

	

Kernel-based ARchitecture for safetY-critical cONtrol

KARYON
FP7-288195

D3.1 – First Report on Supporting
Technologies (Annex)

Work Package WP3

Due Date M12 Submission Date 2012-10-26

Main Author(s) Jörg Kaiser (OVGU), José Rufino (FFCUL), Elad Michael Schiller (CUT)

Contributors Tino Brade (OVGU), Sasanka Potluri (OVGU), Jeferson Souza (FFCUL,
Luís Marques (FFCUL)

Version 1.0 Status Final

Dissemination
Level

Public Nature Report

Keywords Wireless protocols, inaccessibility analysis, adaptive middleware, reliable
collaborative sensing, self-stabilizing protocols, assessment of global state.

Part of the Seventh

Framework Programme

Funded by the EC - DG INFSO

KARY N

KARYON ‐ FP7‐288195
D3.1 – First Report on Supporting Technologies (Annex)

© 2012 KARYON Project 2/188

KARY N

This page is intentionally left blank.

KARYON ‐ FP7‐288195
D3.1 – First Report on Supporting Technologies (Annex)

© 2012 KARYON Project 3/188

KARY N

Table	of	Contents	
Annex A Papers and Reports ... 5

A.1 Predictability and Resilience in Embedded Networks ... 5

A.1.1 An Approach to Enhance the Timeliness of Wireless Communications 5

A.1.2 Characterization of Network Inaccessibility in IEEE 802.15.4 Wireless Networks . 13

A.1.3 Characterizing Inaccessibility in IEEE 802.15.4 Through Theoretical Models and

Simulation Tools .. 33

A.1.4 Reducing Inaccessibility in IEEE 802.15.4 Wireless Communications..................... 47

A.1.5 Self‐Stabilizing TDMA algorithms for Dynamic Wireless Ad‐hoc Networks 65

A.1.6 Autonomous TDMA alignment for VANETs .. 95

A.1.7 Self‐Stabilizing End‐to‐End Communication in Bounded Capacity, Omitting,

Duplicating and Non‐FIFO Dynamic Networks .. 103

A.2 Adaptive Middleware for Advanced Control Systems ... 121

A.2.1 Lightweight Dependable Adaptation for Wireless Sensor Networks 121

A.2.2 Programming abstractions and middleware for building control systems as

networks of smart sensors and actuators ... 141

A.2.3 A fault‐aware sensor architecture for cooperative mobile applications 151

A.3 Reliable Assessment of Global State .. 161

A.3.1 Self‐Stabilizing Byzantine Resilient Topology Discovery and Message Delivery .. 161

A.3.2 Capture effect based communication primitives ... 185

KARYON ‐ FP7‐288195
D3.1 – First Report on Supporting Technologies (Annex)

© 2012 KARYON Project 4/188

KARY N

This page is intentionally left blank.

KARYON ‐ FP7‐288195
D3.1 – First Report on Supporting Technologies (Annex)

© 2012 KARYON Project 5/188

KARY N

Annex	A Papers	and	Reports	

A.1 Predictability	and	Resilience	in	Embedded	Networks	

A.1.1 An	Approach	to	Enhance	the	Timeliness	of	Wireless	Communications	

“An Approach to Enhance the Timeliness of Wireless Communications”. J. L. R. Souza and J.
Rufino, Fifth International Conference on Mobile Ubiquitous Computing, Systems, Services
and Technologies (UBICOMM 2011), November 2011, Lisbon, Portugal.

KARYON ‐ FP7‐288195
D3.1 – First Report on Supporting Technologies (Annex)

© 2012 KARYON Project 6/188

KARY N

This page is intentionally left blank.

An Approach to Enhance the Timeliness
of Wireless Communications

Jeferson L. R. Souza and José Rufino
University of Lisboa - Faculty of Sciences

LaSIGE - Navigators Research Team
Email(s): jsouza@lasige.di.fc.ul.pt, ruf@di.fc.ul.pt

Abstract—Wireless technologies are the present and the future
of network communications. However, the support of real-
time data transmission in wireless communications — providing
support for execution of well-timed networked operations —
is still an open issue, not fully addressed by current wireless
network standards and technologies. Thus, this paper proposes
a solution to enhance the timeliness of wireless communications
without a need for fundamental modifications to the standard
specifications. The IEEE 802.15.4 wireless network is used as a
relevant case study. Our main contributions in this paper are: (a)
a proposal to enhance the timeliness of wireless communications;
(b) the extension of the data frame transmission service in
order to control the effects of temporary partitions caused by
disturbances in the medium and medium access control protocols;
(c) a strategy to reduce the negative effects caused by the
aforementioned disturbances.

Index Terms—medium access control, inaccessibility, wireless
communication, real-time systems.

I. INTRODUCTION

The provision of temporal guarantees on wireless com-
munications is still an open issue. Several approaches [1]–
[4] to the problem of enhancing the timeliness of wireless
communications assume that the network always operates
normally, disregarding the occurrence of disturbances in the
medium and medium access control (MAC) protocols.

However, wireless networks are extremely sensitive to ex-
ternal disturbances such as those resulting from electromag-
netic interference, or application scenarios requiring intense
mobility. These disturbances may lead to the occurrence of
temporary partitions, also called periods of inaccessibility,
where there may be sets of nodes which cannot communicate
with each other [5]. Standard MAC protocols, including those
used in wireless communications, can recover from these
situations. However, this recovery process takes time and in
the meanwhile the network is partitioned. The duration of a
period of inaccessibility is dependent on each MAC layer, and
must be analyzed for each network, such as the one defined
in the IEEE 802.15.4 standard [6].

The occurrence of periods of inaccessibility leads to dis-
ruptions in the provision of MAC layer services. Furthermore,

This work was partially motivated by our work within the scope of
the ESA (European Space Agency) Innovation Triangle Initiative program,
through ESTEC Project AIR-II (ARINC 653 in Space — Industrial Initiative),
URL: http://air.di.fc.ul.pt. This work was partially supported by EC, through
project IST-STREP-288195 (KARYON) and by FCT through the Multiannual
Funding and CMU-Portugal Programs and the Individual Doctoral Grant
SFRH/BD/45270/2008.

the analysis of the wireless protocol stack with a bottom-
up approach shows that these disturbances may affect the
entire stack, implying that service disruption may propagate
upwards, and therefore interfere with the execution of higher
layer protocols and applications. Thus, this paper proposes a
new component layer executing on top of the MAC exposed
interface to control the timeliness of wireless communications
and reduce the impact of MAC layer service disruptions on the
execution of the entire wireless protocol stack. This component
layer improves the MAC layer functionality, mediating and
isolating its interaction with higher layers, and allowing the
configuration of the MAC layer parameters face to application
requirements and environment restrictions.

The IEEE 802.15.4 wireless sensor and actuator network
is used as a case study to present the main features of our
proposal. A strategy is also presented to control the negative
effects induced by the occurrence of periods of inaccessi-
bility in network operation. Our approach does not require
fundamental modifications of wireless network standards and
therefore is in compliance with existing Commercial Off-the-
Shelf (COTS) network components.

The paper is organized as follows: Section II presents a
brief description of the system model used in our analysis.
Section III presents an overview of the IEEE 802.15.4 stan-
dard. Section IV presents our proposal, describing its main
components, the advantages of its use, and the improvements
introduced at the data link layer service interface. Section V
describes our results, extending the characterization of the data
frame transmission service, and the strategy to control the
periods of inaccessibility on wireless communications, using
the IEEE 802.15.4 as a case study. Finally, Section VI draws
some conclusions and future directions of this work.

II. SYSTEM MODEL

Our system model is formed by a set of communicating en-
tities (processes/nodes) described by P = {p1, p2, p3, ..., pN}.
Each entity, pn, represents a process/node within a wireless
network segment with n varying from 1 to N .

In an arbitrary geographic region we assume that all wireless
nodes either communicate with each other at only one hop of
distance or are out of reach. This means, all communicating
wireless nodes are within the region of influence of one
another and therefore each node can sense all transmissions of
any other node. Hence, we assume the given wireless network

segment being composed of N nodes interconnected by a
channel. Each communicating node pn ∈ P connects to the
channel by a transmitter and a receiver. Network components
either behave correctly or crash upon exceeding a given
number of consecutive omissions, the omission degree bound,
k. An omission is an error that destroys a data or control frame.
Wireless communication channels are especially susceptible to
omission errors, which may be due to a number of causes:
electromagnetic interference in the medium; disturbances in
a node transmitter/receiver circuitry; collisions derived from
transmissions performed by different nodes on the same time;
glitches in the network protocol operation; or even effects
resulting from node mobility.

Despite its importance, the presence of channel malicious
attacks [7], [8] is not considered in this paper, in order to
simplify the system model and our analysis. Malicious attacks
will be thoroughly addressed in a future work.

The omission of control frames (e.g., a token or a beacon)
may generate temporary network partitions, logical rather than
physical, called periods of inaccessibility [5]. A period of
inaccessibility is a time interval where the network does not
provide service although it cannot be considered failed. The
characterization of IEEE 802.15.4 inaccessibility with respect
to non-malicious disturbances is addressed in [6]. In addition,
we assume that the wireless network is, at most, inaccessible
i times, during a time interval relevant for protocol execution.

III. IEEE 802.15.4 OVERVIEW

The IEEE 802.15.4 standard specifies that each network
must contain a coordinator, which defines the characteristics
of the network such as addressing, supported radio channels,
and operation mode. Normally, the coordinator is the node
with the highest power and energy capabilities to support the
execution of management operations required to maintain the
network active throughout two operation modes: NonBeacon-
enabled and Beacon-enabled. The case study addressed in this
work (Section V) assumes a Beacon-enabled operation.

In the Beacon-enabled mode, the access to the wireless
medium is controlled by information carried in a special frame
sent by the coordinator. This special frame is called beacon
and bounds a special structure called superframe, illustrated
in Fig. 1. The information inside the beacon helps the nodes
to know the entire duration of the superframe, allowing the
synchronization and the control of the medium access.

The superframe organization of Fig. 1 identifies two main
parts: the active and inactive periods. The active period is
mandatory and it is, in turn, constituted by the Contention
Access Period (CAP) and the Contention Free Period (CFP).
CAP is also mandatory and allows all nodes to compete for
the utilization of the shared physical medium. CFP is optional,
being designed for bandwidth reservation, and therefore a
node may previously allocate a slot, called Guarantee Time
Slot (GTS), for exclusive medium access. The slotted ver-
sion of Carrier Sense Multiple Access/Collision Avoidance
(CSMA/CA) protocol [9] is used in node competition for
medium access during the CAP portion of the superframe.

Fig. 1: Superframe structure

Since GTS slots are reserved to a single node, no contention
occurs and, within its allocated slot, the node can freely access
the medium.

Completing the superframe structure the inactive period is
optional and designed to optimize energy consumption. Thus,
during this period all nodes in the network may turn off their
transceivers to accomplish this goal [10].

IV. AN APPROACH TO ENHANCE THE TIMELINESS OF
WIRELESS COMMUNICATIONS

Our approach to enhance the timeliness of wireless com-
munications consists of an extensible component layer build
around a standard MAC layer, dubbed Mediator Layer. This
extensible component layer intermediates the communication
and provides error isolation between the MAC and higher
layers, minimizing the negative effects caused by disturbances
in the medium and medium access protocols. The Mediator
Layer is a standard-compliant solution which extends the
MAC layer services with additional features and guarantees,
enhancing the timeliness of wireless communications.

As drawn in Fig. 2 the Real-Time Protocol Suite, the
Timeliness and Partition Control, and the Configuration and
Management Control are fundamental components handling
and managing the actions required to secure reliability and
timeliness in data communications, thus enhancing the prop-
erties of the native MAC service.

The Real-Time Protocol Suite is responsible for handling
data transmissions. This component enhances the frame trans-
mission service provided by the MAC layer, establishing
a foundation to offer a set of different service guarantees,
with respect to reliability and timeliness, such as message
transmission time bounds. Different protocols, serving requests
with different types of requisites, can be incorporated in this
component, augmenting the applicability of standard MAC
layers on different areas with different requirements, namely
on those with strict real-time demands, such real-time control
and monitoring.

The Timeliness and Partition Control component deals with
the temporal aspects related to the data transmission service,
controlling and monitoring the timing of the actions within
the Mediator Layer, and helping to provide resilience against
all the occurrences of temporary network partitions. This
component monitors the MAC layer to detect the occurrence
and to be aware of any partitioning incidents, providing
services to the Real-Time Protocol Suite. For example, a

Fig. 2: An approach to enhance the timeliness of wireless
communications

timer service controls the temporal execution of protocols, and
integrated with the partition control functionality, allows the
use of optimal timeout values even in the presence of periods
of inaccessibility. Timeout values are automatically extended
in this case, thus avoiding a premature and equivocal error
propagation to other components and to higher layers.

The Configuration and Management Control component
manages and controls the configuration of all parameters of
the standard MAC layer and the internal parameters of the
Mediator Layer, respecting realistic application requirements,
resource limitations, and environment restrictions. This com-
ponent makes the Mediator Layer (self-)adaptive, and (self-
)managed, allowing the possibility to perform some changes
in its internal state, and on its configuration profile, thus
improving the timeliness of wireless communications.

A. Improving the control of data transmission services

The Mediator Layer implements the data layer program-
ming interface. This implementation is represented by MI:

MI = {request, confirm, indication} . (1)

where the MI set defines the primitives in the Mediator
Layer service interface. As usual in this kind of interfaces,
the primitives are in compliance with the service specification
interface described in the IEEE 802.2 standard [11]. Thus, a
data transmission service provides three different primitives
utilized to request and confirm a data transmission, and to
indicate the reception of data.

The services provided by the Mediator Layer interface are
build on top of MAC level primitives, which description is
presented in Table I.

Without the Mediator Layer, higher layers shall implement
mechanisms to control a frame transmission, ensuring that the
frame arrives at its destination. In other words, higher layer
protocols shall be: (a) aware of the occurrence of disturbances
in the medium and MAC protocols, including periods of
inaccessibility; (b) capable to configure parameters of the

Primitives Description

MAC.data.request
It provides a way to request a data transmission
to the MAC layer. Unreliable transmissions
only.

MAC.data.confirm
It provides a local confirmation that a frame has
been sent to the medium. Does not provide any
guarantee of delivery at the destination.

MAC.data.indication It provides notification about an arrived data
frame.

TABLE I: Standard MAC layer primitives for data transmis-
sion

MAC layer to adapt to different conditions. However, the
incorporation of these characteristics increases the complexity
of higher layer protocols, forcing each of these protocols to
have the capability to cope with low level problems outside
the scope of their domains. The introduction of the Mediator
Layer avoids these design complexities.

The Mediator Layer and its components handle all as-
pects related to a data frame transmission service and its
configuration, implying the reduction of the complexity of
higher layer protocols. Additionally, with the capability to
extend the internal components, our approach also enables
the introduction of different types of control mechanisms,
transmission protocols, (self-)management and (self-)adaptive
strategies, providing an extremely useful service layer. The
extension of the MAC data frame transmission service and the
control of partition incidents (addressed in Section V-C) are
examples of mechanisms implemented in the Mediator Layer
that improve the services provided to higher layers.

Thus, the Mediator Layer is an innovative solution to
enhance dependability and timeliness of wireless communi-
cations, as low as possible at the protocol stack. Its benefits
are flexibly offered at the service interface, being transparently
propagated throughout the entire stack, up to highest layer
communication protocols and to the applications.

V. PRELIMINARY RESULTS: A CASE STUDY ON THE IEEE
802.15.4 STANDARD

A. General characterization of the MAC frame transmission
service

Based on a user perspective of a MAC frame transmission
service we represent in general the time interval required to
access the wireless medium as TW−access. The effective time
consumed by the node to access the medium is directly related
to the medium access protocol in use.

After medium access protocol grants permission to access
the medium, a frame is transmitted in the time interval rep-
resented by TMAC−type. Hence, equations 2 and 3 represent
the best (bc) and worst (wc) cases of MAC frame transmission
times.

T bc
τ−MAC(type) = T bc

W−access + T bc
MAC−type (2)

T wc
τ−MAC(type) = T wc

W−access + T wc
MAC−type (3)

These equations contribute to specify a general timeliness
representation of a MAC level, presenting simple and easy-to-
use formulas to calculate the time bounds of a MAC frame
transmission service.

B. The IEEE 802.15.4 Characterization

As we use the IEEE 802.15.4 as a case study to present our
results, we calculate the specific bounds of the IEEE 802.15.4
MAC frame transmission service considering a beacon enabled
network. All data frame transmissions, with the exception of
those performed in the GTS portion of the superframe, need
to use of the slotted version of the CSMA/CA protocol [12],
[13], analyzed as part of the MAC frame transmission service.

The CSMA/CA is a non-deterministic protocol, and the
effective wait value is characterized by a random function,
which execution may spam throughout several iterations. In
each iteration, the wait time a node uses up is defined by a
backoff exponent, as represented by the following equation:

Taccess(m) = Tbackoff . (2BE(m) − 1) (4)

where, Tbackoff is the base value defining the minimum
duration of a backoff period. Observing that the variability
of the backoff exponent is dependent on the iteration number,
m, the value of BE(m) for each iteration is given by the
following equation:

BE(m) =

{
minBE if m = 0

min(minBE + m, maxBE) if m > 0
(5)

The lower and upper bounds of BE(m) are given by
minBE and maxBE, respectively. The value assigned to
BE(m) in the first iteration is equal to BE(0) = minBE.
For each additional iteration of the CSMA/CA protocol a new
value is calculated for BE(m).

The time needed for medium access under normal IEEE
802.15.4 network operation can thus be characterized, in the
best and worst cases, by the following equations:

T bc
W−access = Taccess(0) (6)

T wc
W−access =

maxBackoff−1∑
m = 0

Taccess(m) (7)

where, maxBackoff is the maximum number of iterations.
For the evaluation of absolute access time durations, we

assume the use of the 2.4 GHz IEEE 802.15.4 frequency
operation, with a 62.5k symbols/s symbol rate and with four
bits being coded into a single symbol. The default values of
Table II are used. Under these conditions, the access to the
shared medium may require in the worst case a delay as long
as 2563 symbols, i.e., T wc

W−access
∼= 41ms.

For the maximum frame length of 1016 bits, including
headers, the corresponding worst case data frame transmission
delay is T wc

τ−MAC(data) = 57ms, assuming no errors during
the entire process of a data frame transmission. However,

Parameter Range Default Unit
maxBackoff 0-5 4 Integer

minBE 0-maxBE 3 Integer
maxBE 3-8 5 Integer
Tbackoff — 20 Symbols

TABLE II: Relevant network parameters defined in the IEEE
802.15.4 standard

disturbances on the medium and medium access protocols
may cause the occurrence of periods of inaccessibility which
may induce the occurrence of errors during a data frame
transmission.

C. Dependability and Timeliness of Wireless Communications

Our proposal to control the dependability and timeliness of
a frame transmission is divided on two issues: (a) the classical
omission error handling present on reliable transmission proto-
cols; (b) and the effective control of periods of inaccessibility.

1) Handling omission errors: Let us consider that the Real-
Time Protocol Suite component uses a reliable unicast trans-
mission service as an extension of the unreliable transmission
service traditionally provided by MAC level standards. This
reliable service is a rather classic transmit with acknowledge-
ment (ACK) protocol required to enforce the reliability of
a data communication service. To start a reliable transmis-
sion some higher level entity shall request a unicast data
transmission with delivery guarantee through the Mediator
Layer programming interface. During protocol execution, the
transmitted frame or its associated ACK may be corrupted
by disturbances which lead to omission errors. In this case,
the destination node does not receive a correct frame, or the
sender node does not receive the ACK associated with this
frame. As frame corruptions are transformed into omission
errors, detected when the time interval needed to transmit
and receive the corresponding ACK frame ends, the sender
node protocol activates a retransmission mechanism and tries
to send the frame again, until a maximum number of attempts
limited by the bounded omission degree, k, is reached.

However, the occurrence of temporary partitions during a
frame transmission may cause a violation of the omission
degree limited by k, and therefore the failure of the protocol in
delivering the frame to its destination. This happens because
the value of k is specified without contemplate the occurrence
of periods of inaccessibility, and the standard MAC layer does
not provide the additional control provided by our approach.

