicles. Therefore, we define an abstract sensor model that allows the validity of sensor 
data to be estimated, and we consider that some components may do timing failures due to their 
complexity. Given that, the solutions for deciding when to change the control algorithm, or 
when to perform some system reconfiguration, are done in a different way than it is done in 
Simplex. 

The coexistence of reliable and unreliable components calls for mechanisms for fault 
containment. Virtualization [19] has been widely used as a mechanism to run multiple systems 
within the same physical computing platform, allowing providing different environments in 
each virtual machine and isolation between them. However, most virtualization solutions do not 
provide strict temporal isolation. One approach to achieve mixed criticality without increased 
certification expense and providing a complete fault containment (including temporal isolation) 
between components is to use time and space partitioning (TSP) [1, 2]. TSP is a concept for 
safety-critical systems in which applications with different criticality levels and different 
requirements may coexist in the same execution platform. TSP separates the system’s software 
components into logical containers called partitions, ensuring that faults occurring in one 
partition do not affect other partitions, with respect to both time and space domains. These two 
properties ensure that faults are contained to their domain of occurrence, preventing them from 
propagating to other partitions. 
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A prominent example of TSP system design is the adoption of the ARINC 653 [4] specification 
by the civil aviation domain. In the automotive industry, the top-level requirements for an 
AUTOSAR operating system include provisions that correspond, to some extent, to the notions 
of temporal and spatial isolation [8]. The specification of the AUTOSAR operating system, 
however, does not prescribe the use of strict partitioned scheduling as a means to achieve this 
temporal isolation among applications [20]. 

We take advantage of TSP properties to develop a solution that integrates in the same platform 
components of different complexity, some that are proven timely and reliable in design time, 
and other that may behave in uncertain ways. The latter can be used to implement improved 
functions, exploiting the additional information made available through cooperation, without 
compromising safety. The overall approach can still be viewed as sufficiently modular to be 
adopted by existing legacy systems. 

1.3 Structure	of	the	document	

Chapter 2 covers the issues in the design of the Safety Kernel, from tracking and assessing the 
safety requirements to the adaptation of the LoS. The chapter ends with a discussion regarding 
the impact of the adjustment of the LoS of a cooperative functionality upon functional 
components that may be shared with other functionalities. 

Chapter 3 presents the preliminary architecture of the Safety Kernel by detailing its components 
and their interfaces. The chapter begins by stating the relation between the Safety Kernel and 
the overall KARYON architecture. Then each component of the Safety Kernel is presented 
together with its interfaces. Also, to guarantee the timely information flow between the 
components, the required scheduler support is discussed. The chapter ends with an example 
scenario that illustrates the core operation of the Safety Kernel. 

Chapter 4 introduces a possible high-level implementation of the Safety Kernel based on a Time 
and Space Partitioning system. This implementation is based on the AIR. 

Finally, in chapter 5 the report is briefly summarized and the next steps are identified. 
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2. Issues	in	the	design	of	the	Safety	Kernel	
There are several key issues that have to be considered in the design of the Safety Kernel. These 
issues are the focus of this chapter and are organized under three headings that correspond to the 
three stages of the Safety Kernel’s operation: a) gathering safety-related information, b) 
assessing the safety requirements and c) adapting the LoS by adjusting the operation mode of 
system components. 

2.1 Gathering	safety‐related	information	

Safety-related information consists in safety rules that are defined in design time, and in data 
validity and other health information collected in run time. While design time information can 
be statically stored in some safety information database, run time information must be 
continuously and periodically obtained.  Both design time and run time safety information is 
required to determine, for each functionality, the highest LoS in which it can be provided. In 
this section we discuss how this information is gathered. 

2.1.1 Knowing	design	time	information	

Safety requirements should be stored as rules in a database accessible to the Safety Kernel. 
These rules refer to validity attributes that need to be gathered in, runtime, which are provided at 
the output of some components, as well as to temporal bounds for the execution of some 
components, which must be monitored by the Safety Kernel. The rules must also have to 
express, for each LoS of each cooperative functionality, how to assess the validity attributes and 
timeliness of the components and adapt the LoS. 

The Safety Kernel, whose role and operation do not depend on the semantics of cooperative 
functionalities, only evaluates the rules using an appropriate rule evaluator engine, which is 
generic and not developed for particular rules or functionalities. For example, if a certain LoS of 
a cooperative functionality requires that variable V1 is lower bounded by some value (e.g., 
V1>0.9), then the Safety Kernel will just have to know the bound, the run time value of V1, and 
the comparison that needs to be done, in order to determine a Boolean value indicating if the 
LoS is sustainable. The specific meaning of the bound, or of the current value of V1, is 
irrelevant from the perspective of the Safety Kernel. 

Nevertheless, the design of the Safety Kernel requires the specification of the rules format and 
their interdependencies. The complexity of the rules can vary from a collection of independent 
checks of data validity to a sequence of interdependent checks of data validity and timeliness 
information. The rules specification is an expected outcome of task 4.1. 

These rules should support the following decisions: 

 Determination of a maximum local LoS, at the node, for each cooperative functionality 
that constitutes an upper bound for the effective LoS; 

 Determination of the effective LoS for each cooperative functionality based on the 
maximum local LoS and, possibly, information from other nodes concerning their own 
perspective on the LoS of the cooperative functionality; 

 Determination of the performance level of each functional component at the node. 

The way these rules are generated is outside the scope of the Safety Kernel definition. 
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2.1.2 Collecting	run	time	information	

Run time information refers to data validity and to execution delays, which can be collected 
from functional components. The focus on these specific data stems from the considered fault 
model, which, in the case of KARYON, includes both value faults (affecting sensor data that is 
needed by control algorithms providing the functionality) and timing faults (of some 
components required to provide the functionality). 

The Safety Kernel implements an interface to allow the needed information to be retrieved 
from, or provided by the functional components. This interface will be known to the designer of 
functional components, and must be used when implementing the components, whenever 
necessary for the sake of collecting data validity or timeliness information. The details on this 
interface are provided ahead in the deliverable. 

The collection process is continuous and periodic. That is, the Safety Kernel will be periodically 
collecting information and analysing it, thus allowing some upper bound to be established on 
the time needed to detect a significant change of validity or timeliness.  

2.2 Assessing	the	safety	requirements	

Assessing safety requirements means, in practice, verifying if safety rules established in design 
time are satisfied in run time. This is done using the periodically collected information on 
validity and timeliness, which is fed into an engine that performs the necessary checks, as 
defined by each rule. The definition of this engine is dependent on the syntax of the rules, which 
is an issue to be addressed in a future step within WP4.  