2) Controlling periods of inaccessibility: Our strategy to
handle the occurrence of periods of inaccessibility during a
frame transmission also transforms inaccessibility incidents
into omission errors. A bounded inaccessibility degree, i, is
introduced to (self)-adapt and configure the reliable unicast
transmission service, and therefore the Mediator Layer as
well. The combination of i and k (line 8 in Algorithm 1)
makes the retransmission mechanism more dynamic, main-
taining the timeout used to control reception of the ACK

Fig. 3: The Effective Inaccessibility Control Mechanism

(TACK−timeout) with its original and optimized value, and
allowing the adaptation of this mechanism to the different
durations of each type of inaccessibility scenario (see Ta-
ble III). The utilization of the same control mechanism for
temporary partitions is only possible by the causal relation
that exists among the frame transmission request and confirm
primitives. Fig. 3 presents a frame transmission mediated by
our proposed solution, evidencing that the local confirmation
is only provided to the Mediator Layer after the actual
transmission of the frame on the wireless medium.

Algorithm 1 presents the reliable unicast algorithm with
simple, yet fundamental, mechanisms to handle the occurrence
of periods of inaccessibility. In Algorithm 1, lines 8 specifies
the incorporation of the bounded inaccessibility degree control
mechanism in protocol operation, and line 11 the usage of
the MAC level confirmation to start the timer which controls
the retransmission process (in line 12). The value assigned
to the inaccessibility degree bound depends on each network
type and its parameters. However, it is reasonable to assume
that only one period of inaccessibility would occur during a
data transmission, i.e., it is reasonable to assume i = 1. The
main advantage of such control mechanism is the temporal
adaptation of timeout values to the duration of each period of
inaccessibility, which may occur at most i times. Although a
pure reliability enforcement algorithm only uses k to control
the number of retransmissions, the transformation of inacces-
sibility events into omissions adds i to k and increases the
maximum number of retransmissions to k + i. That means,
the protocol is given a consolidated omission degree bound,
K, being K = k + i.

In practical terms, this is equivalent to redefining the value
assigned to the omission degree bound. This is very important
because our control mechanism and the Mediator Layer, can
be incorporated in any off-the-shelf equipment. In other words,
is possible to improve the functionality traditionally offer by
the MAC level without change the hardware devices operating
in an existent wireless network, being totally transparent to the

Algorithm 1 Controlling Inaccessibility (Trapping)
1: Initialization phase.
2: k ← omission degree bound;
3: i ← inaccessibility degree bound;
4: round ← 0; accounts for the number of omissions
5: ack rcv ← 0;
6: Begin.
7: RUcast.data.request(pckt)

8: while round ≤ k+i AND ack rcv = 0 do
9: frame ← pckt;

10: MAC.data.request(frame);

11: when MAC.data.confirm() do
12: RUcast.restartT imer(TACK−timeout);
13: when MAC.indication(ACK) received do
14: ack rcv ← 1;
15: end when
16: when RUcast.timer(timeout expired) do
17: round ← round + 1;
18: end when
19: end when
20: end while
21: if ack rcv = 1 then
22: RUcast.data.confirm(Success);
23: else
24: RUcast.data.confirm(Failure);
25: end if
26: End.

higher levels.

The value of the consolidated omission degree bound shall
be dimensioned to consider the specific behavior of each MAC
level standard. The related transmission technologies shall also
be considered to accomplish the maximum efficiency against
environment conditions during the provision of a reliable
and timely service. Temporary partitions which may occur
and disturb a frame transmission during the operation of the
network are handled by the activation of the Timeliness and
Partition Control component, improving the capabilities of the
reliable transmission service provided by the Mediator Layer.

Scenario Designation

Periods of Inaccessibility
best case worst case

(ms) (ms)
Single Beacon Frame Loss - No Tracking tina←sbfl —— 3947.71
Multiple Beacon Frame Loss - Tracking tina←mbfl 3947.71 15790.08

Synchronization Loss tina←nosync 15790.08 15790.08
Orphan Node tina←orphan 15794.15 18421.70

Coordinator Realignment tina←realign 2.24 43.30
Coordinator Conflict Detection tina←C Conflict 1.14 42.40
Coordinator Conflict Resolution tina←C Resolution 63171.54 63822.54

GTS request tina←GTS 0.66 41.47

TABLE III: IEEE 802.15.4 best and worst periods of inaccessibility for the 2.4GHz frequency band [6]

D. Extending the general characterization of a MAC frame
transmission service

Traditionally, a MAC frame transmission service is not
aware of the occurrence of periods of inaccessibility during
the network operation. Thus, we shall extend the general
characterization of a MAC frame transmission service to
incorporate the duration of these periods. This extension is
presented in the following equations:

T bc
τ−MAC(type) = T bc

W−access + T bc
MAC−type + Tina (8)

T wc
τ−MAC(type) = T wc

W−access + T wc
MAC−type + Tina (9)

where Tina represents the duration of a given period of
inaccessibility. Tina is a general term which supports the adap-
tation of this transmission service to the different durations of
each inaccessibility scenario (see Table III). In case of non
occurrence of a period of inaccessibility, Tina = 0.

Additionally, to evidence the importance of our proposal
and of this control strategy we present in Table III a summary
of relevant set of periods of inaccessibility, which if were com-
pared to a data transmission with 1016 bits and transmission
time around 57ms, are extremely higher. These values were
obtained with an exhaustive analysis of the IEEE 802.15.4
made in [6]. Using the results presented in this paper, the
occurrence of a timing fault is detected by the Mediator Layer,
and its propagation to higher layers is avoided.

VI. CONCLUSION AND FUTURE WORK

The potential of wireless networks to support communi-
cations on different kinds of environments and applications,
with strict timing restrictions, is still an open issue. In this
paper we presented our approach to enhance the timeliness of
wireless communications, introducing a new component layer
with an effective control strategy, avoiding time faults even
in the presence of errors in the medium and medium access
protocols. Our approach presented a (self-)adaptive and (self-
)managed solution, which being in compliance with standards
can be used with the existent COTS components.

Future directions involve: reducing the duration of the
inaccessibility scenarios based on mechanisms present in the
IEEE 802.15.4 standard; improving the support to periodic

traffic and applications with hard temporal restrictions; and
defining relevant real-time metrics to evaluate the wireless
communications with regard to application requirements and
environment restrictions.

REFERENCES

[1] I. Aad, P. Hofmann, L. Loyola, F. Riaz, and J. Widmer, “E-MAC: Self-
organizing 802.11-compatible MAC with elastic real-time scheduling,”
in IEEE Internatonal Conference on Mobile Ad hoc and Sensor Systems
(MASS), October 2007, pp. 1 –10.

[2] M. Hameed, H. Trsek, O. Graeser, and J. Jasperneite, “Performance
investigation and optimization of IEEE 802.15.4 for industrial wireless
sensor networks,” in IEEE International Conference on Emerging Tech-
nologies and Factory Automation (ETFA), Sept 2008, pp. 1016 –1022.

[3] E. Egea-López, J. Vales-Alonso, A. S. Martı́nez-Sala, J. Garcı́a-Haro,
P. Pavón-Mariño, and M. V. Bueno Delgado, “A wireless sensor net-
works MAC protocol for real-time applications,” Personal Ubiquitous
Computing, vol. 12, pp. 111–122, January 2008.

[4] X.-Y. Shuai and Z.-C. Zhang, “Research of real-time wireless networks
control system MAC protocol,” Journal of Networks, vol. 5, no. 4, pp.
419–426, April 2010.

[5] P. Verı́ssimo, J. Rufino, and L. Rodrigues, “Enforcing Real-Time Be-
haviour on LAN-Based Protocols,” in 10th IFAC Workshop on Dis-
tributed Computer Control Systems, Sept. 1991.

[6] J. L. R. Souza and J. Rufino, “Characterization of inaccessibility in
wireless networks-a case study on IEEE 802.15.4 standard,” in 3th IFIP
International Embedded Systems Symposium(IESS), ser. IFIP Advances
in Information and Communication Technology, vol. 310, Langenargen,
Germany, September 2009.

[7] R. Sokullu, I. Korkmaz, O. Dagdeviren, A. Mitseva, and N. R. Prasad,
“An investigation on IEEE 802.15.4 MAC layer attacks,” in 10th Int.
Symposium on Wireless Personal Multimedia Communications, 2007.

[8] P. Radmand, A. Talevski, S. Petersen, and S. Carlsen, “Taxonomy of
wireless sensor network cyber security attacks in the oil and gas indus-
tries,” in 24th IEEE International Conference on Advanced Information
Networking and Applications (AINA). Washington, DC, USA: IEEE
Computer Society, 2010, pp. 949–957.

[9] L. Kleinrock and F. Tobagi, “Packet switching in radio channels:
Part i–carrier sense multiple-access modes and their throughput-delay
characteristics,” IEEE Transactions on Communications, vol. 23, no. 12,
pp. 1400 – 1416, December 1975.

[10] IEEE 802.15.4, “Part 15.4: Wireless medium access control (MAC) and
physical layer (PHY) specifications for low-rate wireless personal area
networks (WPANs) - IEEE standard 802.15.4,” IEEE P802.15 Working
Group, 2006, Revision of IEEE Standard 802.15.4-2003.

[11] ISO IEC 8802-2:1998, Logical Link Control, IEEE, 1998.
[12] C. Jung, H. Hwang, D. Sung, and G. Hwang, “Enhanced markov chain

model and throughput analysis of the slotted CSMA/CA for IEEE
802.15.4 under unsaturated traffic conditions,” IEEE Transactions on
Vehicular Technology, vol. 58, no. 1, January 2009.

[13] J. He, Z. Tang, H.-H. Chen, and Q. Zhang, “An accurate and scalable
analytical model for IEEE 802.15.4 slotted CSMA/CA networks,” IEEE
Transactions on Wireless Communications, vol. 8, no. 1, pp. 440–448,
January 2009.

KARYON ‐ FP7‐288195
D3.1 – First Report on Supporting Technologies (Annex)

© 2012 KARYON Project 13/188

KARY N

A.1.2 Characterization	of	Network	Inaccessibility	in	IEEE	802.15.4	Wireless	
Networks	

“Characterization of Network Inaccessibility in IEEE 802.15.4 Wireless Networks”. J. L. R.
Souza and J. Rufino, Technical Report DI/FCUL, September 2012, Lisbon, Portugal.

KARYON ‐ FP7‐288195
D3.1 – First Report on Supporting Technologies (Annex)

© 2012 KARYON Project 14/188

KARY N

This page is intentionally left blank.

1

Characterization of network inaccessibility
in IEEE 802.15.4 wireless networks

Jeferson L. R. Souza and José Rufino

University of Lisboa - Faculty of Sciences

LaSIGE - Navigators Research Team

Email(s): jsouza@lasige.di.fc.ul.pt, ruf@di.fc.ul.pt

Abstract

Wireless communications are vulnerable to the presence of errors during the network operation. These

errors may be originated from different sources such as external electromagnetic interferences, obstacles in

communication path, or even glitches in the communication circuitry. Such origins may lead the medium

access control (MAC) layer to deviate from its normal operation (without presence of errors), forcing the

execution of additional actions to maintain the network operational. The execution of such actions may imply

the occurrence of periods of “communication silence”, where the network although not being failed, is not

performing communications. These periods of “communication silence” are dubbed network inaccessibility,

which may induce inaccurate fault detections and deadline misses. Additionally, the occurrence of network

inaccessibility may compromise network properties such as predictability, dependability, and timeliness.

Thus, this report presents an exhaustive study about network inaccessibility, using the 802.15.4 standard

as a case study. All network inaccessibility scenarios are presented, discussing important steps to achieve

predictability, dependability, and timeliness in wireless communications.

I. INTRODUCTION

Wireless sensor networks (WSNs) are flexible communication networks with a great interest in

many areas with temporal restrictions such as industrial, vehicular, military, and aerospace. The

main advantages provided by WSNs are the elimination of cables, mobility, and reduced Size,

Weight, and Power (SWaP) consumption.

There are some works trying to provide temporal guarantees on WSNs, namely those proposed

in [1]–[6]. However, these works do not pay attention to deviation on the medium access con-

trol (MAC) layer service that may be caused by electromagnetic interferences, obstacles in the

communication path, mobility or even glitches in communication circuitry. Such deviation forces

the occurrence of periods where the network does not provide service although it cannot be

considered in a fail state, which are dubbed network inaccessibility [7]–[9]. The occurrence of

network inaccessibility may induce inaccurate fault detections, and deadlines violations, which

may put the overall system at risk.

This document presents an exhaustive study of network inaccessibility in IEEE 802.15.4 wireless

networks. This study of the IEEE 802.15.4 standard specification is important to the knowledge of

how network inaccessibility affects the operation of WSNs, and to show the impact of the network

inaccessibility times in the transmission time bounds. Additionally, the characterization of network

inaccessibility is a first step towards the provisioning of timeliness, dependability and predictability

guarantees in WSNs, using off-the-shelf IEEE 802.15.4 technology.

This work was partially supported by EC, through project IST-STREP-288195 (KARYON) and by FCT through the Multiannual

Funding and CMU-Portugal Programs and the Individual Doctoral Grant SFRH/BD/45270/2008.

2

Document Organization

The remainder of the document is organized as follows. Section II presents the concept of

network inaccessibility. Section III discusses the system model used in our analysis, describing

the corresponding assumptions and fundamental properties. Section IV presents an overview of the

IEEE 802.15.4 standard while section V characterizes fundamental aspects of the IEEE 802.15.4

service interface. Section VI presents an exhaustive study of network inaccessibility in the IEEE

802.15.4 standard and Section VII discusses the corresponding analytical results, showing that

real-time operation over wireless sensor networks is still an open problem. Finally, section VIII

concludes the document and presents some future research directions.

II. WHAT IS NETWORK INACCESSIBILITY?

The operation of a MAC layer may be disturbed by errors caused by different sources such as

external electromagnetic interferences, obstacles in the communication path, glitches in the node

circuitry, or even malicious attacks in the more opened environments. These errors may induce

the MAC layer to deviate from its normal operation (without the presence of errors), forcing

the execution of actions, such as the transmission of control frames, to maintain the network

operational. The period comprised from the detection of such deviation until to the end of execution

of all the actions needed to reestablish the normal operation of the MAC layer is dubbed network

inaccessibility ([7], [8]). During a period of network inaccessibility a node1 locally experiences

a period of “communication silence”, being not able to communicate with any other node. The

definition of network inaccessibility present in [8] is summarized here:

Certain kinds of components may temporarily refrain from providing service, without that
having to be necessarily considered a failure. That state is called network inaccessibility.
It can be made known to the users of network components; limits are specified (duration,
rate); violation of those limits implies permanent failure of the component.

III. SYSTEM MODEL

The rigorous definition of a system model is a crucial step to understand and describe the

fundamental aspects of a wireless (sensor) network operation. Our system model is formed by

a set of wireless nodes X = {x1, x2, . . . , xn}, being 1 < n ≤ #A, where A is the set of all

wireless nodes using the same communication channel. The set of nodes X itself establishes a

node relationship entity dubbed wireless network segment, using a given communication channel

and a given wireless network segment identifier (WNID).

A. Assumptions

In our system model the behavior of a wireless network segment is sustained by assumptions

utilized to characterize the network communication capabilities and restrictions of wireless nodes.

During a wireless network segment operation cycle we use the following assumptions:

1Node is the designation for a wireless network device capable to carry applications on top, and to send and receive frames

following the specification of the physical and MAC layers currently in use.

3

1) The communication range of X , i.e. its broadcast domain, is given by: BX =
n⋂

j=1

BD(x), ∀x ∈
X , where BD(x) represents the communication range of a node x;

2) ∀x ∈ A, x ∈ X ⇐⇒ BD(x)
⋂

BX = BX or, as a consequence of node mobility, x /∈
X ⇐⇒ BD(x)

⋂
BX �= BX ;

3) ∀x ∈ X can sense the transmissions of one another;

4) ∃x ∈ X which is the coordinator, being unique and with responsibility to manage the set;

5) A network component (e.g. a node x ∈ X) either behaves correctly or crashes upon exceeding

a given number of consecutive omissions (the component’s omission degree, fo) in a time

interval of reference2, Trd;

6) failure bursts never affect more than fo transmissions in a time interval of reference, Trd;

7) omission failures may be inconsistent (i.e., not observed by all recipients).

Assumptions 1, 2, and 3 define the physical relationship between nodes within the wireless

network segment. Our system model characterizes the relationship between nodes at MAC level,

where nodes must be in the communication range of each other to communicate and are able to

sense one another (assumption 3). Mobility may drive nodes away of wireless network segment

(assumption 2).

In the context of network components, an omission is an error that destroys a data frame.

Omissions may be caused by different sources such as node mobility, external electromagnetic

interference, fading caused by multipath or transient obstacles on the communication medium,

glitches on the MAC layer operation, and malicious attacks. Despite of their importance we are

not considering malicious attacks in our analysis, being such topic addressed in future work.

Figure 1 presents a graphical representation of a wireless network segment. In this figure we

can see the communication range of each node within X , evidencing the intersection between all

communication ranges of all nodes, which delimits the broadcast domain of X . We can also see in

Fig. 1 the indication of which node is the coordinator. The management activities of the coordinator

comprises the assignment of the current communication channel in use by the wireless network

segment, the wireless network segment identifier definition, address space delimitation, and so on.

B. Wireless MAC-level properties

A relevant set of properties, presented in Figure 2, are defined for the MAC layer and hold

for the wireless network segment. In wired networks, it has been proven that those properties are

extremely useful for enforcing dependability and timeliness at higher layers [9], [10]. Thus, we are

applying those techniques to the realm of wireless networks [11].

Properties WMAC1 and WMAC2 impose correctness in the value domain. Property WMAC1

(Broadcast) formalizes that it is physically impossible for a node in the wireless network segment

to send conflicting information to different nodes, in the same broadcast [12]. Property WMAC2

2For instance, the duration of a given protocol execution. Note that this assumption is concerned with the total number of failures

of possibly different nodes.

4

Fig. 1: The graphical representation of a wireless network segment

WMAC1 - Broadcast: correct nodes, receiving an uncorrupted frame trans-

mission, receive the same frame.

WMAC2 - Error Detection: correct nodes detect any corruption done by

the network in a locally received frame.

WMAC3 - Bounded Omission Degree: in a known time interval Trd,

omission failures may occur in at most k transmissions.

WMAC4 - Bounded Inaccessibility: in a known time interval Trd, a

network may be inaccessible at most i times, with a total duration of at

most Tina.

WMAC5 - Bounded Transmission Delay: any frame transmission request

is transmitted on the network within a bounded delay Ttd + Tina.

Fig. 2: General Wireless MAC-level properties

(Error Detection) derives directly from frame protection through a CRC3 polynomial, as provided

by the MAC layer. Frames affected by errors are discarded, usually by the MAC controller itself.

This means, frame errors are transformed into omissions. The residual probability of undetected

frame errors is negligible [13], [14].

The extension of property WMAC2 to include the signaling of frame discard actions to other

protocol entities may significantly contribute to enhance the liveness properties at MAC protocol

level. The provisioning of such unconventional primitive can be enabled by emerging controller

technology, such as reprogrammable and/or open core MAC layer solutions. No modifications are

needed to the IEEE 802.15.4 standard.

Property WMAC3 (Bounded Omission Degree) formalizes the failure semantics introduced ear-

3CRC - Cyclic Redundancy Check.

5

lier, being k ≥ fo. This property is crucial to implement protocols yielding bounded termination

times. For example, the IEEE 802.15.4 specification makes use of the bounded omission degree

technique in the definition of a (data/control) frame reliable unicast protocol, at the MAC layer [15].

Considering only the presence of accidental transient faults, the omission degree (i.e. the number

of consecutive omission errors during a given protocol execution) of a single channel wireless

network infrastructure can be bounded, given its error characteristics [14], [16], [17]. The IEEE

802.15.4 standard defines a MAC protocol configuration parameter equivalent to the channel omis-

sion degree bound, k, setting a default value k ≡ macMaxFrameRetries = 3 [15].

The Bounded Omission Degree property is one of the most complex properties to secure in wire-

less networks. Securing this property with optimal values and with a high degree of dependability

coverage will require the use of multiple communication channels [11]. Although an innovative

solution to this problem needs to be further investigated, as soon as achieved it may also provide

an effective defence against a class of malicious physical layer attacks, such as radio jamming [11],

[18], [19].

The network behaviour in the time domain is described by the remaining properties. Property

WMAC5 (Bounded Transmission Delay) specifies a maximum network transmission delay, which

is Ttd in the absence of faults. The value of Ttd may include the queuing, network access and

transmission delays and it depends on message latency classes and offered load bounds [3], [20].

The value of Ttd does not include the effects of omission errors. In particular, Ttd does not account

for possible frame retransmissions, such as those foreseen at the MAC level of the IEEE 802.15.4

specification [15]. However, Ttd may include the extra delays resulting from the queuing effects

caused by the occurrence of network inaccessibility.

The bounded network transmission delay includes Tina, a corrective term, which accounts for

the worst case duration of network inaccessibility glitches, given the bounds specified by property

WMAC4 (Bounded Inaccessibility). The network inaccessibility characteristics depend on the net-

work alone and can be predicted by the analysis of the MAC protocol. Some preliminary results on

this analysis have been advanced in [17]. This work consolidates and extends those earlier results,

doing an exhaustive study of network inaccessibility in IEEE 802.15.4 networks.

IV. IEEE 802.15.4 - OVERVIEW

The IEEE 802.15.4 [15] is a standard specified for wireless sensor networks (WSNs) with

potential utilization on vehicular, industrial, and aerospatial communications. Each IEEE 802.15.4

network must contain a coordinator which defines the network parameters and characteristics such

as addressing, supported channels, and operation mode.

There are two operation modes defined in the standard specification called nonbeacon enabled

and beacon enabled. The nonbeacon enabled mode uses a non-slotted version of the carrier sense

multiple access with collision avoidance (CSMA/CA) protocol to control the medium access. This

control is decentralized, lacking a native support for communications with temporal restrictions.

Conversely, beacon enabled mode has a native specification for supporting communications

with temporal restrictions, being the operation mode we are concentrating our further analyses.

A coordinator controls the medium access using the superframe structure represented in Fig. 3.

The contention access period (CAP), contention free period (CFP), and the optional inactive period

are the subdivisions of such structure, bounded by the transmission of a beacon frame used to

synchronize nodes for medium access actions on the whole network. In CAP all nodes compete

6

Fig. 3: Superframe Structure of IEEE 802.15.4 Beacon enabled mode

for accessing the medium. For this reason, a slotted version of CSMA/CA protocol must be used

to access the medium within CAP [15]. Details of this protocol can be found in [15], [20]–[22].

On the other hand, when CFP exists, i.e., when a coordinator supports the allocation of reserved

slots, these slots are called guaranteed time slots (GTS). The CFP always appears at the end of the

CAP and each slot must be allocated previously to only one node. This allocation ”guarantees” that

the medium is free and the aforementioned node can transmit frames without using the CSMA/CA

protocol. Furthermore, this feature is used to support the execution of the real time applications [3],

[4]. However, the exclusive use of bandwidth reservation is not a complete solution to support the

execution of protocols and applications with real-time restrictions.

The inactive period is used to allow all nodes to enter in sleep mode, or shutdown their transceiver,

to reduce their energy consumption in a known time interval during each transmission cycle

denoted by superframe duration. The duration of a superframe is controlled by MAC attributes

macBeaconOrder (BO) and macSuperFrameOrder (SO), where 0 ≤ SO ≤ BO ≤ 14.

When SO and BO have the same value, the inactive period does not exist, i. e., there is no period

that devices may enter in low-power state. The standard values were used in our analyses and are

summarized in Tables I and II.

V. IEEE 802.15.4 SERVICE INTERFACE

The standard IEEE 802.15.4 MAC service interface defines two types of service for the transmis-

sion of MAC data and control frame. The set of general equations describing frame transmission

times is defined next. Equations 1 and 2 are used for unreliable (non acknowledged) frame trans-

mission, and equations 3 and 4 for reliable (acknowledged) frame transmission.

T bc
MAC(type) = Tbackoff + T bc

MAC−type (1)

T wc
MAC (type) =

maxBackoff∑
j = 1

{
Tbackoff .(2

BE + 1)
}
+ T wc

MAC−type (2)

T bc
MAC ack (type) = T bc

MAC (type) + T bc
ackDelay + Tack (3)

T wc
MAC ack (type) =

maxRetries∑
j=0

T wc
MAC (type) + T wc

ackDelay + Tack (4)

7

IEEE 802.15.4 Name Abbr. Range Default
Value

macBeaconOrder BO 0 - 15 8

macSuperframeOrder SO 0 - 15 5

macMinBE minBE 0 - maxBE 3

macMaxBE maxBE 3 - 8 5

macMaxCSMABackoffs maxBackoff 0 - 5 4

macMaxFrameRetries maxRetries 0 - 7 3

macResponseWaitTime nrWait 2 - 64 32

aMaxLostBeacons nrLost - 4

aNumSuperframeSlots nrSlots - 16

TABLE I: Relevant integer parameters of the IEEE 802.15.4 standard

IEEE 802.15.4 Name Identifier Value
(symbol times)

aBaseSlotDuration Tbase 60

aBaseSuperframeDuration TBSD 960

aMinCAPLength TminCAP 440

aUnitBackoffPeriod Tbackoff 20

aTurnaroundTime Txvrcmd 12

TABLE II: Relevant time-related constants of the IEEE 802.15.4 standard

where, BE is the backoff exponent that defines the length of the CSMA/CA contention window,

being minBE ≤ BE < maxBE (Table I); T bc
ackDelay = Txvrcmd and T wc

ackDelay = Txvrcmd +

Tbackoff + Tfreq are the times to wait the acknowledgment in reliable transmissions. Tfreq depends

of technology and to simplify we will consider an upper bound Tfreq = 100 symbols. The reference

type in equations (1) to (4) identifies one specific type of MAC frames.

The superscripts bc and wc used in equations 1 to 4 specify the best and worst case MAC frame

transmission times, respectively.

VI. NETWORK INACCESSIBILITY IN IEEE 802.15.4

This section presents an exhaustive study of network inaccessibility in IEEE 802.15.4 wireless

networks. A comprehensive set of scenarios leading to network inaccessibility is thoroughly dis-

cussed. For many of them we start with very simple situations that then evolve to less restrictive –

and thus more general – operating conditions/fault assumptions. For most of the cases, we explicitly

derive best and worst case figures, that we will signal with superscripts bc and wc, respectively.

A. Single Beacon Frame Loss

Let us start our analysis considering that a subset of nodes (may have a single element) in a wire-

less network segment does not track beacon frames. If a node in this set needs to transmit a frame

it should enable the radio transceiver (receive mode) and start a wait and network synchronization

1The worst case duration, for the wait of an acknowledgement frame, follows the IEEE 802.15.4 standard specification [15].

8

Frame type Symbol Length Duration
(bit) (ms)

Data frames
Data (Minimum payload) T bc

data 8 0.03

Data (Maximum payload) T wc
data 1016 4.07

Data request TExt R 320 1.28

Data acknowledgment1 Tack 40 1.00

MAC control frames
Beacon TBeacon 1016 4.07

Beacon request TBeacon R 64 0.26

Network ID conflict notification TConflict 304 1.22

Orphan notification TOrphan 128 0.52

Realign TRealign 280 1.12

Association request TAssoc R 312 1.25

GTS request TGTS R 72 0.29

Control request TExt R 320 1.28

MAC frame acknowledgment1 Tack 40 1.00

TABLE III: IEEE 802.15.4 frame durations, using the 2.4GHz frequency band

period of at most TBSD . (2BO + 1) symbols. If the beacon frame is received before the end of

this search period, the frame shall be transmitted in the appropriate portion of the superframe. No

network inaccessibility event exists. Otherwise, the operation of the MAC protocol is disturbed by

the lack of beacon frame synchronization and the network is inaccessible, as described by equation:

T wc
ina←sbfl = Txvrcmd + TBSD . (2BO + 1) (5)

Since Txvrcmd � TBSD, equation 5 can be simplified to equation 6, which represents the period

of network inaccessibility upon the loss of a single beacon in a beacon enabled wireless network

segment:

T wc
ina←sbfl = TBSD . (2BO + 1) (6)

After the period of network inaccessibility, it is assumed a new instance of a beacon frame will be

received and the node may proceed with the transmission of the frame using the unslotted version

of the CSMA/CA algorithm. The entire period of network inaccessibility is local to the node.

B. Multiple Beacon Frame Loss

A beacon-enabled wireless network segment uses the superframe structure for controlling medium

access. Under normal operation, a node must receive the beacon frame before it is allowed to

transmit data. If some nodes in the wireless network segment do not receive the beacon frame, the

network will be inaccessible for such nodes.

9

Based on the superframe structure of the last received beacon, the node can control the radio

interface and track consecutive beacon transmissions. The tracking mechanism is also called bea-

con synchronization and allows all nodes to know the characteristics of the superframe structure

(duration of active and inactive periods, number of allocated GTS slots, etc.).

For tracking a beacon frame, a node searches for beacons during at most TBSD . (2BO+1) symbol

times. If a beacon frame with the current wireless network segment identifier is not received, this

search is repeated from one to at most nrLost ≡ aMaxLostBeacons times. The best and worst

case network inaccessibility durations are obtained under the assumption that a beacon frame is

successfully received right after the first and the last of the nrLost wait periods. The corresponding

periods of network inaccessibility are therefore given by equations 7 and 8, respectively.

T bc
ina←mbfl = TBSD .

(
2BO + 1

)
(7)

T wc
ina←mbfl = TBSD .

(
2BO + 1

)
. nrLost (8)

These periods of network inaccessibility may locally affect only a given set of nodes (this set

may have a single element) or its effects may extend to all the nodes of the wireless network

segment, but the wireless network segment coordinator.

C. Synchronization Loss

If the search for the beacon frame does not succeed in any of the nrLost tries, a node loses

synchronization with its coordinator, being obliged to signal a BEACON LOST event to high layer

protocol management entities, such as the Mediator Layer management entities [23]. The corre-

sponding period of network inaccessibility up to this point is simply given by:

Tina←nosync = TBSD .
(
2BO + 1

)
. nrLost (9)

The BEACON LOST event is signaled upon exceeding the allowed maximum number of bea-

con frame losses, aMaxLostBeacons ≡ nrLost. This is in strict conformity with the standard

specification and with our system model.

There are a number of causes for network inaccessibility due to loss of node synchronization:

a burst of electromagnetic interference in the medium; disturbances in the node receiver circuitry;

collisions derived from the presence of obstacles or influenced by the activity of hidden or mobile

nodes; glitches in the coordinator or even its failure. Based on the information it owns, the Mediator
Layer management entities may take a decision on the appropriate recovery action.

This period of network inaccessibility may affect only a set of nodes or it may include all the

nodes of the wireless network segment, but the wireless network segment coordinator.

D. Orphan Node

If the high layer protocol management entities (e.g. the Mediator Layer) decide that the device

was orphaned, a request is issued to the MAC layer to start an orphan scan recovery action, over

a specified set of logical channels.

10

For each logical channel: a MAC orphan notification command is sent; as reply, a MAC realign-

ment command from the previously associated coordinator, is awaited for during a given period.

While the node does not receive the MAC realignment command, the network is inaccessible. Once

such MAC command is received the node terminates the scan and the network becomes accessible.

The MAC realignment frame is transferred using the frame reliable unicast service. Thus, the worst

case period of network inaccessibility is obtained assuming that the MAC realignment command

is received only while scanning the last of the nrchannels logical channels, being its upper bound

given by equation 10.

T wc
ina←orphan = Tina←nosync + TMLA(Orphan) +

nrchannels∑
j=1

(T wc
MAC(Orphan) + nrWait . TBSD) + T wc

MAC ack(Realign)
(10)

where, TMLA is the normalized (symbol) time taken in the Mediator Layer management actions.

Should the orphan realignment succeed at the first attempt, the period of network inaccessibility

will be simply given by equation 11.

T bc
ina←orphan = Tina←nosync + TMLA(Orphan) + T bc

MAC(Orphan) +

TMLA(Realign) + T bc
MAC ack(Realign)

(11)

which assumes that TMLA(Realign) < nrWait . TBSD, represents the duration of the Mediator
Layer management actions at the network coordinator, in response to the MAC orphan notification

command. The whole period of network inaccessibility may affect only a single node, a given set

of nodes or all the nodes of the wireless network segment, but the network coordinator. In the

worst-case, all the N nodes of the wireless network segment, but the network coordinator may be

inaccessible, as specified by equation 10, where the superscript mn signals that multiple nodes may

be inaccessible:

T wc−mn
ina←orphan = Tina←nosync + TMLA(Orphan) +

nrchannels∑
j=1

(T wc
MAC(Orphan) + nrWait . TBSD) + (N−1) . T wc

MAC ack(Realign)
(12)

However, since MAC control frames are being exchanged between nodes, the time taken in

those actions should be seen as a period of network inaccessibility by all the nodes in the wireless

network segment. These global periods of network inaccessibility are lower and upper bounded by

the duration of the events specified in equations 13 and 12, respectively.

T bc
ina←orphan(mac) = T bc

MAC(Orphan) + T bc
MAC ack(Realign) (13)

T wc−mn
ina←orphan(mac) = (N−1) . [

nrchannels∑
j=1

(T wc
MAC(Orphan)) + T wc

MAC ack(Realign)] (14)

11

where, N is the number of nodes in the wireless network segment. Equation 13 assumes that a

single node has been declared as an orphan while equation 14 is derived assuming that all the

nodes but the network coordinator have entered into the orphan state. Equations 13 and 14 do not

account for local actions, such as the event detection latencies, frame waiting periods and processing

overheads, included in equations 10 to 12.

E. Coordinating Orphan Realignment

At the coordinator the need to assist MAC layer management actions starts when a MAC orphan

notification command is received. Upon processing by Mediator Layer management entities, the

reliable unicast, i.e. the acknowledged transmission of a MAC realignment command is requested.

The time taken in these actions is seen as network inaccessibility by the wireless network segment

coordinator. The best and worst periods of network inaccessibility concerning the interaction with

a single orphan node are given by equations 15 and 16, respectively.

T bc
ina←realign = TMLA(Realign) + T bc

MAC ack(Realign) (15)

T wc−sn
ina←realign = TMLA(Realign) + T wc

MAC ack(Realign) (16)

On the other hand, if the operation of the network is disturbed in such a way that all the nodes of

the wireless network segment, but the wireless network segment coordinator, enter into the orphan

state, the corresponding worst case period of network inaccessibility is given by equation 17.

T wc−mn
ina←realign = TMLA(Realign) + (N−1) . T wc

MAC ack(Realign) (17)

where, it is assumed that the processing of the different MAC orphan notifications by the Mediator
Layer management entities mostly proceeds in parallel with the transmission of MAC coordinator

realignment frames. All these operations may heavily disturb the superframe structure and the

corresponding network operation cycle and may even introduce a significant jitter in the forthcoming

beacon frame transmissions. Therefore, this period of network inaccessibility should be seen as

global, i.e. affecting all network nodes.

F. Coordinator Conflict Detection

In general, there is the possibility that two different potential coordinators may render the same

WNID, within the same wireless network segment broadcast domain. A similar scenario may

also result from node mobility, when a moving node and potential coordinator enters into the

broadcast domain of a functioning coordinator. In any of these scenarios, one have a situation called

coordinator conflict, which can either be detected by the wireless network segment coordinator or

by its directly associated nodes.

There are two forms to be aware of a coordinator conflict: a beacon frame with the same WNID

is received from different coordinators within the same wireless network segment broadcast domain;

a coordinator receives a WNID conflict notification from a node. The former is a local event and

does not directly generate a network inaccessibility incident. The latter involves the reliable unicast

12

of a MAC Coordinator WNID Conflict notification frame, which may individually lead to a period

of network inaccessibility, bounded in the best and worst case by equations 18 and 19, respectively.

T bc
ina←C Detection = T bc

MAC ack(C Conflict) (18)

T wc−sn
ina←C Detection = T wc

MAC ack(C Conflict) (19)

These periods of network inaccessibility should be seen as global by all the nodes of the wireless

network segment broadcast domain, since it implies the transaction of MAC control frames. In a

best case scenario the coordinator conflict will be detected by a single node and only one MAC

notification is sent in the wireless network segment, as specified by equations 18 and 19. In the

worst case, the conflict will be detected and signaled by all the wireless network segment nodes, but

the wireless network segment coordinator, and the corresponding period of network inaccessibility

is upper bounded by equation 20.

T wc
ina←C Detection = (N−1) . T wc

MAC ack(C Conflict) (20)

G. Coordinator Conflict Resolution

A wireless network segment coordinator must signal a COORDINATOR ID CONFLICT to Mediator
Layer management entities, which in turn will request the MAC layer to perform an active scan.

This scan is realized in all currently used logical channels. Scanning each channel involves the

transmission of a MAC beacon request command and wait for replies (beacon frames), during a

given period.

The identifiers recorded from the received beacons can be issued to the Mediator Layer man-

agement entities all at once, as specified in equation 21, or each time a beacon frame is received,

as drawn in equation 22. During all this process, the network is inaccessible. The best and worst

case periods of network inaccessibility are given by equations 21 and 22, respectively.

T bc
ina←C Resolution = TMLA(C Conflict)+

T bc
MAC(Beacon R) + nrWait.TBSD + TMLA(Realign) + T bc

MAC(Realign)
(21)

T wc
ina←C Resolution = TMLA(Conflict) +

nrchannels∑
j=1

[T wc
MAC(Beacon R)+nrWait.TBSD]+

TMLA(Realign) + T wc
MAC(Realign)

(22)

If, at the end of the search, the network coordinator does not found a beacon frame with its

own identifier no further action is taken and the network becomes accessible again. Otherwise, a

new identifier is selected and, if necessary, a MAC coordinator realignment command is broadcast.

Since all these events are originated at the network coordinator, they should be regarded as global,
i.e. observed by all the nodes in the wireless network segment. If the network coordinator selects

a new identifier, some nodes may not be synchronized with the ”new” superframe structure, which

may induce a loss of synchronization, as explained in Section VI-C.

13

H. Extract Request

There are two ways to transmit data between a node and a coordinator: the direct and indirect

transmission. In the direct transmission, the coordinator sends a data to a node directly, i.e., the

coordinator access the medium an send a data frame using a slotted version of CSMA/CA algorithm.

Otherwise, in the indirect transmission the coordinator storage the data in a queue and waits the

reception of a command that request the extraction of this data. In this case, the node sends a

command to extract data of the coordinator and waits for the reception of an acknowledgement.

The node repeat this operation until maxRetries times.

Thus, while the node does not receive the acknowledgement frame the network is inaccessible to

it. Additionally, if the node receives an acknowledgement from the coordinator, this node enables

its transceiver in receive mode during Twait and the network may continue inaccessible within this

period. The best and worst case network inaccessibility durations are therefore given by equations

23 and 24, respectively.

T bc
ina←extReq = T bc

MACack
(ExtReq) (23)

T wc
ina←extReq = T wc

MACack
(ExtReq) + Twait (24)

where, Twait is the period, addressed by the attribute macMaxFrameTotalWaitT ime, that is

dependent upon a combination of physical and MAC attributes and constants, being defined in the

IEEE 802.15.4 standard [15].

I. Association

The association procedure starts with a active scan in each logical channel available. The active

scan involves the send of a MAC beacon request command, for each available logical channel, and

the wait for replies (beacon frames), during a given period. After processing the beacon frames,

the Mediator Layer management entities select a wireless network segment, send an Association

Request command, and wait for a confirmation (acknowledgement). However, the association

procedure is done only after to extract the information about this association using the indirect

transmission method (see subsection VI-H). The best and worst periods of network inaccessibility

are given by equations 25 and 26, respectively.

T bc
ina←assoc = T bc

MAC(Beacon R) + nrWait.TBSD + TMLA(Beacon)+

T bc
ina←extReq + TMLA(AssocReq) + T bc

MAC ack(AssocReq)
(25)

T wc
ina←assoc =

nrchannels∑
j=1

[T wc
MAC(Beacon R) + nrWait.TBSD] + TMLA(Beacon)+

T wc
ina←extReq + TMLA(AssocReq) + T wc

MAC ack(AssocReq)

(26)

J. Re-Association

After a synchronization loss, the Mediator Layer management entities should decide which will

be done: to consider that the device is orphan; or that an association procedure will be realized

14

again. In case of re-association, a MAC layer should perform a reset operation before beginning

the association procedure. The best and worst network inaccessibility times are given by equations

27 and 28, respectively.