Based on this assessment, the Safety Kernel is able to determine the LoS for each cooperative 
functionality and, from that, the performance level at which each component must operate. 

2.3 Adapting	the	level	of	service	

In general, the main objective of the Safety Kernel is the adaptation of the LoS of the 
cooperative functionalities under its supervision. This adaptation is an outcome of the 
assessment of the safety requirements, as explained in section 2.2. 

The actual LoS of a cooperative functionality may not only be dependent on the assessment of 
the local components but may also be determined by information received from other vehicles. 
Due to the cooperative nature of the performed functionality, the Safety Kernel may have to 
consider the maximum LoS that is possible on other vehicles realising the functionality in the 
same scope. This depends on the specific functionality, and on how it is designed. There are 
basically two options: a) the functionality may be designed assuming that all involved vehicles 
are coherently executing the functionality in the same LoS, or b) it may be designed assuming 
that each vehicle executes the functionality in a different LoS (possibly knowing in which LoS 
are the other vehicles executing the functionality). In the first case, the Safety Kernel will 
locally enforce a LoS that takes into account the LoS information received from other vehicles 
(through a cooperative LoS evaluator component, described in Section 3). Otherwise, the locally 
enforced LoS will be the one that is determined upon the assessment of safety requirements. 

For example, in the case of a cooperative functionality where its LoS is based on an agreement 
between the participating nodes, the LoS enforced by the Safety Kernel would be the highest 
that can be maintained across these nodes. Whenever the LoS has to be degraded in a certain 
node, e.g., because this node is experiencing some failures, this change must be communicated 
to the other participating nodes and reflected on their own enforced LoS. Likewise, in the 
opposite situation, in which a certain node is able to operate at a higher LoS, this information is 
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propagated to the other participating nodes and, if they can all perform in this higher LoS, then 
the locally enforced LoS is raised. 

When the locally enforced LoS changes, this implies some sort of reconfiguration of the system 
functions. For this matter, we consider that every functionality has, in general, more than one 
LoS and that there may be several functions involved in the implementation of the functionality. 
Each of these functions can be necessary for the provision of several functionalities, as 
exemplified in Figure 1. In the figure, system function 2 is used in both cooperative 
functionalities (it could be, for instance, a function to determine the front distance, which is 
used both in Platooning and in cooperative lane change functionality). 

 
Cooperative 

Functionality 1 
Cooperative 

Functionality 2 

System Function 1   X   

System Function 2  X  X 

System Function 3  X   

System Function 4    X 

Figure 1: Example of functions being used in the provision of different functionalities. 

Adapting the LoS of a cooperative functionality requires changing the mode of operation of 
specific related system functions, which is in fact a way of changing the performance of these 
functions. Given that a function can be implemented as a single component (with multiple 
modes of operation) or by multiple components (each one executing a different algorithm), 
changing the mode of operation, or the performance, can be done by: 

a) Reconfiguring a single component, or  

b) Selecting one component among the several components that (redundantly) implement 
the function with different performance levels. 

These different options are reflected on the architecture of the Safety Kernel, that is, on the 
mechanisms and components that need to be included in the Safety Kernel.  

The LoS has to be adapted in a timely manner. Consequently, a change in the mode of execution 
of specific system functions has to be guaranteed to happen within timing bounds. 

2.4 A	generic	example	of	LoS	management	

Consider two cooperative functionalities, CFA and CFB, which are being executed among a set 
of cooperative vehicles. These functionalities are performed by combining the use of a number 
of functions available in each vehicle. In this illustrative example we consider that in order to 
provide these two functionalities it is necessary to use the following components in each 
vehicle: four sensors, S1 to S4, six functions, F1 to F6, and two actuators, A1 and A2, 
interconnected as depicted in Figure 2. For example, it can be seen that function F1 takes, as 
inputs, data from the four sensors and produces a result that will be consumed by both F2 and 
F3. 
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Figure 2: Example of component interconnection. 

Each cooperative functionality uses the following functions: 

 CFA − F1, F2, F4 and F5; 

 CFB − F1, F3 and F6. 

Given that the output of F5 is sent to A1, this means that functionality CFA is realized by 
actuations on actuator A1. Similarly, CFB is realized by actuating on A2. 

The system functions have the following implementations: 

 F1 is implemented as a component, C1, with three performance levels; 

 F4 has two implementations, C4’ and C4’’, as shown in Figure 3; 

 The remaining functions are implemented as a single component with a single 
performance level. 

 

Figure 3: Example function with two implementations. 

This means that in the case of F1, a change in its performance level only requires a 
reconfiguration, while for F4 it would require selecting the output of a different component, 
either C4-PL1 (performance level 1) or C4-PL0 (performance level 0). 

From the point of view of the LoS for each cooperative functionality, both CFA and CFB have 
four LoS (from LoS0 to LoS3). The LoS of CFA depends upon two monitored variables: 1) the 
validity of the output of sensor S1, designated as V1, and 2) the execution time of C4, 
designated as ETC4. The LoS of CFB depends upon two monitored variables: 1) the validity of 
the output of sensor S1 (already designated as V1) and 2) the validity of the output of sensor S2, 
designated as V2. So, in total, three variables are monitored at each vehicle where the two 
cooperative functionalities are defined. The values of V1 and V2 are given as floating-point 
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numbers in the interval [0.0, 1.0]1, while the value of ETC4 is checked against a given relative 
deadline DC4. 

More specifically, for each LoS, CFA requires the following set of safety rules to be met: 

 CFA(LoS3) → V1 > 0.8  ˄  ETC4-PL1 < DC4 

 CFA(LoS2) → V1 > 0.6  ˄  ETC4-PL1 < DC4 

 CFA(LoS1) → V1 > 0.6 

 CFA(LoS0), otherwise 

On the other hand, for each LoS, CFB requires the following set of safety rules to be met: 

 CFB(LoS3) → V1 > 0.8  ˄  V2 > 0.7 

 CFB(LoS2) → V1 > 0.8 

 CFB(LoS1) → V1 > 0.6 

 CFB(LoS0), otherwise 

The safety of CFA and CFB is guaranteed by the observation of these safety rules. 

When a cooperative functionality has its LoS changed, this implies a change in the performance 
level of one or more components, depending on which safety rules are met. 

In the case of this example, a table that defines the performance levels of the components in 
dependence of the LoS of all functionalities could be prepared. Table 1 presents the initial rows 
of the combinations between the LoS of both functionalities and the consequences in the 
performance level for each component. An invalid combination is represented as an action not 
being applicable, N.A., to any reconfigurable functional components. 

CFA CFB F1 F2 F3 F4 F5 F6 

LoS3 LoS3 PL2 - - PL1 - - 

LoS2 LoS3 N.A. - - N.A. - - 

LoS1 LoS3 PL2 - - PL0 - - 

LoS0 LoS3 N.A. - - N.A. - - 

LoS3 LoS2 PL1 - - PL1 - - 

LoS2 LoS2 N.A. - - N.A. - - 

LoS1 LoS2 N.A. - - N.A. - - 

… … … … … … … … 

Table 1: Effect of LoS combinations on the PL of components. 

If a third functionality was added to the system, this would imply that the size of Table 2 would 
increase, in order to consider all possible combinations of functionalities and their LoS. In 
practice, several optimizations could be done in order to summarize the information in the table. 

                                                       
1 We use floating point numbers just as an example. Preliminary approaches for modeling the validity of 
sensor data have been addressed in deliverable D2.2. 
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For instance, Table 2 could be simplified by removing the rows with impossible combinations, 
such as CFA(LoS2) with CFB(LoS3). The simplified table would become as follows: 

CFA CFB C1 C2 C3 C4 C5 C6 

LoS3 LoS3 PL2 - - PL1 - - 

LoS1 LoS3 PL2 - - PL0 - - 

LoS3 LoS2 PL1 - - PL1 - - 

… … … … … … … … 

Table 2: Simplified LoS combinations on the PL of components. 

From this table it can be seen that, due to a LoS change, any functional component can have its 
performance level adjusted.  

For example, a possible LoS change scenario happens when the best implementation of F4 
misses its deadline (that is, when ETC4-PL1 > DC4). In this case the LoS of CFA could go from 
LoS3 to LoS1 (which can be seen by observing the stated safety rules). Since CFB is in LoS3, 
the Safety Kernel would have to force C4 into PL0, while keeping C1 in PL2. 

An interesting scenario happens when V2 becomes smaller or equal to 0.7 while V1 > 0.8 and 
ETC4-PL1 < DC4. This leads to a reduction in the LoS of CFB, which implies a reduction in the 
performance level of component C1. As this component is shared with CFA, this cooperative 
functionality is affected by a reduction of the performance of C1. Despite all safety rules for 
CFA to be provided in LoS3 are met, one of its functional components will execute in a lower 
performance level. This is not a problem for safety, just for performance of CFA. However, if 
during design time this is considered to be unacceptable, then it is possible to define a new 
component similar to C1 to be used exclusively by CFA, which would not be affected by a 
degradation of V2. 
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3. Architecture	of	the	Safety	Kernel	
This chapter details a preliminary design specification for the Safety Kernel to manage the LoS 
of cooperative functionalities. The Safety Kernel includes the necessary components to perform 
the tasks identified in Chapter 2. 

More specifically, the Safety Kernel has to perform the following tasks: 

 For the components that have their outputs monitored, their data validity information 
must be gathered and validated against the safety rules. Possibly, the LoS of cooperative 
functionalities and the performance level of components may change. 

 For the components located above the hybridization line, that is, complex components 
whose timeliness might not be guaranteed at design time, their timeliness is monitored, 
which required observing their execution time, so that the system knows whether the 
defined execution bounds are being fulfilled. 

 For the functions that have multiple components, where each implementation produces 
an output, the Safety Kernel must choose which of the produced outputs will be the 
function output that is forwarded to other functions. 

In the next sections, we begin by reviewing the role of the Safety Kernel within the overall 
KARYON architecture. Then, we present the components of the Safety Kernel and also external 
related components that play an important role in the operation of the Safety Kernel. This 
includes functional support from the Operating System. Next, we describe the interfaces 
between the components of the Safety Kernel and the nominal control system components. 
Finally, to guarantee the timely operation of the Safety Kernel components, the required 
scheduler support is discussed. 

3.1 Relation	with	overall	KARYON	architecture	

According to the defined KARYON architecture, system components are organized in three 
levels, separated by the hybridization line and by the semantics line. The hybridization line 
differentiates components that are proven timely in design time and those that are not (and thus 
might do timing faults in run time). The semantics line differentiates the components that realize 
the functionalities (and thus are developed with awareness of functionality semantics) and the 
components that provide support (and generic) functions. These functions are developed 
independently on the specific functionalities (and thus are unaware of functionality semantics). 
The Safety Kernel is positioned in the lowest level, below both the hybridization and semantic 
lines. This means that the Safety Kernel must be proven to behave correctly and in a timely way 
in design time. Besides that, it means that the Safety Kernel is not aware of the functionality 
semantics, that is, the components included in the Safety Kernel are designed independently 
from the considered cooperative functionalities. 

The functional components of the system are located in the two upper architectural levels, 
whose difference is the timeliness guarantees each one provides. The task of the Safety Kernel 
is to control the components in these levels, ensuring that they operate with the necessary 
performance levels to meet some desired LoS for the different functionalities. The required LoS 
is also determined by the Safety Kernel, and will be the one that is necessary to satisfy the 
functional safety goals.  
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3.2 Components	of	the	Safety	Kernel	

To perform its role, the Safety Kernel exchanges information with other components in the 
KARYON architecture. The exchanges with different types of components embody different 
aspects of the Safety Kernel’s operation, like receiving validity data and sending commands for 
controlling the operation mode of functional components. For this reason, we see the Safety 
Kernel as a set of components, with clearly defined and separated concerns, which are combined 
to verify and guarantee the operational conditions for safety. For the Safety Kernel to be relied 
upon for the provision of safety-critical functionalities, its components have to be proven to 
exhibit the necessary reliability and timeliness in design time. This section describes these 
components. 

The Safety Kernel collects the data validity or timeliness information made available by the 
monitored functional components, assesses it and adapts the LoS of cooperative functionalities 
by reconfiguring the functional components according to the predefined rules. The components 
of the Safety Kernel always involved in this control loop are: the Rules Database, the Local LoS 
Evaluator and the Safety Manager. The assessment is done by the Local LoS Evaluator and its 
result is forwarded to the Safety Manager. 