T bc
ina←reAssoc = Tina←nosync + T bc

ina←assoc (27)

T wc
ina←reAssoc = Tina←nosync + T wc

ina←assoc (28)

K. GTS request

The allocation of a GTS slot is performed using the reliable unicast service to send a MAC

GTS request command to the associated coordinator. During this period, the network is seen as

inaccessible. The best and worst periods of network inaccessibility are given by equations 29 and

30, respectively.

T bc
ina←GTS = T bc

MAC ack(GTS) (29)

T wc
ina←GTS = T wc

MAC ack(GTS) (30)

These periods of network inaccessibility are seen as global by all the nodes of the wireless

network segment. This scenario is extremely important because GTS slots can be used for bandwidth

reservation. Several solutions advanced in the literature try to solve the problem of real-time

communications, over the IEEE 802.15.4 standard, using GTS allocation mechanisms [3]–[5], [24].

The effectiveness of such solutions should be re-analysed under the scope of a comprehensive

network inaccessibility model.

VII. RESULTS: NETWORK INACCESSIBILITY DURATION IN BEACON ENABLED NETWORKS

The characterization of network inaccessibility presented in the section VI allows us to extract

some useful information regarding to the temporal behavior of an IEEE 8022.15.4 wireless network.

The default values of the IEEE 802.15.4 standard summarized in Tables I and II were utilized for

the parameters and constants present in our network inaccessibility characterization. We establish

an uniform duration for the management actions, represented by the TMLA term, which is 1
10

of

the beacon interval, i.e., 2BO.TBSD

10
. To be able to reproduce all the values obtained by our analysis

Table IV also presents the number of channels (nrChannels parameter) for each frequency band

supported by the IEEE 802.15.4 standard. The value of each parameter that is represented in symbols

can be converted in bits utilizing Table V, which presents the numbers of symbols per octet in all

modulation technique and frequency band.

The impact of the network inaccessibility scenarios in the network temporal behavior is presented

within Tables VI to VIII, which groups all frequency bands supported by the IEEE 802.15.4

standard. The results inscribed in these tables show that the periods of network inaccessibility

15

Frequency Band Number of channels
868-868.6 MHz 1

902-928 MHz 10

2400-2483.5 MHz 16

TABLE IV: Number of channels per frequency band supported by the IEEE 802.15.4 standard

Modulation Technique
Frequency Band

868 MHz 915 MHz 2400 MHz
(symbols/octet) (symbols/octet) (symbols/octet)

BPSK 8 8 —

ASK 0.4 1.6 —

O-QPSK 2 2 2

TABLE V: The number of symbols per octet in each modulation technique and frequency band

are extremely high, precluding any claim of obtaining from the network a real-time behavior, even

if some specifically designed mechanisms are in place, since network inaccessibility incidents may

always occur.

With the default network configuration of Table I, the worst case period of network inaccessibility

is up to seven times higher than the beacon interval. Figure 4 presents this comparison. However,

it should be noted that the beacon interval is in the order of the seconds, a very high value to

meet the requirements of most hard real-time applications. If the beacon interval is reduced, the

gap between normal network access times and the periods of network inaccessibility may become

even higher and the overall system predictability, timeliness and dependability properties may be

at risk.

Defining methods and to reduce the duration of the periods of network inaccessibility in IEEE

802.15.4 wireless network is of crucial importance for achieving real-time operation. This study is

a first but fundamental step towards that direction.

PHY (868-868.6 MHz)

Scenario

Modulation Technique
BPSK - 20 kb/s ASK - 250 kb/s O-QPSK - 100 kb/s

best case worst case bc wc bc wc
(ms) (ms) (ms) (ms) (ms) (ms)

Tina←sbfl —— 12337 —— 19739 —— 9870

Tina←mbfl 12337 49345 19739 78952 9870 39476

Tina←nosync 49345 49345 78952 78952 39476 39476

Tina←orphan 51834 52851 82896 84441 41452 42233

Tina←realign 1250 1833 1974 2824 990 1423

Tina←C Detection 20 609 8 858 7 441

Tina←C Resolution 2772 2900 4428 4632 2215 2317

Tina←extReq 13 612 6 858 5 442

Tina←assoc 4032 5351 6407 8313 3208 4182

Tina←reAssoc 53377 54695 85358 87265 42684 43658

Tina←GTS 13 557 6 845 4 428

TABLE VI: The best and worst cases for 868MHz frequency band

16

PHY (902-928 MHz)

Scenario

Modulation Technique
BPSK - 40 kb/s ASK - 250 kb/s O-QPSK - 250 kb/s

best case worst case bc wc bc wc
(ms) (ms) (ms) (ms) (ms) (ms)

Tina←sbfl —— 6169 —— 19739 —— 3948

Tina←mbfl 6139 24673 19739 78952 3948 15791

Tina←nosync —— 24673 —— 78952 —— 15791

Tina←orphan 25917 33958 82896 108427 16581 21696

Tina←realign 625 917 1974 2823 396 570

Tina←C Detection 10 305 8 857 3 177

Tina←C Resolution 1386 8968 4428 28616 886 5727

Tina←extReq 7 306 5 858 2 177

Tina←assoc 2016 10193 6406 32296 1284 6473

Tina←reAssoc 26689 34865 85358 111248 17074 22264

Tina←GTS 7 279 5 845 2 171

TABLE VII: The best and worst cases for 915MHz frequency band

PHY (2400-2483.5 MHz)

Scenario

Modulation Technique
O-QPSK - 250 kb/s

best case worst case
(ms) (ms)

Tina←sbfl —— 3948

Tina←mbfl 3948 15791

Tina←nosync —— 15791

Tina←orphan 16581 24897

Tina←realign 396 570

Tina←C Detection 3 177

Tina←C Resolution 886 8927

Tina←extReq 2 177

Tina←assoc 890 9280

Tina←reAssoc 16681 25070

Tina←GTS 2 171

TABLE VIII: The best and worst cases for 2.4GHz frequency band

VIII. CONCLUSION

This report presented the characterization of network inaccessibility in the IEEE 802.15.4 net-

works. The existence and duration of network inaccessibility are still neglected by existent temporal

characterization of wireless communications. Network inaccessibility has a strong negative impact

in the temporal behavior of IEEE 802.15.4 networks, being extremely important its characterization.

In that way, future work directions will focus on providing means to reduce the periods of net-

work inaccessibility; to provide support to signal the periods of network inaccessibility for higher

layers, improving the means of analyzing network delays and message schedulability over wireless

networked communications.

REFERENCES

[1] A. Sahoo and P. Baronia, “An energy efficient MAC in wireless sensor networks to provide delay guarantee,” in 15th IEEE
Workshop on Local Metropolitan Area Networks (LANMAN), June 2007, pp. 25 –30.

17

Fig. 4: Network inaccessibility scenarios for the 2.4GHz frequency band, normalized by the

beacon interval duration, TBI = 3932ms and BO = 8

[2] E. Egea-López, J. Vales-Alonso, A. S. Martı́nez-Sala, J. Garcı́a-Haro, P. Pavón-Mariño, and M. V. Bueno Delgado, “A wireless

sensor networks MAC protocol for real-time applications,” Personal Ubiquitous Computing, vol. 12, pp. 111–122, January

2008.

[3] M. Hameed, H. Trsek, O. Graeser, and J. Jasperneite, “Performance investigation and optimization of IEEE 802.15.4 for

industrial wireless sensor networks,” in IEEE International Conference on Emerging Technologies and Factory Automation
(ETFA), September 2008, pp. 1016 –1022.

[4] Y.-K. Huang, A.-C. Pang, and H.-N. Hung, “An adaptive GTS allocation scheme for IEEE 802.15.4,” IEEE Transactions on
Parallel and Distributed Systems, vol. 19, no. 5, May 2008.

[5] J. Chen, L. Ferreira, and E. Tovar, “An explicit GTS allocation algorithm for IEEE 802.15.4,” in 16th IEEE Conference on
Emerging Technologies and Factory Automation (ETFA), September 2011, pp. 1 –8.

[6] M.-G. Park, K.-W. Kim, and C.-G. Lee, “Holistic optimization of real-time IEEE 802.15.4/zigbee networks,” in IEEE
International Conference on Advanced Information Networking and Applications (AINA), March 2011, pp. 443 –450.

[7] P. Verı́ssimo, L. Rodrigues, and M. Baptista, “AMp: A Highly Parallel Atomic Multicast Protocol,” SIGCOMM Comput.
Commun. Rev., vol. 19, no. 4, pp. 83–93, 1989.

[8] P. Verı́ssimo and J. A. Marques, “Reliable broadcast for fault-tolerance on local computer networks,” in In Proceedings of the
Ninth Symposium on Reliable Distributed Systems. Alabama, USA: IEEE, 1990, pp. 24–90.

[9] P. Verı́ssimo, J. Rufino, and L. Rodrigues, “Enforcing Real-Time Behaviour on LAN-Based Protocols,” in 10th IFAC Workshop
on Distributed Computer Control Systems, September 1991.

[10] J. Rufino, C. Almeida, P. Verı́ssimo, , and G. Arroz, “Enforcing dependability and timeliness in controller area networks.” in

Proc. of the 32nd Annual Conf. of the IEEE Ind. Electronics Society (IECON), Paris, France, Nov. 2006.

[11] J. L. R. Souza and J. Rufino, “Building Fundamental Properties For Real-Time Wireless Sensor Networks,” AIR-II Technical

Report RT-10-01, Tech. Rep., 2010.

[12] O. Babaog̃lu and R. Drummond, “Streets of Byzantium: Network Architectures for Fast Reliable Broadcasts,” IEEE Trans. on
Soft. Engineering, vol. SE-11, no. 6, Jun. 1985.

[13] T. Fujiwara, T. Kasami, A. Kitai, and S. Lin, “On the undetected error probability for shortened hamming codes,” IEEE Trans.
on Comm., vol. 33, no. 6, Jun. 1985.

[14] D. Eckhardt and P. Steenkiste, “Measurement and analysis of the error characteristics of an in-building wireless network,” in

SIGCOMM ’96: Conf. Proc. on Applications, Tech., Arch. and Protocols for Computer Comm., New York, NY, USA, 1996.

[15] IEEE 802.15.4, “Part 15.4: Wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate

wireless personal area networks (WPANs) - IEEE standard 802.15.4,” IEEE P802.15 Working Group, 2011, Revision of IEEE

Standard 802.15.4-2006.

[16] M. Petrova, J. Riihijarvi, P. Mahonen, and S. Labella, “Performance study of IEEE 802.15.4 using measurements and

simulations,” in Proceedings of the Wireless Communications and Networking Conference (WCNC 2006). Las Vegas, NV,

USA: IEEE, Apr. 2006, pp. 487 – 492.

[17] J. L. R. Souza and J. Rufino, “Characterization of inaccessibility in wireless networks-a case study on IEEE 802.15.4 standard,”

in 3th IFIP International Embedded Systems Symposium(IESS), ser. IFIP Advances in Information and Communication

Technology, vol. 310, Langenargen, Germany, September 2009.

[18] W. Xu, K. Ma, W. Trappe, and Y. Zhang, “Jamming sensor networks: attack and defense strategies,” IEEE Network, vol. 20,

no. 3, pp. 41–47, May 2006.

18

[19] S. Khattab, D. Mosse, and R. Melhem, “Modeling of the channel-hopping anti-jamming defense in multi-radio wireless

networks,” in 5th Annual International Conference on Mobile and Ubiquitous Systems: Computing, Networking, and Services
(MobiQuitous). Dublin, Ireland: ACM, July 2008.

[20] I. Ramachandran, A. K. Das, and S. Roy, “Analysis of the contention access period of IEEE 802.15.4 MAC,” ACM
Transactions on Sensor Networks, vol. 3, March 2007. [Online]. Available: http://doi.acm.org/10.1145/1210669.1210673

[21] J. He, Z. Tang, H.-H. Chen, and Q. Zhang, “An accurate and scalable analytical model for IEEE 802.15.4 slotted CSMA/CA

networks,” IEEE Transactions on Wireless Communications, vol. 8, no. 1, pp. 440–448, January 2009.

[22] C. Jung, H. Hwang, D. Sung, and G. Hwang, “Enhanced markov chain model and throughput analysis of the slotted CSMA/CA

for IEEE 802.15.4 under unsaturated traffic conditions,” IEEE Transactions on Vehicular Technology, vol. 58, no. 1, January

2009.

[23] J. L. R. Souza and J. Rufino, “An approach to enhance the timeliness of wireless communications,” in The Fifth International
Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies (UBICOMM), Lisbon, November 2011.

[24] A. Koubâa, A. Cunha, M. Alves, and E. Tovar, “i-GAME: An implicit GTS allocation mechanism in IEEE 802.15.4, theory

and practice,” Springer Real-Time Systems Journal, vol. 39, no. 1-3, pp. 169–204, August 2008.

KARYON ‐ FP7‐288195
D3.1 – First Report on Supporting Technologies (Annex)

© 2012 KARYON Project 33/188

KARY N

A.1.3 Characterizing	Inaccessibility	in	IEEE	802.15.4	Through	Theoretical	
Models	and	Simulation	Tools	

“Characterizing Inaccessibility in IEEE 802.15.4 Through Theoretical Models and Simulation
Tools”. J. L. R. Souza, A. Guerreiro and J. Rufino. INForum 1012 Simpósio de Informática –
Embeddeed and Real-Time Systems Track. September 2012, Caparica, Portugal.

KARYON ‐ FP7‐288195
D3.1 – First Report on Supporting Technologies (Annex)

© 2012 KARYON Project 34/188

KARY N

This page is intentionally left blank.

Characterizing Inaccessibility in IEEE 802.15.4
Through Theoretical Models and Simulation

Tools �

Jeferson L. R. Souza, André Guerreiro, and José Rufino

University of Lisbon - Faculty of Sciences
Large-Scale Informatics System Lab. (LaSIGE)

jsouza@lasige.di.fc.ul.pt, fc33698@alunos.fc.ul.pt, ruf@di.fc.ul.pt

Abstract Wireless networks are everywhere. Mobility and flexibility, to-
gether with the elimination of wires derived from the nature of wireless
communications, represent extremely useful advantages in recent past,
present, and future of networked communications. However, the open
and shared communication medium used by wireless networks is highly
susceptible to interferences, which may induce the occurrence of tem-
porary network partitioning (dubbed network inaccessibility), caused by
disturbances in the medium access control (MAC) layer management
operations. Existing analyzes of network operation in the time domain
do not usually pay much attention to temporal issues caused by the
occurrence of network inaccessibility, and therefore violation in timeli-
ness and dependability properties may occur. In this paper we present
our advances in the enhancement of the IEEE 802.15.4 NS-2 simulation
module to measure and validate the occurrence of network inaccessibility
in a IEEE 802.15.4 simulated network. Additionally, the correctness of
a previous theoretical model designed to characterize network inacces-
sibility within IEEE 802.15.4 networks is also validated, improving the
temporal modeling of IEEE 802.15.4 wireless communications.

Keywords: inaccessibility; timeliness; dependability; wireless commu-
nications; real-time.

1 Introduction

Wireless networks have been considered the communication technology of the
future. Environments such as autonomous vehicles, natural resources and health
monitoring, planetary exploration and aerospace [17,3,14] are examples where
such kind of technology has a potential applicability, with a special interest in
wireless sensor and actuator networks (WSANs) [10].

�
This work was partially motivated by our work within the scope of the ESA (European Space
Agency) Innovation Triangle Initiative program, through ESTEC Project AIR-II (ARINC 653 in
Space — Industrial Initiative), URL: http://air.di.fc.ul.pt. This work was partially supported by
EC, through project IST-STREP-288195 (KARYON), URL: http://www.karyon-project.eu/, and by
FCT through the Multiannual Funding and CMU-Portugal Programs and the Individual Doctoral
Grant SFRH/BD/45270/2008.

2

All of the aforementioned environments have temporal restrictions, needing
communication systems capable to provide guarantees in accordance with such
temporal requirements. In case of wireless sensor networks (WSANs included),
some approaches try to improve the reliability and temporal aspects of such
sensor networks, including new protocol proposals [1,2,15], while others pro-
poses modifications/extensions of existent protocols and standards [4,11,6,5,9].
However, none of these works pay attention to network inaccessibility, which is
caused by disturbances in the management operations of the medium access con-
trol (MAC) layer, and may induce violations in the timeliness and dependability
properties of wireless sensor networks.

In this paper, we present our advances in the improvement of the NS-2 IEEE
802.1.4 module [16] to measure and validate the occurrence of network inacces-
sibility [13] fault scenarios in a IEEE 802.15.4 simulated network. Simulation
results are then compared to the network inaccessibility theoretical model pre-
sented in [12], confirming the correctness of this previous theoretical work.

To present our contributions, this paper is organized as follows: Section 2
presents a brief description of the system model used in our analysis and sim-
ulations. Section 3 presents an overview of the IEEE 802.15.4 standard. Sec-
tion 4 describes briefly what is network inaccessibility. Section 5 describes our
advances in the IEEE 802.15.4 NS-2 module to measure and validate the du-
ration of network inaccessibility in a simulated network. Section 6 presents a
summary of the theoretical model [12] for self-containment purposes. Section 7
presents, compares, and discusses the results obtained from the theoretical model
and through the simulation work. Finally, section 8 draws some conclusions and
future directions.

2 System model

In this section we provide a formal description of our system model, which es-
tablishes a base foundation for our analysis and simulations. Our system model
is formed by a set of wireless nodes X = {x1, x2, . . . , xn}, being 1 < n ≤ #A,
where A is the set of all wireless nodes using the same communication chan-
nel. A wireless node is a networked device capable to communicate with other
nodes. In the rest of the paper the terms wireless node and node will be used
interchangeably. The set of nodes X itself establishes a node relationship entity
dubbed wireless network segment, using a given communication channel and a
given wireless network segment identifier.

2.1 Assumptions

In our system model the behavior of a wireless network segment is sustained
by assumptions utilized to characterize the network communication capabilities
and restrictions of wireless nodes. During a wireless network segment operation
cycle we use the following assumptions:

3

1. The communication range of X, i.e. its broadcast domain, is given by: BX =
n⋂

j=1

BD(x), ∀x ∈ X, where BD(x) represents the communication range of a

node x;

2. ∀x ∈ A, x ∈ X ⇐⇒ BD(x)
⋂
BX = BX or, as a consequence of node

mobility, x /∈ X ⇐⇒ BD(x)
⋂
BX �= BX ;

3. ∀x ∈ X can sense the transmissions of one another;

4. ∃x ∈ X which is the coordinator, being unique and with responsibility to
manage the set;

5. A network component (e.g. a node x ∈ X) either behave correctly or crash
upon exceeding a given number of consecutive omissions (the component’s
omission degree, fo) in a time interval of reference1, Trd;

6. failure bursts never affect more than fo transmissions in a time interval of
reference, Trd;

7. omission failures may be inconsistent (i.e., not observed by all recipients).

Assumptions 1, 2, and 3 define the physical relationship between nodes within
the wireless network segment. Our system model characterizes the relationship
between nodes at MAC level, where nodes must be in the communication range
of each other to communicate and are able to sense one another (assumption 3).
Mobility may drive nodes away of wireless network segment (assumption 2).

In the context of network components, an omission is an error that destroys a
data frame. Omissions may be caused by different sources such as node mobility,
external electromagnetic interference, fading caused by multipath or transient
obstacles on the communication medium, glitches on the MAC layer operation,
and malicious attacks. Despite of their importance we are not considering mali-
cious attacks in our analysis, being such topic addressed in future work.

Omission errors are detected either using timeout-based techniques or cyclic
redundancy check (CRC) mechanisms. Establishing a bound for the omission
degree of individual components provides a general method for the detection of
failed components. If each omission is detected and accounted for, the compo-
nent fails once it exceeds the omission degree bound, k. The omission degree is
thus a general measure of the reliability of network components with respect to
accidental/intentional transient errors.

Figure 1 presents a graphical representation of a wireless network segment. In
this figure we can see the communication range of each node withinX, evidencing
the intersection between all communication ranges of all nodes, which delimits
the broadcast domain of X. We can also see in Fig. 1 the indication of which
node is the coordinator. The management activities of the coordinator comprises

1 For instance, the duration of a given protocol execution. Note that this assumption
is concerned with the total number of failures of possibly different nodes.