As mentioned before, each function of the nominal control system can be implemented in a 
single or with multiple components. When a function has two different implementations, where 
each one corresponds to a specific performance level, the Safety Kernel will have to assess the 
execution time of the components above the hybridization line, comparing it to some predefined 
execution bound.  An implication of having a component of this type is that the Safety Kernel 
has to guarantee that only the output of one of the components (the selected one, according to 
the LoS) is forwarded to other components. Two other components of the Safety Kernel will 
also cooperate in this process: the Data Component Multiplexer and the Timing Failure 
Detector. 

Another possibility is for the functions to have different modes of operation. In this case the 
performance level of a function can be adjusted through a reconfiguration of its mode of 
operation. 

Finally, for every cooperative functionality, the Safety Manager uses the result produced by the 
Local LoS Evaluator and, possibly, the result from the Cooperative LoS Evaluator and decides, 
based on rules, if there will be a change in the effective LoS. The Cooperative LoS Evaluator is 
an external component, which will be described in section 3.3.1. 

All these components and their interactions are represented in Figure 4. They will be described 
in the following sections. The figure also shows two example components, where function A 
has two implementations and produces an output to function B. 
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Figure 4: System components overview and interaction. 

3.2.1 Rules	Database	

The rules database contains the safety rules derived in design time, as mentioned before. The 
safety rules include: 

 Rules used to assess, at runtime, under which LoS a specific cooperative functionality 
may operate. The assessment is done by comparing data validity and timeliness 
information with respect to the bounds expressed in the safety rules. 

 Rules used to define the performance levels for every reconfigurable component in 
dependence of the LoS of each cooperative functionality. 

 Rules to guide the Safety Manager’s decision on how to handle the input provided by 
the Cooperative LoS Evaluator, in addition to the input received from the Local LoS 
Evaluator. 

The complexity of the rules can vary from a collection of independent checks of data validity to 
a sequence of interdependent checks of data validity. The rules specification is an expected 
outcome of task 4.1. 

3.2.2 Data	Component	Multiplexer	

As explained in Section 3.1, some functions may have components above and below the 
hybridization line. Some, simpler, are proven to behave in a timely way. Others, more complex, 
have unpredictable execution times. More complex implementations produce a better result, 
with higher quality than simple implementations. 

As functions depend on other functions as data sources, the result of a function with multiple 
implementations with a quality that is lower than what is possible will negatively influence 
other functions that consume this data. The result of a function with multiple components 
should always correspond to the output of the component that better satisfies the safety 
requirements of the LoS of all cooperative functionalities that makes use of it. For instance, 
when a complex implementation of a function misses a deadline, the result provided by the 
function must be the output from a simpler component. 
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To avoid any time penalty whenever a complex component misses a deadline, all components 
(complex and simple) of a function may be executing simultaneously. In this case, the output of 
a timely component should be selected as the actual result of the function. And therefore, the 
deadline miss only affects the quality of the result but not the time at which it is produced. 

For example, considering two components that perform the same function, one with a complex, 
but unpredictable, algorithm and the other with a simple, but predictable, algorithm. When these 
two implementations are concurrently in execution, the result produced by the simpler but 
reliable implementation can always be used when the result from the more complex but 
unreliable implementation has not arrived in time. This way, it is possible to ensure that a valid 
output (produced by the simpler implementation) will always exist, and if a better and valid 
result (produced by more complex implementations) exists the later will be used. 

The task of the Data Component Multiplexer is to decide which component’s output will be the 
result of the function, discarding the others. To do so, each multiplexer must access the Rules 
DB and act accordingly. 

These components of the Safety Kernel are crucial to achieve safety in hybrid architectures such 
as KARYON, since they allow masking failures in complex components by using the result of 
another component. 

Functions that use the produced output forwarded by a multiplexer are independent from the 
function before it. 

The Data Component Multiplexer does not apply to functions with a single implementation. 

3.2.3 Timing	Failure	Detector	

The Timing Failure Detector (TFD) component is in charge of detecting failures in the time 
domain in an implementation of a component above the hybridization line, since these are the 
ones whose execution time is unpredictable and not bounded. Hence, this component of the 
Safety Kernel acts as a watchdog, looking up permanently for delays and crashes. 

In order to achieve this, each real-time complex component (above the hybridization line) must 
send a periodic heartbeat to the TFD. When executed, the TFD must, for all the components, 
check whether their heartbeats are still valid, or not, by evaluating their freshness. If a heartbeat 
is too old then this means that a delay or crash has happened. This information about the 
violation of a timing bound will be used in the evaluation of safety rules. 

The Timing Failure Detector does not apply to functions with a single implementation. 

3.2.4 Local	LoS	Evaluator	

The role of the Local LoS Evaluator is to evaluate and assess the data validity and timeliness 
information of the monitored components against the Rules Database. Based on this assessment, 
the Local LoS Evaluator determines the maximum LoS at which each cooperative functionality 
is able to safely perform from the perspective of the local node. This result is then made 
available to the Safety Manager (discussed on section 3.2.5) and to the Cooperative LoS 
Evaluator (discussed on section 3.3.1). 

3.2.5 Safety	Manager	

The Safety Manager supplements the operation of the Local LoS Evaluator by also considering 
the output of the Cooperative LoS Evaluator in the production of the Effective LoS of a 
cooperative functionality. Another job of the Safety Manager is the reconfiguration and 
selection of components whenever the LoS of a cooperative functionality changes. 
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The way to produce the Effective LoS from the inputs received from the Local LoS and the 
Cooperative LoS is not necessarily fixed by the Safety Manager. The idea is that this may be 
configured according to the specific functionality. One possible way of performing this 
configuration is by defining rules for this purpose. These rules will define the function that will 
be performed for determining the effective LoS, that is, we will have that Effective LoS = 
Function(Local LoS, Cooperative LoS). For example, the function could be 
Min(Local LoS, Cooperative LoS), where the Effective LoS would be the lowest value 
between the two inputs of the Safety Manager.  

The reconfiguration of components is necessary to change their performance level in response 
to the LoS change of any cooperative functionality. The information about which components 
are affected by a change in the LoS will come from the Rules DB. The Safety Manager is only 
responsible for propagating these changes to the respective components. 

Therefore, periodically, the Safety Manager makes available the Effective LoS of all 
cooperative functionalities and reconfigures and selects the respective components, whenever 
required. The actual reconfiguration and adjustment mechanisms are executed within each 
component, and the Safety Manager just has the responsibility of triggering these changes on 
the right components. 