4

Figure 1: The graphical representation of a wireless network segment

the assignment of the current communication channel in use by the segment, the
wireless network segment identifier definition, address space delimitation, and
so on.

3 IEEE 802.15.4 Overview

The IEEE 802.15.4 standard specifies that each network must contain a coor-
dinator, which defines a set of characteristics of the network such as address-
ing, supported channels, and operation mode. The coordinator should be the
node with the highest power and energy capabilities to support the execution of
management operations required to maintain the network active. There are two
operation modes supported by the standard [7]: nonbeacon-enabled and beacon-
enabled. Here we are focused on the beacon-enabled mode, designed to support
data transmissions with temporal restrictions, and which is the target mode of
our analysis and simulations.

In the beacon-enabled mode the medium access is controlled by a special
structure dubbed superframe, which is bounded by beacon frames transmitted
by the coordinator. The information inside the beacon helps the nodes to know
the entire duration of the superframe, allowing the synchronization and the
control of the medium access. The organization of the superframe structure
is illustrated in Fig. 2. The duration of the superframe is specified using the
following equation:

TBI = TBSD . 2BO (1)

where TBI is the beacon interval, TBSD is the base value defining the minimum
duration of a beacon interval, and BO is the beacon order, which is the main
parameter to specify the duration of beacon interval and in this sense specifies
how often the beacon frame should be transmitted.

5

Figure 2: Superframe structure

The superframe organization presented in Fig. 2 identifies two main parts: the
active and inactive periods. The active period is mandatory and it is, in turn,
constituted by the Contention Access Period (CAP) and the Contention Free
Period (CFP). CAP allows all nodes to compete for the utilization of the shared
medium. CFP was designed for bandwidth reservation, and therefore time slots
dubbed guarantee time slots (GTSs) are utilized to guarantee exclusive medium
access. Completing the superframe structure the inactive period (IP) is designed
to optimize energy consumption.

4 Network inaccessibility

Disturbances on the network operation may affect two different types of frames:
data and control frames. Control frames are utilized by the MAC layer to manage
and maintain the network operational. When disturbances cause errors within
control frame transmissions, the MAC layer must perform actions to reestablish
network operation upon the occurrence of those errors. The period comprised
from the instant that the aforementioned errors occurs, to the instant that the
network operation is reestablished, is dubbed a period of network inaccessibility.
During a period of network inaccessibility a node cannot access the network, and
is not able to communicate with other nodes, causing a temporary blackout on
the network communication services.

To establish known the bounds for such blackout periods, a network inac-
cessibility characterization must be performed. The MAC layer analysis should
be concentrated in the management protocol of the MAC layer, being the char-
acterization of network inaccessibility events specific for each kind of network
technology.

5 Improving the IEEE 802.15.4 NS-2 simulation module

The NS-2 [8] provides a powerful event discrete simulation platform to simu-
late the dynamics of a computer network. Its modular architecture allows the

6

Figure 3: The simulation protocol stack highlighting our modifications in the
IEEE 802.15.4 NS-2 Module

modeling of wired and wireless networks and protocols, being an efficient tool
to specify and study the behavior of a communication network under different
environmental conditions.

The IEEE 802.15.4 module for the NS-2 simulator was designed and de-
veloped at the Joint Laboratory of Samsung and the City University of New
York [16]. The MAC entity present within this NS-2 module provides all data
and management primitives defined in the IEEE 802.15.4 standard. Thus, we use
and modify such module to investigate the influence of network inaccessibility
in a IEEE 802.15.4 simulated network.

Figure 3 shows the IEEE 802.15.4 NS-2 module. We also present in this figure
our improvements designed to simulate, validate, and measure the occurrence of
network inaccessibility events. We surround the MAC entity with an inaccessi-
bility wrapper, which internally has two different components: a fault injector
and a time measurement component.

The fault injector is capable to disturb the operation of the MAC layer,
being its internal structure presented in Fig. 4. The fault injector component
performs the fault injection based on the definition of a fault pattern. The cri-
teria to define the fault pattern is totally configurable, allowing the definition
of deterministic or probabilistic fault patterns. Probabilistic patterns allow the
simulation of arbitrary fault injections, which can be utilized to simulate dif-
ferent environmental aspects inducing the occurrence of network inaccessibility.
We are intended to address the use of such probabilistic patterns in future work.
In this paper we are interested to analyze the network inaccessibility in a prag-
matic way, demanding the use of deterministic fault patterns. The fault injector
is then configured to corrupt only beacon frames, injecting faults between the
MAC and PHY communication interface (Figure 3).

7

Figure 4: The fault injector component

For example, in the context of this paper there are two different ways to
perform the fault injection on the simulated scenario. The first one is performed
in the coordinator (whole wireless network segment), where none of the nodes
receive the beacon and therefore the whole wireless network segment becomes
inaccessible. The second way is performed within nodes tracking the reception of
beacon frames (specific nodes). When the corruption is performed in such nodes,
only nodes with the fault injector component activated, i.e. beacon corruptions
occurring, cannot access the medium and become inaccessible.

Additionally, the time measurement service component allows the measure
of the network inaccessibility durations derived from faults generated by the
fault injector component. When the fault injector generates a fault that causes
a network inaccessibility event, the time measurement service component starts
a timer to account for the duration of such network inaccessibility period. A
successful reestablishment of the MAC layer communication services indicates
the end of a network inaccessibility, and therefore stopping the timer that reveals
the duration of its correspondent network inaccessibility event.

6 Theoretical modeling of network inaccessibility in
IEEE 802.15.4

A previous study [12] presents a comprehensive characterization of the network
inaccessibility in IEEE 802.15.4 beacon-enabled networks. For self-completeness
of the issues at hand, this section summarizes such analysis, addressing the
most relevant network inaccessibility scenarios in IEEE 802.15.4 beacon-enabled
mode, i.e. those scenarios related with the loss of beacon frames.

The first scenario we address assumes a single beacon frame loss (SBFL).
The beacon frame issued by the coordinator is not received by some node, dis-
turbing the node synchronization imposed by the beacon frame transmissions.
The duration of the corresponding inaccessibility scenario is given by the follow-
ing equation:

T wc
ina←sbfl=TBSD.(2BO+1) (2)

In the SBFL scenario, the network inaccessibility ends upon reception of the
next beacon transmission by the coordinator. When multiple beacon frames are

8

Table 1: Normalized theoretical best and worst case results for each network
inaccessibility scenario

Scenarios
Periods (TBI-time)

Best Case Worst Case
Single beacon frame loss 1.1 1.1

Multiple beacon frame loss 1.1 4.1
Synchronization loss 4.1 4.1

not correctly received, a node enters a multiple beacon frame loss (MBFL)
scenario. The occurrence of consecutive beacon frame omissions may therefore
vary between 1 and a threshold not exceeding the value defined by nrLost. The
best case of the MBFL considers only the omission of one beacon frame while the
worst case assumes the need to wait for nrLost beacon frame transmissions; only
the last one is successfully received. Thus, the MBFL scenario is characterized
by the following equations:

T bc
ina←mbfl=TBSD.

(
2BO+1

)
(3)

T wc
ina←mbfl=

(
TBSD.

(
2BO+1

))
.nrLost (4)

Finally, the synchronization loss (SyncLoss) is a variation of MBFL that
occurs when the nrLost threshold is exceeded. We assume the node immediately
enters a state where it completely loses the synchronization with the coordinator.
The duration of this scenario is specified by the following equation:

Tina←nosync=
(
TBSD.

(
2BO+1

))
.nrLost (5)

Table 1 summarizes the best and worst case durations of the presented net-
work inaccessibility scenarios. The values presented in Table 1 were normalized
using the superframe duration, TBI , which represents the network cycle for the
medium access. We perform network simulations to validate these theoretical
results, enabling the use of our easy-to-use inaccessibility formulas to enhance
timeliness models of IEEE 802.15.4 networks.

7 Results

To measure the duration of each network inaccessibility scenario, the NS-2 mod-
ule was instrumented using the internal timer class of the NS-2 simulator. In
case of SBFL scenario, the first timestamp is obtained when the first beacon
is dropped, as a consequence of a fault generated by the fault injector. Thus,
when the next beacon arrives at the node, and is not corrupted, other timestamp
is acquired. The difference among these two timestamps is the duration of the

9

Figure 5: Comparison among simulation an theoretical worst case results

SBFL network inaccessibility scenario. The process is similar to the MBFL and
SyncLoss scenarios.

The sensor network was simulated with ten nodes, where one of these nodes
was the coordinator. The simulation is in compliance with our system model,
where all the nodes are within the range of each other. The same network inac-
cessibility event has the same observed duration at all nodes, which experienced
such event within a wireless network segment. Thus, the number of nodes within
a simulation does not influence the accuracy and correctness of our results.

In order to simulate the corruption and consequently the loss of beacons, we
configure our fault injector component to inject deterministic faults to corrupt
beacons. Thus, a know number of beacons are corrupted, causing the occurrence
of the network inaccessibility scenarios described in the Section 6. The fault
injector achieves the beacon corruption by changing some bits in the beacon
frames, implying the drop of these packets in the MAC level of the receiving
nodes.

Figure 5 presents the comparison among simulation and theoretical results
obtained by the computation of the formulas presented in Section 6. As the NS-2
module of the IEEE 802.15.4 follows the standards, it allows a fair comparison
among the results obtained in both simulation and theoretical model. A beacon
order BO = 8 was utilized to normalize the network inaccessibility durations.
It is possible to verify that the theoretical values present the upper bound of
the network inaccessibility scenarios compared with the simulation results. The
simulation performed with the NS-2 simulator then confirms the correctness of
the theoretical model specified to characterize the inaccessibility scenarios in the
IEEE 802.15.4 standard.

10

A beacon loss may cause a minor temporal deviation between node clocks,
which is accounted by the IEEE 802.15.4 standard within the beacon search rou-
tine. The theoretical search of the next correct beacon considers the possibility
of such clock deviation, which is covered by the addition of a corrective value
that increases the beacon search by one TBSD unit. However, all nodes have their
clocks synchronized within the simulation, implying in no temporal deviations
among them, even in case of beacon losses. Thus, the minor deviation among
the theoretical and simulation results is derived from the use of such corrective
value, which is incorporated within the equations utilized to account network
inaccessibility in IEEE 802.15.4 wireless communications.

With the potential of the wireless networks to support the communication
in scenarios with temporal restrictions, this validation is important, allowing an
effective use of a set of easy-to-use formulas that characterize relevant temporal
aspects, which must be considered by a temporal modeling of wireless commu-
nications.

Additionally, at the lowest levels of the system, the results of the theoretical
model validated in this paper may be used in a message schedulability analysis
that takes inaccessibility effects into account, thus securing the predictability
and real-time support provided by IEEE 802.15.4 wireless communications. At a
highest level, the occurrence of network inaccessibility events may influence the
definition of Quality-of-Service (QoS) metrics, which evaluate the compliance of
network communications with respect to the requirements of given applications.
One major result of this study is that the influence of network errors, leading
to periods of network inaccessibility cannot be ignored if predictability and real-
time operation are system requirements. Otherwise, the timeliness and safety of
the entire system may be at risk.

8 Conclusion and future directions

The issues addressed in this paper represent a first step to obtain predictabil-
ity and real-time operation support out of wireless communication systems. In
particular, the paper addressed the behavior of IEEE 802.15.4 networks in the
presence of network errors, leading to periods of network inaccessibility. The re-
sults obtained by the work herein described has allowed to validate a previous
theoretical model [12], consolidating its importance and confirming its correct-
ness.

Relevant additions and modifications in the NS-2 simulator IEEE 802.15.4
module were presented allowing the simulation and evaluation of network inac-
cessibility scenarios. Based on this simulation the theoretical model was validated
providing a fundamental source of information about relevant temporal aspects
of the IEEE 802.15.4 beacon-enabled networks. Thus, the knowledge of a worst-
case network inaccessibility time bound allows a better analysis and definition of
a robust timeliness model, representing a first though crucial step for achieving
an effective support to real-time operation in IEEE 802.15.4 networks.

11

Future research directions involve the reduction of network inaccessibility
duration based on mechanisms present in the standard, the measurement and
accountability of network inaccessibility considering different fault patterns (in-
cluding fault patterns caused by malicious attacks), and the incorporation of the
effects of network inaccessibility in the timeliness model of wireless communica-
tions. It may result in: improvements in the support of traffic and applications
with hard temporal restrictions; definition of relevant real-time QoS metrics to
evaluate the communication network, e.g verifying if the communication network
is compliant with the level of requirements needed by given applications.

Acknowledgements

The authors give special thanks to Sweta Singh (in memorial), which contributed
effectively in all technical aspects presented in the paper. Her dedication and
knowledge will be always missed and remembered.

References

1. Ahmed, A.A., Fisal, N.: A real-time routing protocol with load distribution in
wireless sensor networks. Computer Communications 31, 3190–3203 (September
2008)

2. Bartolomeu, P., Ferreira, J., Fonseca, J.: Enforcing flexibility in real-time wireless
communications: A bandjacking enabled protocol. In: IEEE Conference on Emerg-
ing Technologies Factory Automation (ETFA). pp. 1 –4 (September 2009)

3. Cena, G., Valenzano, A., Vitturi, S.: Hybrid wired/wireless networks for real-time
communications. IEEE Industrial Electronics Magazine 2(1), 8 –20 (March 2008)

4. Egea-López, E., Vales-Alonso, J., Mart́ınez-Sala, A.S., Garćıa-Haro, J., Pavón-
Mariño, P., Bueno Delgado, M.V.: A wireless sensor networks MAC protocol for
real-time applications. Personal Ubiquitous Computing 12, 111–122 (January 2008)

5. Hameed, M., Trsek, H., Graeser, O., Jasperneite, J.: Performance investigation
and optimization of IEEE 802.15.4 for industrial wireless sensor networks. In:
IEEE International Conference on Emerging Technologies and Factory Automation
(ETFA). pp. 1016 –1022 (September 2008)

6. Huang, Y.K., Pang, A.C., Hung, H.N.: An adaptive GTS allocation scheme for
IEEE 802.15.4. IEEE Transactions on Parallel and Distributed Systems 19(5) (May
2008)

7. IEEE 802.15.4: Part 15.4: Wireless medium access control (MAC) and physical
layer (PHY) specifications for low-rate wireless personal area networks (WPANs) -
IEEE standard 802.15.4. IEEE P802.15 Working Group (2011), Revision of IEEE
Standard 802.15.4-2006

8. Issariyakul, T., Hossain, E.: Introduction to Network Simulator NS2. Springer
(2009)

9. Koubâa, A., Cunha, A., Alves, M., Tovar, E.: i-GAME: An implicit GTS allocation
mechanism in IEEE 802.15.4, theory and practice. Springer Real-Time Systems
Journal 39(1-3), 169–204 (August 2008)

10. Åkerberg, J., Gidlund, M., Björkman, M.: Future research challenges in wireless
sensor and actuator networks targeting industrial automation. In: 9th IEEE Inter-
national Conference on Industrial Informatics (INDIN) (July 2011)

12

11. Sahoo, A., Baronia, P.: An energy efficient MAC in wireless sensor networks to
provide delay guarantee. In: 15th IEEE Workshop on Local Metropolitan Area
Networks (LANMAN). pp. 25 –30 (June 2007)

12. Souza, J.L.R., Rufino, J.: Characterization of inaccessibility in wireless networks-
a case study on IEEE 802.15.4 standard. In: 3th IFIP International Embedded
Systems Symposium(IESS). IFIP Advances in Information and Communication
Technology, vol. 310. Langenargen, Germany (September 2009)

13. Veŕıssimo, P., Rufino, J., Rodrigues, L.: Enforcing Real-Time Behaviour on LAN-
Based Protocols. In: 10th IFAC Workshop on Distributed Computer Control Sys-
tems (September 1991)

14. Wilson, W., Atkinson, G.: Wireless sensing opportunities for aerospace applica-
tions. Sensors & Transducers Journal 94, 83–90 (July 2008)

15. Xue, Y., Ramamurthy, B., Vuran, M.C.: SDRCS: A service-differentiated real-time
communication scheme for event sensing in wireless sensor networks. Computer
Networks 55(15), 3287 – 3302 (June 2011)

16. Zheng, J., Lee, M.J.: A Comprehensive Performance Study of IEEE 802.15.4,
chap. 4, pp. 218–237. IEEE Press, Wiley Interscience (June 2006)

17. Zhuang, L., Goh, K., Zhang, J.: The wireless sensor networks for factory automa-
tion: Issues and challenges. pp. 141 –148 (September 2007)

KARYON ‐ FP7‐288195
D3.1 – First Report on Supporting Technologies (Annex)

© 2012 KARYON Project 47/188

KARY N

A.1.4 Reducing	Inaccessibility	in	IEEE	802.15.4	Wireless	Communications	

“Reducing Inaccessibility in IEEE 802.15.4 Wireless Communications”. J. L. R. Souza and J.
Rufino, (submitted for publication).

KARYON ‐ FP7‐288195
D3.1 – First Report on Supporting Technologies (Annex)

© 2012 KARYON Project 48/188

KARY N

This page is intentionally left blank.

Reducing network inaccessibility in
IEEE 802.15.4 wireless communications�

Jeferson L. R. Souza, and José Rufino

University of Lisbon - Faculty of Sciences
Large-Scale Informatics System Lab. (LaSIGE)
jsouza@lasige.di.fc.ul.pt, ruf@di.fc.ul.pt

Abstract Network inaccessibility is a threat that may compromise the
timeliness and dependability of wireless communications, which is de-
rived from a temporary “communication blackout” in the services sup-
plied by the medium access control layer. During such temporary black-
out the network is inaccessible, causing temporal hazards which difficult
the provision and use of communication services with real-time guaran-
tees. We define in this paper a set of policies to reduce network inacces-
sibility, using the IEEE 802.15.4 standard as a case study. Our reduction
policies enhance the correctness of temporal analysis of IEEE 802.15.4
wireless communications face to the temporal restrictions imposed by
sensor-based applications. Additionally, reducing network inaccessibility
is a crucial step to enable the real use of such kind of communication
technology in the provision of communication services with real-time
guarantees.

Keywords: network inaccessibility, timeliness, dependability, wireless sensor
networks, real-time.

1 Introduction

There is a demand for the use of wireless sensor networks (WSNs) on environ-
ments with temporal restrictions, where real-time communications are funda-
mental. This trend is guided by the need to reduce system size, weight, and
power (SWaP) without lessen timeliness and dependability guarantees.

A lot of works have been presented, proposing new medium access control
(MAC) protocols [13,1,5,3,15], modifications on the existent standards [8,7,10],
and abstract models [11] trying to enhance the real-time guarantees and reliabil-
ity of wireless communications. However, none of these works handled the central

� This work was partially motivated by our work within the scope of the ESA (Euro-
pean Space Agency) Innovation Triangle Initiative program, through ESTEC Project
AIR-II (ARINC 653 in Space — Industrial Initiative), URL: http://air.di.fc.ul.pt.
This work was partially supported by EC, through project IST-STREP-288195
(KARYON) and by FCT through the Multiannual Funding and CMU-Portugal Pro-
grams and the Individual Doctoral Grant SFRH/BD/45270/2008.

2

problem addressed by this paper: temporary ”communication blackouts” caused
by disturbances on the physical and MAC layers, which lead to the execution
of additional procedures to reestablish normal MAC protocol operation. During
the execution of such recovery procedures, the MAC layer although cannot be
considered failed does not provide service, creating periods of network inaccessi-
bility. When a network inaccessibility incident occurs communications cannot be
performed. One key point is that the periods of network inaccessibility may have
a duration much higher than the normal worst case network access delay. As a
consequence, the overall timeliness and dependability properties of the system
may be at risk, being compromised at the communication service.

A solution to the problem of controlling network inaccessibility is needed
to secure an effective and efficient real-time wireless communications support.
Defining a strategy for network inaccessibility reduction is not only a significant
but also an essential step towards that goal. Therefore, motivated by a pressing
need to attenuate the negative effects caused by network inaccessibility, this
paper presents and discusses a set of policies to reduce the duration of network
inaccessibility within IEEE 802.15.4 [9] wireless communications.

To present our advances the paper is organized as follows: Section 2 presents
an overview of the IEEE 802.15.4 standard. Section 3 presents briefly what is
network inaccessibility and how network inaccessibility is characterized on IEEE
802.15.4 wireless networks. Section 5 explains the reduction policies defined to
attenuate the duration of network inaccessibility, presenting analytical results
which use the IEEE 802.15.4 standard as a case study. Finally, section 6 draws
the conclusions, presenting insights to the future work.

2 IEEE 802.15.4 - Overview

The IEEE 802.15.4 has two operation modes dubbed nonbeacon-enabled and
beacon-enabled. This paper is focused on the beacon-enabled mode, designed to
support traffic with temporal restrictions. In a beacon-enabled mode there is a
coordinator node that manages and control the network access. The coordinator
uses the superframe structure represented in Fig. 1 to control the access to the
network. The duration of a superframe is calculated utilizing a constant that
defines the minimum (also known as base) superframe duration, TBSD, and
a beacon order exponent, BO, which is utilized to determine the actual time
interval between consecutive beacon frames, TBI , as given by:

TBI = TBSD . 2BO (1)

As illustrated by Fig. 1, a superframe has a contention access period (CAP),
where nodes compete in equal condition to access the network in a non-real-time
manner; a contention free period (CFP), where nodes access the network within
exclusive time slots (GTS, the Guaranteed Time Slots), supporting real-time
traffic in a similar manner of time division multiple access (TDMA) approaches;
and optionally an inactive period (IP), where nodes may enter in a power-save

3

Figure 1: Superframe structure of the IEEE 802.15.4 in beacon-enabled mode

mode. A node may also allocate more than one contiguous time slot for exclusive
and contention-free access.

The CAP and CFP together represents the active portion of the superframe
structure, which has a duration given by:

TSD = TBSD . 2SO (2)

where SO is the superframe order exponent that defines the duration of this
active portion. If SO = BO there is no IP within the superframe.

3 Network inaccessibility in IEEE 802.15.4 wireless
communications

The concept of network inaccessibility was firstly introduced in 1989 by [17], in
the context of local area networks (LANs). Network inaccessibility is character-
ized by the temporary absence of access to the network, being described in [17]
as events with limited durations and rates, which a violation in one of those
limits leads to a permanent failure of the network.

This section provides an overview of network inaccessibility in IEEE 802.15.4
wireless communications, presenting a comprehensive set of relevant network
inaccessibility scenarios, being their worst case durations represented by the
superscript (wc). A more detailed characterization of network inaccessibility in
IEEE 802.15.4 wireless communications can be found in [16].

The beacon frame controls the access to the network, and its reception is
essential to maintain all the nodes synchronized within the different periods of
the superframe structure. If a beacon frame is not correctly received an inacces-
sibility incident occurs. Thus, a single beacon frame loss occurs when only
one beacon is lost, being the duration of such scenario given by:

Tina←sbfl=TBSD.(2BO+1) (3)

The value of T wc
ina←sbfl is equivalent to TBI plus one TBSD period, which is

utilized as a margin to overcome some clock deviations that may occur between
nodes. The multiple beacon frame loss occurs when multiple and consecutive
beacons are lost. The duration of this scenario is given by:

4

T wc
ina←mbfl=TBSD.

(
2BO+1

)
.nrLost (4)

where a correct beacon frame is successfully received after the loss of nrLost
beacons. The synchronization loss is a special case of the multiple beacon
frame loss scenario where after the loss of nrLost beacons the next beacon is
also lost. The duration of this scenario results from the loss of synchronization
among a node and its coordinator is represented by equation:

Tina←nosync=TBSD.
(
2BO+1

)
.nrLost (5)

To recover from such loss of synchronization two different strategies were
identified in the standard specification [9]. Each individual node chooses the
recovery strategy to be used. We assume that if some data/control frame was
received during the last beacon interval, the node assumes an orphan status;
otherwise, a re-association procedure should be carried out. In both recovery
strategies, the node looks for a coordinator in the given set of logical channels1.
After the channel scan, a coordinator realignment or an association procedure
is performed within the orphan and re-association scenarios, respectively. Thus,
the worst case duration of network inaccessibility for the orphan scenario is
given by:

T wc
ina←orphan = Tina←nosync +

nrchannels∑
j=1

[T wc
MAC(Orphan) + nrWait . TBSD] +

TMLA(Realign) + T wc
MAC ack(Realign)

(6)

where: nrchannels, represents the number of channels to be scanned; nrWait,
defines the waiting period for a beacon frame in each channel scan, assuming the
default value of nrWait=32 in the IEEE 802.15.4 standard; TMAC ack(frame)
and TMAC(frame) represent the delay from request to confirmation of a MAC
frame transmission time with and without acknowledgement, respectively; the
reference to TMLA(action) represents the time needed to perform the specified
action at the MAC management layer. Without loss of generality, an uniform
value of TMLA(action) = 1

10 .TBI is assumed for the duration of each MAC
management layer action.

In the execution of the re-association procedure, the channel scan is fol-
lowed by a beacon processing action, an association procedure and the extract
of control information. The period of network inaccessibility is given by:

T wc
ina←reAssoc = Tina←nosync +

nrchannels∑
j=1

[T wc
MAC(Beacon R) + nrWait.TBSD] +

TMLA(Beacon) + T wc
MAC ack(Assoc R)+

TMLA(Assoc) + T wc
MAC ack(Ext R)

(7)

1 A logical channel is a numerical representation of a radio frequency (RF) channel
utilized by the MAC layer to perform its network communications.

5

Finally, a coordinator conflict occurs when more than one coordinator
are active within the same network. By default, each network has an unique
identifier, networkID, which identifies the network uniquely and is used by the
coordinator in beacon transmissions. If some other (possibly old) coordinator
enters the network operation space, e.g., after moving away during a long period
of time, the network may have two different coordinators transmitting beacons
with the same networkID. To solve such conflict, the actual coordinator per-
forms a search within a set of specified logical channels. If the coordinator does
not found other coordinator sending beacons with its own identifier after the
scan in all logical channels, no further action is taken and the network becomes
accessible again. Otherwise, a new identifier is selected and, if necessary, a MAC
coordinator realignment command is broadcast. The corresponding period of
network inaccessibility has a worst case duration given by:

T wc
ina←Conflict = TMLA(Conflict) +

nrchannels∑
j=1

[T wc
MAC(Beacon R)+nrWait.TBSD]+

TMLA(Realign) + T wc
MAC(Realign)

(8)

4 Network parametrization for real-time operation

Network parametrization is the first and crucial step to prepare the network
platform for real-time operation, consisting in the fine-adjustment of a relevant
set of network configuration parameters, which improves the network real-time
characteristics and support. This is formalized by the following proposition:

Proposition 1. Each node accesses the network in a bounded and known time
interval of, at most, Tac.

This proposition represents the real-time capabilities of a network and the
characterization of Tac is dependent from the network characteristics, which
implies in different temporal guarantees being offered. The value of Tac simply
accounts for the raw network access delay observed at MAC layer before starting
a frame transmission; it does not include any buffering/queueing effects, frame
transmission times and delays associated with possible frame retransmissions
in the presence of omission errors. For the particular case of IEEE 802.15.4
operating in beacon-enabled mode, a bounded and known Tac is secured given
that contention-free access within GTS is provided based on a periodic time
interval equal to TBI . Therefore:

Tac = TBI (9)

A decision concerning the real value of TBI is dependent of the temporal
requirements of applications, and is set in function of BO, as shown in Table 1.

6

Table 1: Different configurations utilized by an IEEE 802.15.4 network, using
the 2.4GHz frequency band timing.

Beacon Beacon interval Superframe Duty Time slot
order TBI order Cycle duration
(BO) (ms) (SO) (%) (ms)

3 123

3 100 7.68
2 50 3.84
1 25 1.92
0 12.5 0.96

2 61
2 100 3.84
1 50 1.92
0 25 0.96

1 31
1 100 1.92
0 50 0.96

0 15 0 100 0.96

Table 2: IEEE 802.15.4 frame durations, using the 2.4GHz frequency band

Frame type Symbol
Length Duration
(bit) (ms)

Data frames

Data (Minimum payload) T bc
data 8 0.03

Data (Maximum payload) T wc
data 1016 4.07

Data request TExt R 320 1.28

Data acknowledgment1 Tack 40 1.00

MAC control frames

Beacon TBeacon 1016 4.07

Beacon request TBeacon R 64 0.26

Network ID conflict notification TConflict 304 1.22

Orphan notification TOrphan 128 0.52

Realign TRealign 280 1.12

Association request TAssoc R 312 1.25

GTS request TGTS R 72 0.29

Control request TExt R 320 1.28

MAC frame acknowledgment1 Tack 40 1.00

The value of SO defines the duty cycle and the duration of each time slot. Table 2
shows the durations of the different IEEE 802.15.4 data/control frames.

For the remainder of our analyzes we use as an example TBI = 123ms, which
can provide a reasonable beacon interval for periodic real-time transmissions,
still allowing the use of reliable unicast data transmissions for the longer duty
cycles. The (real) value of TBI is also utilized to normalize the duration of the
network the duration of network inaccessibility events, as shown in Fig. 2.

7

Figure 2: The IEEE 802.15.4 inaccessibility durations normalized by, and
compared with, TBI (TBI = 123ms).

5 Reducing network inaccessibility in IEEE 802.15.4
wireless communications

To figure out the impact of network inaccessibility Fig. 2 presents a comparison
among the duration of inaccessibility incidents and the beacon interval, TBI . All
values present in Fig. 2 were normalized by TBI . A value of TBI =123ms is used
for normalization, being represented in Fig. 2 with the duration of one unit of
time. Network inaccessibility incidents have very different durations, with some
of them much longer than TBI . Long and highly variable inaccessibility periods
are a source of unpredictability in network operation, evidencing the necessity
and importance to reduce the duration of inaccessibility incidents.

Thus, we define a set of policies designed to reduce network inaccessibility
in IEEE 802.15.4 wireless communications, essential to enhance communication
properties such as dependability, timeliness and predictability.

5.1 Coordinator conflict avoidance policy

This policy was designed to avoid the occurrence of the coordinator conflict net-
work inaccessibility scenario. The coordinator conflict scenario occurs when two
or more coordinators transmit beacons with the same (unique) network identi-
fier, networkID. When this situation is detected, the IEEE 802.15.4 standard
specifies that a conflict resolution strategy should be triggered, causing then the
occurrence of network inaccessibility. Our coordinator conflict avoidance policy
defines a simple and effective strategy to avoid the coordinator conflict using a

1 The worst case duration, for the wait of an acknowledgement frame, follows the
IEEE 802.15.4 standard specification [9].

8

Figure 3: Impact of the coordinator conflict avoidance policy in the IEEE
802.15.4 network inaccessibility

compound network identifier, which consists in the use of a 2-Tuple with the
actual identifier, networkID, and the address of the actual coordinator repre-
sented here by coordinatorID. The use of such compound identifier establishes
the following proposition:

Policy proposition. Each node must use a 2-Tuple 〈networkID, coordinatorID〉
as a unique network identifier, avoiding then a coordinator conflict.

The result of the aforementioned proposition is applied as an extension of
the IEEE 802.15.4, which adds the following check procedure applied to each
locally received beacon: If the 2-Tuple 〈networkID, coordinatorID〉 inside the
received beacon does not match the 2-Tuple 〈networkID, coordinatorID〉 of the
network, the received beacon is discarded.

The beacons transmitted by coordinators different from the actual one are
considered invalided at the exposed MAC interface, and are not delivered at the
MAC management entities, therefore do not originate the necessity to solve a
coordinator conflict problem. An indication of a coordinator conflict in coordi-
nators different from the actual one can still be delivered to MAC management
entities to allow such nodes to orderly join the network without producing in-
accessibility incidents. This extension to IEEE 802.15.4 operation can be made
compatible with the standard specification and is not hard to implement in mod-
ern wireless communication platforms [2]. The effectiveness of our policy, which
eliminates the existence of the coordinator conflict scenario, is shown in Fig. 3.

In this paper we do not address the presence of malicious entities within the
network, which may cause an intentional coordinator conflict problem. Malicious
entities need to be handled with additional techniques to overcome the hazards
that they may cause, being addressed in our future work.

9

5.2 Channel utilization awareness policy

To contribute to the reduction of other IEEE 802.15.4 network inaccessibility
scenarios, namely the orphan and re-association scenarios, we design the channel
utilization awareness policy, which consists in the use of the channel utilization
knowledge by the network coordinator to reduce the time spent in channel scan
operations. In the channel utilization awareness policy each node is ”aware” of
the number of logical channels which are available to use by the coordinator,
being represented by the following proposition:

Policy proposition. Each node is aware of the channel utilization by the net-
work coordinator, restricting the search for this coordinator in some Ca := {c |
c ∈ C ∧ C ⊂ A}, where Ca is the proper search set and A is the set of the
available logical channels, being 0 < #Ca < #A.

where the set C is a general representation of a proper subset of A, and is utilized
to formalize the class of such proper subsets. The coordinator uses a subset, Ca,
of the available logical channels set, A, to delimit its operational channel scope.
Each node is able to search and find the coordinator within this channel scope,
reducing then the amount of time needed to search and find the current logical
channel where the coordinator is in operation, which also reduces the duration
of some network inaccessibility scenarios.

Our channel availability awareness policy assumes only #Ca logical channels
are available to use, instead of the initial #A = 16 available channels. The
subset Ca of logical channels should be mapped into a subset of non-overlapping
radio channels in order to minimize radio signal interference. For the 2.4Ghz
frequency band, one can define a subset of four non-overlapping radio channels
and therefore #Ca = 4.

Figure 4 presents the impact of our channel utilization policy in the IEEE
802.15.4 network inaccessibility and evidences its effectiveness in reducing the
duration of the longer network inaccessibility scenarios.

5.3 Network dependability awareness policy

An omission is an error that destroys a data or control frame. Wireless communi-
cation channels are especially susceptible to frame omissions, which may be due
to a number of causes: electromagnetic interference in the medium; disturbances
in a node transmitter/receiver circuitry; collisions derived from hidden nodes or
originated by node mobility.

Figure 5 summarizes in three main classes how frame omissions can be de-
tected. Different collision detection techniques have been proposed for wire-
less communications in the past years [12,14]. Such techniques require addi-
tional hardware, which is also susceptible to disturbances on the communication
medium, being difficult to secure their effectiveness. Cyclic redundancy check
(CRC) have an error detection coverage appropriate to accidental errors [6].
Frame-driven techniques use a timeout associated to a specific frame to monitor
the success of frame transfer. In addition, timeouts can also be associated to

10

Figure 4: Impact of the channel utilization awareness policy in the IEEE
802.15.4 network inaccessibility (#Ca = 4)

Figure 5: Mechanisms to detect omissions in communication networks

specific frame reception events to monitor network activity. One example is the
monitoring of beacon frames performed by the IEEE 802.15.4 MAC protocol.
Thus, CRC and frame-driven (timeout-based) techniques are the safe ways to
detect omissions on wireless communications.

The first mechanism we introduce towards the improvement of network de-
pendability awareness extends the semantic of the classical CRC error check
procedure. In a classical CRC error check procedure when a frame is received
with a CRC error, it is discarded and nothing is signalized. The extension we
introduce in Algorithm 1 is able to notify MAC management entities when a
data or control frame is received with CRC errors.

In the pseudo-code of Algorithm 1 the variable crc error status is utilized
to represent the status of a CRC error check performed on a received frame.
The difference from the classical CRC error check (lines 6 and 14) consists in
extracting the frame header and notify the corresponding crc error status to
MAC management entities (line 14). Such indication allows a better knowledge

11

Algorithm 1 Extending frame CRC error check

1: Initialization phase.
2: crc error status←false;
3: Begin.
4: loop
5: when Channel.indication(frame) do

6: frame header ←MAC.get.header(frame);

7: if MAC.CRC.check(frame) is OK then
8: crc error status← false;
9: MAC.indication(frame);
10: else
11: crc error status← true;
12: MAC.frame.discard(frame);
13: end if
14: MAC.Mgmt.indication(time slot, frame header, crc error status);

15: end when
16: end loop
17: End.

of the status of the communication channel, being directly utilized by our com-
plementary mechanisms to monitor and evaluate the network status properly.
Additionally, the indication generated in line 14 also reports in which time slot
the frame was received, which can be utilized to identify if the sender information
present within the frame header matches the owner of the time slot, in case of
transmissions within CFP. The implementation of this extension to the classical
functionality is not hard to implement off-the-shelf using modern commercially
available wireless communication platforms [2].

This means that we now have a simple mechanism allowing to accurately
detect and account for the omission degree of a logical channel, Od, defined as
the number of consecutive logical channel omissions. Considering only acciden-
tal transient faults, the omission degree of logical channel can be bounded by
the following property: in a known time interval, omission failures may occur
in at most k transmissions. The value of omission degree bound depends of the
network error characteristics and environment conditions [4]. The IEEE 802.15.4
standard indirectly defines a fixed value of k = 3 in its error handling mecha-
nisms. Having the ability to determine an adequate omission degree bound is a
worthwhile feature.

Therefore, making use of the indication provided by the CRC error check
procedure, the pseudo-code specified in Algorithm 2 accounts for the locally-
observed logical channel omission degree, which is represented by Od in line 2.
The reception of a frame with a correct CRC (lines 9 and 10) indicates that
the current logical channel is correct. However, when a frame with a CRC error
is received the procedure increments Od (line 8). If the Od value exceeds k, the
violation of the assumed omission degree bound is signalled to MACmanagement
entities (line 14). This may be an indication of an heavily disturbed channel or

12

Algorithm 2 Omission degree monitoring

1: Initialization phase.
2: Od ← 0;
3: k ← The value of the omission degree bound, k, is dependent of the MAC layer

characteristics and of the network environment. The IEEE 802.15.4 standard in-
directly defines k ← 3;

4: Begin.
5: loop
6: when MAC.Mgmt.indication(time slot, frame header, crc error status) do
7: if crc error status is true then
8: Od ← Od + 1;
9: else if crc error status is false then
10: Od ← 0;
11: end if
12: end when
13: if Od > k then

14: MLA.Mgmt.indication(logical channel, Od exceeds k);

15: end if
16: end loop
17: End.

it may be a result of the underestimation of the omission degree bound. In any
case, the logical channel should be considered failed.

Our network dependability awareness policy can now be formulated by the
following proposition:

Policy proposition. Each node is aware of the dependability characteristics of
the network, described by a set of relevant metrics.

The omission degree bound is one of such dependability metrics, but others
may be introduced. For example, slight modifications to Algorithm 2 will allow
to assess: the average value of the omission degree, the number of omission degree
bound violations within a given period and other statistics.

To illustrate how the dependability parameters can be used to improve the
characteristics of wireless communications, we use the omission degree bound
k to dynamically define some MAC protocol parameters relevant for IEEE
802.15.4 operation, as specified in Table 3, thus opening room for the use of
(self-)adaptation techniques, e.g. to cope with varying environment conditions.
This may be advantageous for decreasing the inaccessibility times associated to
the multiple beacon frame loss and synchronization loss scenarios.

5.4 Logical channel diversity policy

The violation of the logical channel omission degree bound locally-perceived by
each node should be interpreted as a failure indication. To restore communication
one must resort to the two following propositions:

13

Table 3: Network parametrization in function of dependability metrics

IEEE 802.15.4 IEEE 802.15.4 Standard Dependable Adaptation

Parameter Configuration

nrLost 4 k + 1

nrWait 32 (k + 1).2BO

Policy proposition. There are multiple and redundant logical channels, where
a frame is only transmitted in the active one.

Policy proposition. In the presence of faults which may lead a logical channel
to an incorrect state, a node may switch to a different logical channel.

In particular, one must take advantage in the use of redundant logical chan-
nels, specifying the following procedure: when a node (including the coordinator)
detects that a given logical channel Od exceeds k a node switches to the next log-
ical channel. To avoid the occurrence of a permanent physical partitioning of
the network, the same channel configuration is utilized by all nodes, defining a
deterministic order utilized to switch from one logical channel to another one.
Furthermore, we assume: each node must transmit at least one (heartbeat) frame
during its allocated GTS to signal node liveness.

Upon logical channel switch it may happen that a node detects no traffic ac-
tivity because it is the only node in that channel. The standard MAC protocol
of non coordinator nodes has mechanisms to detect such situations, signaled to
MAC management entities through a synchronization loss indication. However,
the MAC protocol of the coordinator must be enhanced to detect logical channel
idleness, as specified in Algorithm 3: a superframe is delimited by two consec-
utive beacons, and when the MAC layer does not indicate any traffic within
the superframe (line 13), an idle period is signaled (line 9). Algorithm 3 also
specifies the switch operation to the next logic channel (line 17) upon receiving
an indication that the current channel has failed or is idle (line 16). In case of
a channel switch performed by the coordinator the number of associated nodes
becomes 0 (line 18), avoiding a wrong idleness detection within the new channel.