3.3 External	related	components	

This section describes other components, external to the Safety Kernel, that play an important 
role in its operation. These descriptions are deliberately not detailed, rather consisting of the 
knowledge the Safety Kernel has of these components. 

3.3.1 Cooperative	LoS	Evaluator	

For each cooperative functionality, the Cooperative LoS Evaluator has the purpose of 
exchanging data with similar components of other participating nodes and, eventually provide 
information to the Safety Manager about the LoS of other vehicles. 

The operation of the Cooperative LoS Evaluator and the algorithms it uses to exchange 
information with other vehicles is not dealt as part of the Safety Kernel. In fact, it is possible 
that a different Cooperative LoS Evaluator is defined for each cooperative functionality. At each 
periodic execution, this component may influence the output of the Safety Manager. Since this 
component is defined as a complex component (because it is not possible to guarantee in design 
time that communication with other vehicles is always possible), the solutions concerning what 
it does are varied and depend on what may be more desirable for some functionality. 

A possible approach for the operation of the Cooperative LoS Evaluator is to have it producing 
a Cooperative LoS based on an agreement between the participating nodes. This LoS would 
correspond to the lowest Local LoS that is possible at every participating node. In this case, this 
LoS would become the Cooperative LoS for the cooperative functionality at every participating 
node. For this to become effective, the Safety Manager will need to perform the function 
Min(Local LoS, Cooperative LoS), so that the agreed LoS becomes an upper bound for 
the Effective LoS at each node. 

It is also possible to consider that some cooperative functionalities will not require an agreement 
on the LoS, in which case the Cooperative LoS Evaluator does not have to produce any value. 
In that way it will not influence the Effective LoS at each node. In this case, cooperation is 
achieved just by the exchange of other information relevant for the functionality, without 
relying on any assumption about a consistent execution of the functionality (in the same LoS) 
by the involved vehicles. This has necessarily to be reflected in the control algorithms.  
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It can be added that, because the Cooperative LoS Evaluator is application dependent, it could 
in fact have multiple modes of operation. For instance, its behaviour could change in accordance 
with the availability of a communication channel with other nodes. This component may also 
decide to remain silent and not produce any value. This could happen, for instance, when an 
agreement could not be achieved. This can be exploited for setting safety rules involving the 
timeliness or the validity of information provided by the Cooperative LoS Evaluator, forcing the 
LoS to be reduced in case these safety rules are not satisfied. 

Although the Cooperative LoS Evaluator plays an important role towards safety, it cannot be 
part of the Safety Kernel mainly due to the uncertainty in the communication with other nodes. 
Therefore, it is located above the hybridization line, outside the Safety Kernel.  

3.3.2 Operating	System	support	

Communication between functional components and the Safety Kernel is handled by the 
Operating System (OS). As such, the interfaces required by the Safety Kernel (described in 
Section 3.4) shall be provided by the OS, which ensures that the primitives composing these 
interfaces are provided in READ–WRITE pairs constituting an information flow channel with 
one writer and one or more readers. In each pair of READ–WRITE primitives, one of the 
primitives is intended to be used by one of the Safety Kernel components, whereas the other one 
shall be used by a software component external to the Safety Kernel (either a functional 
component or the Cooperative LoS Evaluator). Both types of primitive should be non-blocking, 
atomic, and the OS should provide the following guarantees: 

 READ calls: the value that is read is the one written in the last invocation of the 
corresponding WRITE call; until overwritten, a value can be read multiple times and/or 
by multiple readers; 

 WRITE calls: the provided value overwrites the value previously provided by the same 
writer. 

The way these information flow channels are implemented is abstracted by the OS, and should 
be transparent to the remaining components. It is the responsibility of the OS to ensure, by 
whichever means necessary, that READs are consistent with the latest WRITE. 

The OS must also provide scheduling mechanisms which allow temporal predictability of the 
interaction flows we here describe. Hence, it is assumed that internal communication, i.e. inside 
one vehicle, is based on a real-time network (e.g. CAN) and is, therefore, reliable and time 
bounded. These requirements are described in detail in Section 3.5. 

3.4 Interfaces	

In order to build the components described in Section 3.2, some interfaces must be defined and 
implemented, in order to allow interaction between cooperative functionalities and the Safety 
Kernel. These interfaces are depicted in Figure 5. 
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Figure 5: Interfaces between the Safety Kernel and external related components. 

 

Interface Primitive Involved components 

Data validity interface 
Write data validity Functional components 

Read data validity SK – Local LoS Evaluator 

Timing Failure Detector interface 
Write TFD data 

Functional components (Above 
hybridization line) 

Read TFD data SK – Timing Failure Detector 

Cooperative LoS Evaluator interface 

Write local maximum LoS SK – Local LoS Evaluator 

Read local maximum LoS Cooperative LoS Evaluator 

Write agreed LoS Cooperative LoS Evaluator 

Read agreed LoS SK – Safety Manager 

Data Component Multiplexer interface 

Write app output data Functional components 

Read app output data SK – Data Component Multiplexer

Write app input data SK – Data Component Multiplexer

Read app input data Functional components 

Mode switch interface 
Write enforced mode SK – Safety Manager 

Read enforced mode Functional components 

Table 3: Interfaces of the Safety Kernel 

3.4.1 Data	Validity	Interface	

This is the interface used to feed the Local LoS Evaluator component with the data validity sent 
from the different functional components of the system. These components must then be able to, 
in runtime, send this data to the Safety Kernel, so that when it executes it can determine the LoS 
at which the cooperative functionalities are able to perform. 
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The primitives used to support these operations are the following: 

 WRITE_VALIDITY_DATA – This primitive, to be used by the applications, allows 
any component to send its validity data to be checked and evaluated by the Safety 
Kernel; 

 READ_VALIDITY_DATA – This primitive, to be used by the Safety Kernel’s Local 
LoS Evaluator, allows the Local LoS Evaluator to read the data sent by components 
using the previous primitive. 

One example of a workflow is pictured in Figure 6. In this diagram and in those which follow, 
the grey dashed arrows inside the Operating System represent the provided communication 
channel, as described in Section 3.3.2. 

 

Figure 6: Interaction with the Data Validity Interface. 

As pictured, this interaction is done in two-steps. In the first one, each functional component 
calls the Write Validity Data (1) interface to send its own validity data to the Safety Kernel.  
The Operating System transfers this data from the origin port to the destiny port. The second 
step is done by the Local LoS Evaluator that, for each component, uses the Read Validity 
Interface (2) to get the data sent by the components. 

3.4.2 Timing	Failure	Detector	Interface	

This interface supports the detection of timing failures. In the Safety Kernel, this interface is 
realized by the Timing Failure Detector (TFD) component. 

Each functional component above the hybridization line must, periodically, and at a predefined 
minimal rate, send a heartbeat informing the Safety Kernel that progress is being made and that 

Function Component
(Proven safe at design time)

Function Component 
(Not proven safe at design time)

Safety Kernel

Local LoS Evaluator

Operating System

1: Write 
validity data

2: Read 
validity data

Hybridization line
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its planned schedule is being fulfilled. For each of these components, the TFD component must 
be able to check if any heartbeat has been sent, and if it is valid for the defined timeout or if, in 
the other hand, its time validity has expired. 

 WRITE_TFD_DATA – This primitive, to be used by the components, allows them to 
inform the Safety Kernel about their progress. The time elapsed since the last call 
should be reset after this call; 

 READ_TFD_DATA – This primitive, to be used by the Safety Kernel’s Timing 
Failure Detector, allows the TFD component to, for each component, know if the time 
elapsed since the last WRITE_TFD_DATA call is greater or lower than the predefined 
period. 

One example of a workflow is pictured in Figure 5. 

 

Figure 7: Interaction with the Timing Failure Detector Interface. 

As pictured, each component above the hybridization line uses the Write TFD (1) data interface 
to send a heartbeat to the TFD. Components under the hybridization line (which are proven to 
be timely safe) do not need to be monitored. For each component above the hybridization line, 
the TFD component calls the Read TFD Data (2) interface to check their progress. 

3.4.3 Cooperative	LoS	Interface	

This interface implements the mechanism used to support the LoS management by the Safety 
Manager and both Local and Cooperative LoS Evaluators. 

Safety Kernel

Timing Failure Detector

Operating System

Funcion A Component
(Not proven safe at design time)

1: Write TFD 
data

2. Read TFD 
Data

Hybridization line

Function A  Component
(Not proven safe at design time)

Function A Component
(Not proven safe at design time)

Below 
hybridization line 
(proven timely)



KARYON ‐ FP7‐288195 
D4.2 – First Report on Safety Kernel Definition 
 

 

© 2013 KARYON Project    26/37 

KARY    N

It allows the Local LoS evaluator to send the Local Maximum LoS to both the Safety Manager 
and the Cooperative LoS Evaluator and, also for the latter to inform the Safety Manager of the 
Cooperative LoS. 

 WRITE_LOCAL_MAXIMUM_LOS – This primitive is used by the Local LoS 
Evaluator to make available the information of the maximum LoS to the Safety 
Manager and to the Cooperative LoS Evaluator that is possible at the node; 

 READ_LOCAL_MAXIMUM_LOS – This primitive is used by both the Safety 
Manager and the Cooperative LoS Evaluator to read the LoS written using the previous 
primitive; 

 WRITE_COOPERATIVE_LOS – This primitive is used by the Cooperative LoS 
Evaluator to inform the Safety Manager of the Cooperative LoS; 

 READ_COOPERATIVE_LOS – This primitive is used by the Safety Manager to read 
the Cooperative LoS written by the Cooperative LoS Evaluator using the previous 
primitive. Since the Cooperative LoS Evaluator is not proven timely safe, this primitive 
must also allow the Safety Manager to know if the available Cooperative LoS is still 
valid or not (i.e. that the time elapsed since it was written is lower than a predefined 
delta/timeout). 

 

Figure 8: Interaction with the Cooperative LoS Interface. 

In this interaction, the Local LoS evaluator uses the Write Local Maximum LoS interface (1) to 
inform the Cooperative LoS Evaluator of the local capabilities that are possible to offer by the 
functional components. This is read by both the Cooperative LoS Evaluator with the Read Local 
Maximum LoS (2) interface. 

The Cooperative LoS Evaluator uses the Write Agreed LoS interface (3) to inform the Safety 
Manager of the Cooperative LoS and the latter calls the Read Agreed LoS interface (4) to read 
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that LoS value. By using the validity period of this port, the Safety Manager is able to know if 
this value is fresh, and whether it is still valid, or not. 

3.4.4 Data	Component	Multiplexing	Interface	

This interface supports the functioning of the Data Component Multiplexer. It allows the 
different implementations of the same function to make their output values reach the Data 
Component Multiplexer. Other functions that receive the output from that function may then 
read the appropriate value, which has been previously selected by the Data Component 
Multiplexer. The Data Component Multiplexing interface abstracts this whole process, both to 
the component providing output (which we will call Component A for the description of this 
interface) and to the component seeking input (Component B). The Data Component 
Multiplexing interface consists of the following primitives: 

 WRITE_APP_OUTPUT_DATA – This primitive, to be used by the applications, 
allows each implementation of Component A to communicate its output value to 
whichever other functions may need it (including Function B). The value is provided 
along with a data validity measure, and reflects the output of Function A at a given LoS. 

 READ_APP_OUTPUT_DATA – This primitive, to be used the Safety Kernel’s 
Component Data Multiplexer, allows the Component Data Multiplexer to read the 
values provided by different implementations of a Function A - i.e., the outputs of 
Function A for the various LoS. 

 WRITE_APP_INPUT_DATA – This primitive, to be used by the SK’s Component 
Data Multiplexer, allows the Component Data Multiplexer to communicate (to 
whichever functions may need, including Function B) the appropriate value to be 
considered as the output Function A. This value is selected by the Component Data 
Multiplexer among the outputs provided by the implementations of Function A at 
different LoS. 

 READ_APP_INPUT_DATA – This primitive, to be used by the applications, allows 
the implementation(s) of Function B to read the output provided by Function A when 
needed. In case Function B has multiple implementations (for different LoS), some of 
them may not use the output from Function A at all. Through this primitive, an 
implementation of Function B may read the output from Function A without needing to 
know about the variety of implementations of Function A. 

The workflow for the use of the Data Component Multiplexing interface is pictured in Figure 7. 
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Figure 9: Interaction with the Data Component Multiplexing Interface. 

In this interaction, the Data Component Multiplexer acts as intermediary between a function 
with multiple implementations and other functions. Each component writes its output using the 
Write App Output Data Interface (1), which is read by the Data Component Multiplexer with 
the Read App Output Data Interface (2). This interface is called by each component. From the 
multiple readings, one value is written by calling the Write App input data interface (3). All 
components of that use this this value as input call the Read App Input Data (4) to read it. 