Algorithm 4, to be executed at non coordinator nodes controls how logical
channel switch is performed: no channel switch is due if no indication of channel
failure has been received and some beacon (either correct or incorrect) have been
heard, which means the node has become orphan. A non failed channel is able to
deliver correct beacon frames, which implies that orphan procedure is executed
within only one channel (line 13), which is the current one. It results in a quick
synchronization reestablishment between the coordinator and a non coordinator
node, even if compared with our channel utilization awareness policy.

Otherwise, the node should switch channel and execute a re-association pro-
cedure (line 18). The re-association procedure is performed within only two

14

Algorithm 3 Logical channel diversity procedure - COORDINATOR

1: Initialization phase.
2: nrAssocNodes← 0;
3: idle status← false;
4: Begin.
5: loop
6: when MAC.Mgmt.request(Beacon) do
7: nrAssocNodes← MLA.Mgmt.get(NR ASSOC NODES);
8: if idle status is true ∧ nrAssocNodes > 0 then
9: MLA.Mgmt.indication(logical channel, idle status);
10: end if
11: idle status← true;
12: end when
13: when MAC.indication(frame) do
14: idle status← false;
15: end when;
16: when MLA.Mgmt.indication(logical channel, Od exceeds k) ∨

MLA.Mgmt.indication(logical channel, idle status) do
17: MLA.Mgmt.request(Change Channel);
18: MLA.Mgmt.request(RESET NR ASSOC NODES);
19: end when
20: end loop
21: End.

logical channels, the new channel and the previous one. The use of only two
channels is justified by: (a) the coordinator remains in the non failed previous
channel with other non coordinator nodes; or (b) the coordinator detects an idle
period and switches to the new channel before a non coordinator node finishes
the execution of the re-association procedure in that new channel. It is impor-
tant to emphasize that the execution of the re-association procedure within a
logical channel is k times greater than the detection of a logical channel idleness.

Figure 6 shows the impact of the logical channel diversity policy in the re-
duction of network inaccessibility of IEEE 802.15.4 wireless communications.

6 Conclusion and future work

This paper presented a set of policies to reduce the negative effects of network
inaccessibility within IEEE 802.15.4 wireless communications. Our results shows
the efficiency of the approach proposed by our policies, which enhances the MAC
layer operation extending the IEEE 802.15.4 standard with advanced omission
detection and signalization mechanisms. Such mechanisms improve the timeli-
ness and dependability properties of communications, being an important step
to enhance the real-time communication support of IEEE 802.15.4 WSNs.

Future research directions of this work includes the study of new techniques,
which exploit multiple communication channels to enhance the reliability of com-
munications; the study of network inaccessibility in the presence of malicious at-

15

Algorithm 4 Logical channel diversity procedure - NON COORDINATOR

1: Initialization phase.
2: changeState← false;
3: receivedBeacons← false;
4: Begin.
5: loop
6: when MLA.Mgmt.indication(logical channel, Od exceeds k) do
7: MLA.Mgmt.request(Change Channel);
8: changeState← true;
9: end when
10: when MAC.Mgmt.indication(SYNC LOSS) do
11: receivedBeacon← MLA.Mgmt.get(RECEIVED BEACON);
12: if changeState is false ∧ receivedBeacon is true then
13: MLA.Mgmt.request(ORPHAN,#Ca = 1)
14: else
15: if changeState is false then
16: MLA.Mgmt.request(Change Channel);
17: end if
18: MLA.Mgmt.request(RE ASSOCIATION,#Ca = 2);
19: changeState← false;
20: end if
21: end when
22: end loop
23: End.

Figure 6: Impact of the logical channel diversity policy in the IEEE 802.15.4
network inaccessibility (#Ca = 1 and #Ca = 2 for the orphan and

re-association scenario, respectively).

tacks; the incorporation of the effects of network inaccessibility in the timeliness
model of wireless communications.

16

References

1. Aad, I., Hofmann, P., Loyola, L., Riaz, F., Widmer, J.: E-MAC: Self-organizing
802.11-compatible MAC with elastic real-time scheduling. In: IEEE Internatonal
Conference on Mobile Ad hoc and Sensor Systems (MASS).(October 2007)

2. ATMEL: ATMEL AVR2025: IEEE 802.15.4 MAC Software Package - User guide.
ATMEL Coorporation (May 2012).

3. Bartolomeu, P., Ferreira, J., Fonseca, J.: Enforcing flexibility in real-time wireless
communications: A bandjacking enabled protocol. In: IEEE Conference on Emerg-
ing Technologies Factory Automation (ETFA). pp. 1 –4 (September 2009)

4. Eckhardt, D., Steenkiste, P.: Measurement and analysis of the error characteristics
of an in-building wireless network. In: SIGCOMM ’96: Conf. Proc. on Applications,
Tech., Arch. and Protocols for Computer Comm. New York, NY, USA (1996)

5. Egea-López, E., Vales-Alonso, J., Mart́ınez-Sala, A.S., Garćıa-Haro, J., Pavón-
Mariño, P., Bueno Delgado, M.V.: A wireless sensor networks MAC protocol for
real-time applications. Personal Ubiquitous Computing 12, 111–122 (January 2008)

6. Fujiwara, T., Kasami, T., Lin, S.: Error detecting capabilities of the shortened
hamming codes adopted for error detection in IEEE standard 802.3. IEEE Trans-
actions on Communications 37(9), 986–989 (Sep 1989)

7. Hameed, M., Trsek, H., Graeser, O., Jasperneite, J.: Performance investigation
and optimization of IEEE 802.15.4 for industrial wireless sensor networks. In:
IEEE International Conference on Emerging Technologies and Factory Automation
(ETFA). pp. 1016 –1022 (September 2008)

8. Huang, Y.K., Pang, A.C., Hung, H.N.: An adaptive GTS allocation scheme for
IEEE 802.15.4. IEEE Trans. on Parallel and Distributed Systems 19(5) (May 2008)

9. IEEE 802.15.4: Part 15.4: Wireless medium access control (MAC) and physical
layer (PHY) specifications for low-rate wireless personal area networks (WPANs) -
IEEE standard 802.15.4. IEEE P802.15 Working Group (2011), Revision of IEEE
Standard 802.15.4-2006

10. Koubâa, A., Cunha, A., Alves, M., Tovar, E.: i-GAME: An implicit GTS allocation
mechanism in IEEE 802.15.4, theory and practice. Springer Real-Time Systems
Journal 39(1-3), 169–204 (August 2008)

11. Kuhn, F., Lynch, N., Newport, C.: The abstract MAC layer. In: 23rd International
Symposium On Distributed Computing (DISC). Spain (September 2009)

12. Peng, J., Cheng, L., Sikdar, B.: A wireless MAC protocol with collision detection.
IEEE Transactions on Mobile Computing 6(12), 1357 –1369 (December 2007)

13. Sahoo, A., Baronia, P.: An energy efficient MAC in wireless sensor networks to
provide delay guarantee. In: 15th IEEE Workshop on Local Metropolitan Area
Networks (LANMAN). pp. 25 –30 (June 2007)

14. Sen, S., Roy Choudhury, R., Nelakuditi, S.: CSMA/CN: Carrier sense multiple
access with collision notification. In: Sixteenth International Conference on Mobile
Computing and Networking (MOBICOM). pp. 25–36. MobiCom ’10, ACM, New
York, NY, USA (2010), http://doi.acm.org/10.1145/1859995.1859999

15. Shuai, X.Y., Zhang, Z.C.: Research of real-time wireless networks control system
MAC protocol. Journal of Networks 5(4), 419–426 (April 2010)

16. From the same authors: Characterization of inaccessibility in wireless networks-a
case study on IEEE 802.15.4 standard.

17. Veŕıssimo, P., Rodrigues, L., Baptista, M.: AMp: A Highly Parallel Atomic Multi-
cast Protocol. SIGCOMM Comput. Commun. Rev. 19(4), 83–93 (1989)

KARYON ‐ FP7‐288195
D3.1 – First Report on Supporting Technologies (Annex)

© 2012 KARYON Project 65/188

KARY N

A.1.5 Self‐Stabilizing	TDMA	algorithms	for	Dynamic	Wireless	Ad‐hoc	
Networks	

“Self-Stabilizing TDMA algorithms for Dynamic Wireless Ad-hoc Networks”. Pierre Leone
and Elad Michael Schiller. The 8th International Symposium on Algorithms for Sensor
Systems, Wireless Ad Hoc Networks and Autonomous Mobile, 2012.

KARYON ‐ FP7‐288195
D3.1 – First Report on Supporting Technologies (Annex)

© 2012 KARYON Project 66/188

KARY N

This page is intentionally left blank.

Self-Stabilizing TDMA Algorithms
for Dynamic Wireless Ad-hoc Networks ∗

Pierre Leone † Elad M. Schiller ‡

October 12, 2012

Abstract

In dynamic wireless ad-hoc networks (DynWANs), autonomous computing devices set up a network
for the communication needs of the moment. These networks require the implementation of a medium
access control (MAC) layer. We consider MAC protocols for DynWANs that need to be autonomous and
robust as well as have high bandwidth utilization, high predictability degree of bandwidth allocation, and
low communication delay in the presence of frequent topological changes to the communication network.
Recent studies have shown that existing implementations cannot guarantee the necessary satisfaction of
these timing requirements. We propose a self-stabilizing MAC algorithm for DynWANs that guarantees
a short convergence period, and by that, it can facilitate the satisfaction of severe timing requirements,
such as the above. Besides the contribution in the algorithmic front of research, we expect that our
proposal can enable quicker adoption by practitioners and faster deployment of DynWANs, such as the
IEEE 802.11p for mobile ad hoc networks (MANETs) and vehicular ad-hoc network (VANETs).

∗This work was partially supported by the EC, through project FP7-STREP-288195, KARYON (Kernel-based ARchitecture for
safetY-critical cONtrol).

†Computer Science Department, University of Geneva, Geneva Switzerland. Email: pierre.leone@unige.ch
‡Chalmers University of Technology, Göteborg Sweden. Email: elad.schiller@chalmers.se

1

ar
X

iv
:1

21
0.

30
61

v1
 [

cs
.N

I]
 1

0
O

ct
 2

01
2

1 Introduction

Dynamic wireless ad-hoc networks (DynWANs) are autonomous and self-organizing systems where com-
puting devices require networking applications when a fixed network infrastructure is not available or not
preferred to be used. In these cases, computing devices may set up a short-lived network for the commu-
nication needs of the moment, also known as, an ad-hoc network. Ad-hoc networks are based on wireless
communications that require implementation of a Medium Access Control (MAC) layer. We consider MAC
protocols for DynWANs that need to be autonomous, robust, and have high bandwidth utilization, a high
predictability degree of bandwidth allocation, and low communication delay [22] in the presence of frequent
changes to the communication network topology. Existing implementations cannot guarantee the necessary
satisfaction of timing requirements [6, 7]. This work proposes an algorithmic design for self-stabilizing
MAC protocols that guarantees a short convergence period, and by that, can facilitate the satisfaction of
severe timing requirements. The proposed algorithm possesses a greater degree of predictability, while
maintaining low communication delays and high throughput.

The dynamic and difficult-to-predict nature of wireless ad-hoc networks gives rise to many fault-
tolerance issues and requires efficient solutions. DynWANs, for example, are subject to transient faults
due to hardware/software temporal malfunctions or short-lived violations of the assumed settings for mod-
eling the location of the mobile nodes. Fault tolerant systems that are self-stabilizing [16] can recover after
the occurrence of transient faults, which can cause an arbitrary corruption of the system state (so long as the
program’s code is still intact), or the model of dynamic networks in which communication links and nodes
may fail and recover during normal operation [17]. The proof of self-stabilization requires convergence from
an arbitrary starting system state. Moreover, once the system has converged and followed its specifications,
it is required to do so forever. The self-stabilization design criteria liberate the application designer from
dealing with low-level complications, such as bandwidth allocation in the presence of topology changes,
and provide an important level of abstraction. Consequently, the application design can easily focus on its
task – and knowledge-driven aspects.

The IEEE 802.11 standard is widely used for wireless communications. Nonetheless, the research field
of MAC protocols is very active and requires further investigation. In fact, the IEEE 802.11 amendment,
IEEE 802.11p, for wireless access in vehicular environments (WAVE), has just being published. It was
shown that the standard’s existing implementations cannot guarantee channel access before a finite dead-
line [6, 7]. Therefore, applications with severe timing requirements cannot predictably meet their deadlines,
e.g., safety-critical applications for vehicular systems.

ALOHAnet and its synchronized version Slotted ALOHA [1] are pioneering wireless systems that em-
ploy a strategy of “random access”. Time division multiple access (TDMA) [41] is another early approach,
where nodes transmit one after the other, each using its own timeslot, say, according to a defined schedule.
Radio transmission analysis in ad-hoc networks [20] and relocation analysis of mobile nodes [34] show that
there are scenarios in which MAC algorithms that employ a scheduled access strategy have lower throughput
than algorithms that follow the random access strategy. However, the scheduled approach offers greater pre-
dictability of bandwidth allocation and communication delay, which can facilitate fairness [23] and energy
conservation [50].

Our design choices have basic radio technology in mind, whilst aiming at satisfying applications that
have severe timing requirements. We consider TDMA frames with fixed number of fixed length timeslots.
The design choice of TDMA frames with fixed-length radio time fits well applications that have severe
delay requirements. By avoiding the division of fixed length frames into timeslots of non-equal length, as
in [23, 10], we take into consideration the specifications of basic radio technology.

1

In the context of the above design choices, there are two well-known approaches for dealing with con-
tention (timeslot exhaustion): (1) employing policies for administering message priority (for meeting timing
requirements while maintaining high bandwidth utilization, such as [39]), or (2) adjusting the nodes’ indi-
vidual transmission signal strength or carrier sense threshold [43]. The former approach is widely accepted
and adopted by the IEEE 802.11p standard, whereas the latter has only been evaluated via computer simu-
lations [43].

The proposed algorithm facilitates the implementation of both of the above approaches (more details
appear in Section 7). For the sake of presentation simplicity, we consider a single priority MAC protocol and
base the timeslot allocation on straightforward vertex-coloring. The proposed algorithm allocates timeslots
to a number of nearby transmitters, i.e., a number that is bounded by the TDMA frame size, whereas other
nearby transmitters receive busy channel indications. The analysis considers saturated situations in which
the node degree in the message collision graph is smaller than the TDMA frame size. As explained above,
this analysis assumption does not restrict the number of concurrent transmitters when implementing the
proposed MAC algorithm.
Related work We are not the first to propose a MAC algorithm for DynWANs that follows the TDMA’s
scheduled approach. STDMA [51] and Viqar and Welch [48] consider GNSS-based scheduling (Global
Navigation Satellite System [44]) according to the nodes’ geographical position and their trajectories. Au-
tonomous systems cannot depend on GNSS services, because they are not always available, or preferred not
to be used, due to their cost. Arbitrarily long failure of signal loss can occur in underground parking lots
and road tunnels. We propose a self-stabilizing TDMA algorithm that does not require GNSS accessibil-
ity or knowledge about the node trajectories. Rather it considers an underlying self-stabilizing local pulse
synchronization, such as [14, 38], which can be used for TDMA alignment, details appear in [38].

When using collision-detection at the receiving-side [43, 11, 51, 47, 31], it is up to the receiving-side
to notify the sender about collisions via another round of collision-prone transmissions, and by using FI
(frame information) payload fields that includes T entries, where T is the TDMA frame size. Thus far, FI-
based protocols study the stochastic resolution of message collision via computer network simulations [51,
2, 45, 12, 47, 31]. Simulations are also used for evaluating the heuristics of MS-ALOHA [43] for dealing
with contention (timeslot exhaustion) by adjusting the nodes’ individual transmission signal strength and
/ or carrier sense threshold. We do not consider lengthy frame information (FI) fields, which significantly
increase the control information overhead, and yet we provide provable guarantee regarding the convergence
time. Further analysis validation of the proposed algorithm via simulations and test bed implementation can
be found in Section 8, and respectively, in [38].

The proposed algorithm does not consider collision-detection mechanisms that are based on signal pro-
cessing or hardware support, as in [15]. Rather, it employs a variation on a well-known strategy for eventu-
ally avoiding concurrent transmissions among neighbors. This strategy allows the sending-side to eventually
observe the existence of interfering transmissions. Before sending, the sender waits for a random duration
while performing a clear channel assessment. A channel is considered to be used once the detected energy
levels reach a threshold in which the radio unit is expected to succeed in carrier sense locking (details appear
in Section 3).

The proposed MAC algorithm can be entirely based on the carrier sensing of message transmission,
as in [10], which focuses on fair bandwidth allocation, but does not consider dynamic networks or self-
stabilization. Our algorithm uses carrier sensing of message transmission and the above collision avoidance
strategy for coloring vertices, i.e., single-hop-distance broadcasting. It can facilitate unicast functionally
with no significant overheads. Two-hop-distance vertex coloring is often used by unicast MAC protocols for
mitigating hidden terminal phenomena. Naturally, the proposed algorithm facilitates the implementation of

2

a self-stabilizing two-hop-distance vertex coloring, such as [8].
An abstract MAC layer was specified for DynWANs in [28]. The authors mention algorithms that can

satisfy their specifications. However, they do not consider predictable broadcasting schedules.
Local algorithms [21, 19] considers both theoretical and practical aspects of MAC algorithms [?,]and

references therein]Wattenhofer2010Theory and the related problem of clock synchronization, see [32] and
references therein. For example, the first partly-asynchronous self-organizing local algorithm for vertex-
coloring in wireless ad-hoc networks is presented in [42]. However, this line currently does not consider
dynamic networks and predictable bandwidth allocation.

Two examples of self-stabilizing TDMA algorithms are presented in [23, 27]. The algorithms are based
on vertex-coloring and consider (non-dynamic) ad-hoc networks. Recomputation and floating output tech-
niques ([16], Section 2.8) are used for converting deterministic local algorithms to self-stabilization in [33].
The authors focus on problems that are related to MAC algorithms. However, deterministic MAC algorithms
are known to be inefficient in their bandwidth allocation when the topology of the communication network
can change frequently [34]. There are several other proposals related to self-stabilizing MAC algorithms
for sensor networks, e.g., [29, 5, 4, 30]; however, none of them consider dynamic networks and their frame
control information is quite extensive.

The MAC algorithms in [34, 36, 35, 38] have no proof that they are self-stabilizing. The authors of [34]
present a MAC algorithm that uses convergence from a random starting state (inspired by self-stabilization).
In [36, 35, 38], the authors use computer network simulators for evaluating self-� MAC algorithms.
Our contribution This work proposes a self-stabilizing MAC algorithm that demonstrates rapid con-
vergence without the extensive use of frame control information. Our analysis shows that the algorithm
facilitates the satisfaction of severe timing requirements for DynWANs.

We start by considering transient faults and topological changes to the communication network, i.e.,
demonstrating self-stabilization in Theorem 4.2. We then turn to focus on bounding the algorithm’s conver-
gence time after an arbitrary and unbounded finite sequence of transient faults and changes to the network
topology. Theorem 5.1 shows that the expected local convergence time is brief, and bounds it in equa-
tion (7). Theorem 6.2 formulates the expected global convergence time in equation (21). Moreover, for a
given probability, the global convergence time is calculated in equation (22).

For discussion (Section 8), we point out the algorithm’s ability to facilitate the satisfaction of severe
timing requirements for DynWANs. Moreover, the analysis conclusions explain that when allowing merely
a small fraction of the bandwidth to be spent on frame control information and when considering any given
probability to converge within a bounded time, the proposed algorithm demonstrates a low dependency
degree on the number of nodes in the network (Fig. 4 and Fig. 6).

Due to the space limit, some of the proofs appear in the Appendix.