3.4.5 Mode	Switch	Interface	

This interface implements the mechanisms to allow the Safety Manager to force a functional 
component to switch its mode of execution to a different one, or simply to reconfigure it. 

 WRITE_PERFORMANCE_LEVEL – This primitive is used by the Safety Manager 
to reconfigure a specific component for a certain performance level. 

 READ_PERFORMANCE_LEVEL – This primitive is used by each component to 
read the performance level set by the Safety Kernel using the primitive above. 
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Figure 10: Interaction with the Mode Switch Interface. 

This interaction is performed between the Safety Manager and the different functional 
components of the system. The Safety Manager uses the Write Performance Level (1) to inform 
each component of the mode in which they should operate from now on. This value is read by 
each component with the Read Performance Level interface (2). 

3.5 Scheduler	support	

In Section 3.3.2, we have described the functional support that the Operating System should 
provide to the operation of the Safety Kernel – namely, the mechanisms (underlying to the 
provided interfaces) that guarantee information flow in an asynchronous fashion. However, for 
this information flow to behave in the timely manner needed to achieve the goals of the Safety 
Kernel, adequate scheduling of all software components is necessary. 

The functionality associated to the Safety Kernel is ensured by interactions between 
components below the hybridization line (such as the Safety Kernel) and above the 
hybridization line (such as the Cooperative LoS Evaluator). The safety and timeliness of 
components below the hybridization line must hold in the event of timing faults in the 
components above the hybridization line. For this reason, the different components must be 
scheduled in a way which guarantees that the effects of any timing faults are contained in the 
scope of their occurrence - i.e., to the component where they happen. 

Scheduling must thus be certifiably deterministic and predictable. We can achieve this by 
scheduling components strictly according to a fixed schedule, defined at design time with 
windows of activity to fulfill the demand expected for each component’s workload. The policy 
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according to which each component schedules its workload (the local scheduler of each 
component) must be known, so as to determine the minimum guarantee each component should 
receive. In the event that local scheduling inside a component above the hybridization line 
diverts, in execution time, from what was assumed in design time, the temporal properties of 
other components (which get their designated window of activity in any case) are not affected. 

Naturally, we cannot have a schedule which covers the whole of the system’s lifetime. We can 
instead have a schedule which covers a bounded time interval and is subsequently repeated. The 
length of the schedule, which is consequently its period, must be defined to provide a minimum 
periodic guarantee to each component; each component’s minimum periodic guarantee should 
be such that the timing requirements of the component’s workload are fulfilled. Different 
components may require that their minimum guarantees are specified in relation to different 
periods. For this reason, the length of the schedule should be the least common multiple of these 
periods (or a multiple thereof). 

As mentioned above, the local scheduling policy of each component is, in general, only relevant 
to determine of the minimum guarantee each component should receive. However, when 
dealing with components below the hybridization line, the local scheduler’s policy must also be 
certifiably deterministic and predictable; in the case of the Safety Kernel, we need to make sure 
that, after determining the timing requirements of each module, the scheduling policy 
guarantees them. 
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4. Implementation	
Based on the requirements described previously, this chapter details a preliminary 
implementation of a KARYON system based on the Time and Space Partitioning (TSP) concept 
[1, 2], and how this concept provides the mechanisms to ensure safety despite the presence of 
components with uncertain behaviour. 

 Finally, a practical example of implementation using a TSP architecture is shown, detailing 
how it will support scheduling and communication between the system components. 

4.1 Time	and	Space	Partitioning	

As already explained, KARYON must ensure fault containment between different components, 
in order to guarantee that a fault in one component does not compromise another component’s 
or system’s safety. 

Time and space-partitioned systems (TSP) is a concept for safety-critical systems in which 
applications with different criticalities and requirements may coexist in the same system and 
using the same hardware resources. 

A prominent example of TSP system design is the adoption of the ARINC specifications 651 
(Design Guidance for Integrated Modular Avionics [3]) and 653 (Avionics Application 
Software Interface [4]) in the civil aviation domain. The traditional approach, federated 
avionics, whereby each avionics function had its own dedicated (and sometimes physically 
apart) computer resources, suffered from potential inefficient resource utilization due to the 
inability to reallocate resources at runtime [9, 10]. Replacing federated avionics with ARINC 
651 Integrated Modular Avionics (IMA) [3] allowed addressing the needs of modern systems, 
such as optimizing the allocation of computing resources, reducing size, weight and power 
consumption (a set of common needs in the area of avionics, which is commonly represented by 
the acronym SWaP), and consolidation development efforts (releasing the developer from 
focusing on the target platform, in favor of focusing on the software and easier development and 
certification processes) [11]. The ARINC 653 specification [4] is a fundamental block from the 
IMA definition. 

The identification of similar requirements with the aviation industry led to the interest expressed 
from space industry partners in applying the time and space partitioning concepts of IMA and 
ARINC 653 to space missions onboard software [5, 6, 7]. In the European space industry 
domain, the TSP Working Group (incorporating space agencies and industrial partners) was 
established to cope with the issues of adopting TSP in space. The TSP Working Group analysed 
benefits and the remaining technology gap to the intended adoption, and found no technological 
feasibility impairments to the latter [5]. In 2003, the European Space Agency proposed [12] 
ensuring compatibility with ARINC 653/IMA as a future standardization action, so that the 
exchange of functional building blocks with the aeronautic industry (which had already adopted 
IMA) would be made possible. To manage the problem of how applications interface with the 
underlying operating system, ARINC 653 should be taken into account as an example, in order 
to define such an interface in a way that allows OS-independent software components. The 
European Space Agency is currently still active in funding and partaking studies for a software 
reference architecture based on time and space partitioning [6, 7]. 

The automotive industry is also active in the adoption of TSP system design. The top-level 
requirements for an AUTOSAR operating system include provisions that correspond, to some 
extent, to the notion of TSP – namely, requirements SRS_Os_11005 and SRS_Os_11008 [8]. 
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TSP separates the system’s software components into logical containers called partitions, 
ensuring fault containment between them (i.e. faults that occur in one partition do not affect 
other partitions), with respect to both time and space. 

Time partitioning is the property that ensures that even in the presence of temporal faults in one 
partition, the timing guarantees of remaining partitions are not affected. Space partitioning 
ensures that one partition cannot access to zones of memory belonging to another. These two 
properties ensure that faults are contained to their domain of occurrence, preventing them from 
propagate to other partitions. 

Partitions are managed by an underlying layer in charge of enforcing TSP properties, 
responsible for partition scheduling and dispatching, memory protection, and communication 
between partitions. 

 

Figure 11: A TSP architecture. 

Due to the nature and uncertainty present in a KARYON system, there is a clear mapping 
between the guarantees provided by TSP and KARYON requirements. By isolating non-safe 
components (i.e., above the hybridization line) in different partitions from other components, 
we can ensure that failures and delays that possibly occur in these components do not affect any 
other ones. 

The next section will demonstrate an implementation of a KARYON system using a TSP 
architecture called AIR. 

4.2 AIR	–	a	TSP	implementation	

AIR [1] is a TSP architecture implementation, which uses an intermediary layer called Partition 
Management Kernel (PMK) to ensure TSP properties. Although inspired in the ARINC 653 
specification [3], the design of the AIR architecture aims to improve upon such specification. 
More specifically, it deliberately diverts from ARINC 653 where the latter’s limitations can be 
overcome to the benefit of additional functionality and flexibility without compromising safety. 

As explained above, TSP provides fault containment between different partitions. KARYON 
must ensure fault containment between components above and under the hybridization line, so 
that the first group do not compromise the safety of the latter and of the overall system. As such, 
a KARYON implementation using TSP should isolate non-proven components in individual 
partitions to prevent errors from propagating to other components. Hence, components that 
compose the system should be divided in partitions according not only by the function they 
belong to but as well by the time guarantees they provide. One example of such division is 
pictured in Figure 12. 
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Figure 12: Partitions in a TSP system. 

One partition may, however, host more than one component. The division in different partitions 
is only mandatory between components on which we want to ensure fault containment by 
enforcing temporal and spatial segregation. 

Partitions are scheduled by the PMK according to a fixed schedule defined at design time, 
bounding the time assigned to each partition and ensuring that timing faults do not propagate 
from one partition to another. This schedule repeats itself over the time, over a time period 
called Major Time Frame (MTF). 

The fact that a fixed cyclic schedule is used ensures that scheduling is completely predictable, 
and that the time assigned to each partition in known and bound. Each partition may then use a 
local policy to schedule its own processes within the time slice allocated to it. This two-level 
scheduling approach is the base mechanism used to ensure time partitioning guarantees. One 
example of this mechanism is picture in the Figure 13. PMK implements the first scheduling 
level, while the second level is managed by the partition itself. 

This segregation in the time domain allows the use of different operating systems in different 
partitions, including non-RTOS (in which case, all the components hosted in the partition are 
considered to be above the hybridization line). 

 

Figure 13: Schedule for a Major Time Frame. 

AIR implements two communication mechanisms between different partitions: queues and 
sampling ports. Queues store all the values sent by one partition in a buffer until they are read. 
On the other hand, sampling ports only store one value, overwriting it every time a new value is 
sent, avoiding possible overflow problems. 

The interfaces described in Section 0 required to provide communication between components 
and the Safety Kernel are implemented using sampling ports. 

When a sampling port is created, a validity period must be defined. This period defines the rate 
at which a value should be refreshed by the sender. Upon reading from a sampling port, the 
reader knows whether the value is still valid or not. The value of this validity period must be 
calculated prior to the creation of the port, and it should reflect how long is the value valid to be 
used by other components after being written and the period of execution of the component that 
writes it, based on the scheduling performed by the PMK. This mechanism may be used by 
readers to detect delays and timing faults in components above the hybridization line. If a 
component is delayed and does not write some value that was supposed and the validity of the 
previous value expires, the delay will be, eventually, detected by the reading components. 

The PMK layer is in charge of transferring the data between the sender and the receiver ports. 
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To implement all the required interfaces, sampling ports establishing communication channels 
between the components and the Safety Kernel must be defined. Depending on the component 
requirements, some ports may not be needed (e.g., one component under the hybridization line 
does not need TFD interface). 

One example of the system partitions and the ports used in each partition to implement the 
required interfaces is picture in the Figure 14. 

 

Figure 14: Communication through sampling ports. 

This picture exemplifies the ports used to implement communication between the Safety Kernel 
and other components of the system using the interfaces described in 3.4.  

As explained, the Safety Kernel and the Global LoS Evaluator are hosted in dedicated 
partitions, as well as each component of each function. As such, communication between these 
parties is done exclusively using sampling ports. In this document, the focus is on the 
communication between components and the Safety Kernel. However, if needed, components of 
one function in one partition may communicate with components in a different partition using 
the same mechanisms (whether sampling ports or queues) provided by the operating system. 

The number of ports needed in each function component may vary. For instance, TFD ports are 
only created for components above the hybridization line. One component may also have more 
than one input or output, or may need to communicate more than one validity or TFD values, 
and may, therefore, contain more than one port for each of these purposes. 

Each of the ports in each component links to a port in the Safety Kernel. Hence, Safety Kernel 
will have multiple TFD ports (i.e., one for each port in each component above the hybridization 
line), as well as multiple Output, Input and Mode ports. 

Communication between the Safety Kernel and the Cooperative LoS Evaluator is done using 
two single ports; Local LoS, linking to the Local LoS Evaluator, and Agreed Mode, linking to 
the Safety Manager. 
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5. Conclusions	and	next	steps	
It is possible to define a Safety Kernel to manage the LoS of cooperative functions in order to 
secure functional safety requirement. The architecture of the Safety Kernel here presented fulfils 
three goals: 

 Provides a set of components that are required to support cooperative functions that 
may be executed with several Levels of Service (LoS); 

 Supports functional components whose timeliness does not need to be proven to hold in 
design time, in addition to components proven timely in design time; and 

 Performs LoS management based on data validity information and on safety rules 
associating LoS with validity bounds, rather than detecting specific faults and failures in 
accordance to specific fault and failure models. 

Additionally, a possible implementation of the Safety Kernel was presented. This 
implementation is based on a Time and Space Partitioning (TSP) system and it fulfills the goals 
of the Safety Kernel. 

A key challenge now lies in the definition of the Rules Database in dependence of the expected 
output of task 4.1. If the rules only involve independent criteria then the time required for their 
evaluation can be determined with great precision. Otherwise, with interdependent criteria, the 
time for their evaluation can vary significantly and therefore an upper bound will have to be 
derived. These decisions will affect the Local LoS Evaluator and the Safety Manager. 
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