2 Preliminaries

The system consists of a set, P, of N anonymous communicating entities, which we call nodes. Denote
every node pi ∈ P with a unique index, i.
Synchronization Each node has fine-grained, real-time clock hardware. We assume that the MAC proto-
col is invoked periodically by synchronized common pulse that aligns the starting time of the TDMA frame.
This can be based, for example, on TDMA alignment algorithms [38], GPS [24] or a distributed pulse syn-
chronization algorithm [14]. The term (broadcasting) timeslot refers to the period between two consecutive
common pulses, tx and tx+1, such that tx+1 = (tx mod T)+ 1, where T is a predefined constant named the

3

�
MaxRnd = 3

listening / signaling periods Timeslot

Broadcasting round Size: T = 3 timeslots

DATA
packet

DATA
packet

DATA
packet

DATA
packet

Figure 1: An example of TDMA frame, with 3 timeslots and 3 listening/signaling periods of size ε (signal
exposure time).

frame size. Throughout the paper, we assume that T ≥ 2. In our pseudo-code, we use the event timeslot(t)
that is triggered by the common pulse. We assume that the timeslots are aligned.
Communications and interferences At any instance of time, the ability of any pair of nodes to directly
communicate is defined by the set, Ni ⊆ P, of (direct) neighbors that node pi ∈ P can communicate with
directly. Wireless transmissions are subject to interferences (collisions). We consider the potential of nodes
to interfere with each other’s communications.

Nodes raise the event carrier sense() when they detect that the received energy levels have reached a
threshold in which the radio unit is expected to succeed in carrier sense locking, see [25].

We consider a graph-based interference model, where the set Ni ⊇ Ni is the set of nodes that may
interfere with pi’s communications when any nonempty subset of them, I ⊆ Ni : I �= /0, transmit concurrently
with pi. We call Ni the (extended) neighborhood of node pi ∈ P and di = |Ni| is named the (extended)
degree of node pi. We assume that at any time, for any pair of nodes, pi, p j ∈ P it holds that p j ∈ Ni implies
that pi ∈ N j. Given a particular instance of time, we define the (interference) graph as G = (P,E), where
E = ∪i∈P{(pi, p j) : p j ∈ Ni} represents the interference relationships among nodes.
Communication schemes Timeslots allow the transmission of DATA packets using the transmit() and re-
ceive() primitives after fetching (MAC fetch()) a new packet from the upper layer, and respectively, before
delivering (MAC deliver()) the packet to the upper layer. A beacon is a short packet that includes no data
load, rather its carrier sense delivers important information. Before the transmission of the DATA packet in
timeslot t, the scheme uses beacons for singling the node intention to transmit a DATA packet within t.

Fig. 1 depicts a TDMA frame with three timeslots. Each timeslot has a constant number, MaxRnd = 4,
of listening/signaling periods in which beacons can be] sent. Each listening/signaling period take a period
of ε (signal exposure time); the period during which a beacon that is sent by node pi ∈ P is transmitted and
received by all neighbors p j ∈ Ni. Namely, the period between pi’s transition and the rise of the carrier
sense event, carrier sense(), by p j ∈ Ni.
System Settings We consider the interleaving model [16]. Every node, pi ∈ P, executes a program that
is a sequence of atomic steps. The state sti of a node pi consists of the value of all the variables of the
node (including messages in transit for pi). Variables are associated with individual node states by using the
subscript notation, i.e., xi is the variable x in the state of node pi. The term configuration is used for a tuple
of the form (G,{sti}N

i=1), where G is the (interference) graph, and {sti}N
i=1 are the nodes’ states (including

the set of all incoming communications). An execution (run) R = (c(0),c(1), . . .) is an unbounded sequence
of system configurations c(x), such that each configuration c(x+1) (except the initial configuration c(0)) is
obtained from the preceding configuration c(x) by the execution of steps, {ai(x)}pi∈P, taken by all nodes.

Let τ (task) be a set of specifications and LE a set of all executions that satisfy task τ. We consider
TDMA-based MAC protocols for which the task τTDMA and the set LETDMA of legal executions specify that
every node has its own broadcasting timeslot that is unique within its neighborhood. We say that configu-
ration csa f e is safe if there is an execution R ∈ LE, such that csa f e is R’s starting configuration. Let R be an

4

Constants, variables, macros and external functions
2 MaxRnd (n in the proofs) : integer = bound on round number

s : [0, T-1] ∪ {⊥} = next timeslot to broadcast or null, ⊥
4 signal : boolean = trying to acquiring the channel

unused[0,T-1] : boolean = marking unused timeslots
6 unused set = { k : unused[k] = true } : unused timeslot set (macro)

MAC fetch()/MAC deliver() : MAC layer interface
8 transmit/receive/carrier sense : communication primitives

10 Upon timeslot(t)
if t = 0 ∧s = ⊥ then s := select unused(unused set)

12 (unused[t], signal) := (true, false) (∗ remove stale info. ∗)
if s �= ⊥∧ t = s then send(MAC fetch())

14

Upon receive(< DATA, m>) do MAC deliver(< m>)

Function send(m) (∗ send message m to p′is neighbors ∗)
18 for ((signal, k) := (true, 0); k := k + 1; k ≤ MaxRnd) do

if signal then with probability ρ(k) = 1/(MaxRnd − k) do
20 signal := false (∗ quit the competition ∗)

transmit(< BEACON>) (∗ try acquiring the channel ∗)
22 wait until the end of competition round (∗ exposure period alignment ∗)

if s �=⊥ then transmit(< DATA, m>) (∗ send the data packet ∗)
24

Upon carrier sense(t) (∗ defer transmission during t ∗)
26 if s = t ∧signal then s := ⊥ (∗ mark that the timeslot is not unique ∗)

(signal, unused[t]) := (false, false) (∗ quit the competition ∗)
28

Function select unused(set) (∗ select an empty timeslot ∗)
30 if set = /0 then return ⊥ else return uni f orm select(set)

Figure 2: Self-stabilizing TDMA-based MAC algorithm, code of node pi.

execution and c ∈ R its arbitrary starting configuration. We say that R converges with respect to τ if within
a bounded number of steps from c, the system reaches a safe configuration csa f e. The closure property
requires that for any execution, R, that starts form csa f e implies that R ∈ LE. An algorithm is said to be
self-stabilizing if it satisfies both the convergence and the closure properties.

We describe execution R as an unbounded number of concatenated finite sequences of configurations.
The finite sequences, R(x) = (c0(x), . . . cT−1(x)), x > 0, is a broadcasting round if (1) configuration c0(x)
has a clock value, t, of 0 and immediately follows a configuration in which the clock value is T − 1, and
(2) configuration cT−1(x) has a clock value of T −1 and immediately precedes a configuration in which the
clock value is 0.

3 Algorithm Description

The MAC algorithm in Fig. 2 assigns timeslots to nodes. Suppose that the ratio between the extended degree
and the frame size is less than one, i.e., ∀pi ∈ P : 1 � T/di. After the convergence period, every node pi is
assigned with a broadcasting timeslot, si ∈ [1,T], i.e., ∀pi ∈ P : ((si ∈ [1,T])∧(p j ∈ Ni))→ si �= s j. Systems
that do not satisfy the condition ∀pi ∈ P : 1 � T/di, eventually run into timeslots exhaustion. The algorithm
indicates that the channel is busy to the nodes for which there was no timeslot left (cf. the si =⊥ assignment
in line 30).

During the convergence period several nodes can be assigned to the same timeslot. Namely, we may
have pi ∈ P : p j ∈ Ni ∧ si = s j. The algorithm solves such timeslot allocation conflicts by letting the node
pi and p j to go through a (listening/signaling) competition before transmitting in its broadcasting timeslot.
The competition rules require each node to choose one out of MaxRnd listening/signaling period for its
broadcasting timeslot, see Fig. 1. This implies that among all the nodes that attempt to broadcast in the
same timeslot, the ones that select the earliest listening/signaling period win this broadcasting timeslot and
access the communication media. Before the winners access their timeslots, they signal to their neighbors
that they won by transmitting beacon. The signal is sent during their choice of listening/signaling periods,
see Fig. 1. When a node receives a beacon, it does not transmit during that timeslot, because it lost this
(listening/signaling) competition. Instead, it randomly selects another broadcasting timeslot and competes
for it on the next broadcasting round.

5

In detail, the MAC algorithm in Fig. 2 is invoked at the start of every timeslot, t. When t is the first
timeslot, the algorithm tries to allocate the broadcasting timeslot, si, to pi (line 11) by randomly selecting
a timeslot for which there is no indication to be used by its neighbors. Later, when the timeslot t becomes
pi’s broadcasting timeslot, si, the node attempts to broadcast (by calling the function send() in line 13). We
note that the start of timeslot t also requires the marking of t as an unused timeslot and the removal of stale
information (line 12). This indication is changed when the carrier sense(t) event is raised (line 27) due to a
neighbor transmission. Namely, when the detected energy levels reach a threshold in which the radio unit is
expected to succeed in carrier sense locking, see [25].

When a node attempts to broadcast it uses the (listening/signaling) competition mechanism for deciding
when to signal to its neighbors that it is about to transmit a DATA packet. The competition has MaxRnd
rounds and it stops as soon as the node transmits a BEACON or a neighbor succeeds in signaling earlier
(lines 18 to 23). We note that this singling is handle by the carrier sense(t) event (line 27). Moreover,
BEACONs are not required to carry payloads or any other information that is normally stored in packet
headers. They are rather used to invoke the carrier sense event in Ni.

The carrier sense in timeslot t indicates to each node that it needs to defer from transmission during t
(line 25). In particular, it should stop using timeslot t for broadcasting, stop competing and mark t as a used
timeslot. Lastly, arriving DATA packets are delivered to the upper layer (line 15).

4 Correctness Proof: Outline and Notation

The MAC task requires that every node can successfully broadcast infinitely often. We start our proof by
considering wireless ad hoc networks that do not change its topology and for which the ratio between the
extended degree of node and the frame size is less than one, i.e., ∀pi ∈ P : 1 � T/di. For these settings,
we consider the task, τTDMA, in which the nodes can access successfully the media once in every broadcast-
ing round. After showing that the MAC algorithm in Fig. 2 is self-stabilizing with respect to task τTDMA

(sections 10 to 9 of the Appendix), we consider the time it take to converge within a single neighborhood
(Section 5) and the entire neighborhood (Section 6). These convergence estimations facilitate the explo-
ration of important properties, such as predictability, and dealing with changes in the network topology
(Section 8).
Proof outline The exposition of the proof outline refers to Definition 4.1, which delineates the different
states at which a node can be in relation to its neighbors. Definition 4.1 groups these states into three
categories of relative states: (1) Ready to be allocated, when the node state depicts correctly its neighbor
states, (2) Obtaining a timeslot, when the node is competing for one, but there is no agreement with its
neighbor states, and (3) Allocated to a timeslot, when the node is the only one to be allocated to a particular
timeslot in its neighborhood. The correctness proof shows that the MAC algorithm in Fig. 2 implements
τTDMA in a self-stabilizing manner by showing that eventually all nodes are allocated with timeslots, i.e., all
nodes are in the relative state Allocated, see Definition 4.1.

Let R be an execution of the MAC algorithm in Fig. 2 and R(x) is the x-th complete broadcasting
round of R, where x > 0 is an integer. We simplify the presentation by using uppercase notation for the
configurations, cname

t (x), where t ∈ [1,T] is a timeslot. This notation includes the name of the first event to
be triggered immediately after configuration c, i.e., R(x) = (ctimeslot

0 (x), . . . ccarrier sense/receive
T−1 (x)).

Definition 4.1. We say that node pi ∈ P is Ready (to be allocated) to a timeslot in configuration ctimeslot
0 (x), if

properties (1), (2) and (3) hold for node pi but Property (4) does not. We say that pi is Obtaining timeslot
si in configuration ctimeslot

0 (x), if properties (1) to (4) hold for node pi, but Property (5) does not. We say that

6

node pi ∈ P is in Allocated state, with respect to timeslot si in configuration ctimeslot
0 (x), if properties (1) to (5)

hold for node pi.

signali = false (1)

(t ∈ unusedi ∧ t �= si)↔ (∀pk ∈ Ni : sk �= t) (2)

si �=⊥∨unused seti \{si} �= /0 (3)

si �=⊥ (4)

∀p j ∈ Ni : ((si �= s j)∧ (unused j[si] = false)) (5)

Property (1) implies that node pi finishes any broadcast attempts within a timeslot. Properties (2) to (3)
consider the case in which pi’s internal state represents correctly the timeslot allocation in its neighborhood.
In particular, property (2) means that processor pi views timeslot t as an unused one if, and only if, it is
indeed unused. Property (3) implies that when node pi is not using any timeslot, there is an unused timeslot
at its disposal. Property (4) says that node pi is using timeslot si. Property (5) refers to situations in which
pi’s neighbors are not using pi’s timeslot during the next broadcasting round.

Starting from an arbitrary configuration, we show that node pi becomes Ready within two broadcasting
rounds (or one complete broadcasting round), see Section 10 of the Appendix. Then, we consider the
probability, OnlyOnei(x), that a node enters the relative state Allocated from either Ready or Obtaining, see
equation (6) (and sections 11 and 12 of the Appendix). Namely, equation (6) considers the probability that
node pi is the only one to use its broadcasting timeslot in its neighborhood, where ρk = 1/MaxRnd = 1/n
is pi’s probability to selects the k-th listening/signaling period for transmitting its BEACON.

OnlyOnei(x)≥
n

∑
k=1

ρk

(
1−

k

∑
�=1

ρk

) di
T

(6)

Theorem 4.2 demonstrates self-stabilization, rather than convergence from an randomized starting con-
figuration, as in [34].

Theorem 4.2 (Self-Stabilization, the proof appears in Section 9 of the Appendix). The MAC algorithm in
Fig. 2 is self-stabilizing with respect to the task τTDMA .

We bound the time it takes the MAC algorithm in Fig. 2 to converge by considering the relative states,
Ready, Obtaining, and Allocated, and describe a state machine of a Markovian process. This process is used
for bounding the convergence time of a single node (Section 5), and the entire network (Section 6).

In detail, give node pi ∈ P, its neighborhood, Ni, we define a random environment of a Markov chain,
see Fig. 3. By looking at this random environment, we can focus our analysis on pi’s relative states while
avoiding probability dependencies and considering average probabilities [9]. Suppose that pi’s environment,
e, is known. Theorem 5.1 estimates two bounds on the expectation of probability, qi |e, which is literally the
probability qi given that the environment is e.

In order to do that, we consider a set, R , of executions of the MAC algorithm, such that each execution
R ∈ R starts in a configuration, c ∈ R, in which: (I) for any node p j ∈ P, properties (1), (2) and (3) holds,
and (II) node pi is in the relative state Ready, which implies that (III) eventually, node pi arrives to the
relative state Allocated.

With this convention, we can add a probability 1 to transit from the relative state Allocated to Ready, see
the dashed line in the state-machine diagram of Fig. 3. This allows us to estimate the expected time to reach

7

Obtaining

Allocated

wi

Ready

 fi hi

qi 1

We look at pi’s state transition with relation to its neighbors, see Definition 4.1.
The figure on the right defines pi’s relative states as a 3-state Markov chain. The
probabilities, qi, wi, fi, and hi (solid lines arrows), that node pi change its rela-
tive state depends on its neighbor’s state. For instance, qi is the probability that
pi goes from the relative state Ready to Allocated. It is environment dependent,
i.e., the states of pi’s neighbors are random as well. We add the dotted edge
between the state Allocated and the state Ready in order to make the Markov
chain irreducible and to allow working with the invariant probability. Namely,
once node pi arrives to Allocated, it returns to Ready with probability 1. With
this convention, we can estimate the expected time to reach the final relative

state Allocated from relative state Ready by the expectation of the first hitting time of the irreducible
chain [3]

Figure 3: Markov chain describing pi’s relative state transitions.

the final relative state Allocated from relative state Ready by the expectation of the first hitting time of the
irreducible Markov chain [3].

When computing the expected time for node pi to reach state Allocated within its neighborhood, we see
that it is sufficient to consider the lower bound of the probability OnlyOnei(x) to obtain an upper bound on
the expected time to converge, see section 5. Moreover, when considering the network convergence time,
i.e., the expected convergence time of all nodes in the network, we see that the most dominant parameter is
the mean neighborhood size. We do that by applying the AM-GM (Arithmetic Mean vs Geometric Mean)
inequality and bounding the expected network convergence time, see Section 6.
Notation Throughout the paper, we denote the states of the Markov chain by {Xt}t≥0, T+

i =
min{t > 0 such that Xt = i} and Ei (·) is the expectation given that we start in relative state i, Ei

(
T+

i

)
=

E
(
T+

i | X0 = i
)
. In this paper, the states 1, 2, and 3 of the Markovian process correspond respec-

tively to states Ready, Obtaining and Allocated, and the time t = 0,1, . . . corresponds to configuration
ctimeslot

0 (x+ t) ∈ R(x+ t), where R(x) is the first complete broadcasting round in R that starts in a configu-
ration, ctimeslot

0 (x), in which all nodes are in the relative state Ready. For example, E3
(
T+

3

)
is the expected

time to reach the Allocated state.
Let pi ∈ P be a node for which si �=⊥∧∃p j ∈ Ni : s j = si in configuration ctimeslot

0 (x). We define Mi(x) =
{p j ∈ Ni : si = s j} to be the set of pi’s (broadcasting timeslot) matching neighbors, which includes all of pi’s
neighbors that, during broadcasting round R(x), are attempting to broadcast in pi’s timeslot. In our proofs,
we use n as the number of listening/signaling periods, MaxRnd.

5 Convergence within a Neighborhood

Theorem 5.1 bounds the expected time, Si, for a node to reach the relative state Allocated, and follows from
Proposition 5.3 and equation (12). Note that Si ≤ 4 when the number of listening/signaling periods is n ≥ 2,
and considering saturated situations in which the extended node degree di < T is smaller than the TDMA

8

5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

max convergence time

pr
ob

ab
ili

ty

Observation of the max convergence time, N=500, r=0.1

empirical
theoretical bound

5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

max convergence time

pr
ob

ab
ili

ty

Observation of the max convergence time, N=2500, r=0.1/sqrt(5)

empirical
theoretical bound

5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

max convergence time

pr
ob

ab
ili

ty

Observation of the max convergence time, N=5000, r=0.1/sqrt(10)

empirical
theoretical bound

Figure 4: Numerical validation of Theorem 6.2’s bound on the network-wise convergence time. We
compare the bound, P(tmax < k) = (1 − (1 − q)k)N , with the numerical results, which consider random
geometric graphs in which the nodes are randomly placed on the unit square. The charts considers
N ∈ {500,2500,5000} nodes (from left to right). All experiments considered 2 listening/signaling peri-
ods, interference range of 0.1/

√
(N

500), which result in an average extended degree of 15, di/T = 1 on
average, and qi = 1/4.

frame size. Namely, the proposed algorithm convergence with a neighborhood is brief.

Theorem 5.1 (Local Convergence). The expected time, Si, for node pi ∈ P to reach the relative state Allo-
cated satisfies equation (7), where n is the number of listening/signaling periods, T the TDMA frame size,
and di is pi’s extended degree.

Si ≤ min{
(

2n
n−1

) di
T

,
di
T +1

n

(
n

n−1

) di
T +1

} (7)

We look into the transition probability among relative states by depicting the diagram of Fig. 3 as an
homogeneous Markov chain. We estimate the diagram transition probabilities in a way that maximizes the
expected time for reaching the diagram’s final state, Allocated. It is known that the first hitting time is given
by Ei

(
T+

i

)
= 1

πi
, where π = (π1,π2,π3) is the invariant probability vector [3]. Let Si be the expected time it

takes node pi that starts at the relative state Ready to reach Allocated. It is clear that Si = T+
3 − 1, because

T+
3 − 1 is the return time of the relative state Allocated. In our case, the transition matrix P is given by

equation (8).

P =

⎛
⎝1− fi −qi fi qi

hi 1−hi −wi wi

1 0 0

⎞
⎠ (8)

The invariant probability vector π satisfying πP = π is given by equation (9).

π =

(
hi +wi, fi,qihi +qiwi + fiwi

)
hi +wi + fi +hiqi +qiwi + fiwi

(9)

The estimation of the maximal expected time necessary to assign the node pi to a timeslot requires to
compute bounds on the probabilities fi, hi, qi and wi that maximize equation (10).

E3
(
T+

3

)
=

1
π3

=
hi +wi + fi +hiqi +qiwi + fiwi

qihi +qiwi + fiwi
(10)

9

The expected time for pi to reach the relative state Allocated is bounded in equation (11).

Si = E3
(
T+

3

)−1 =
hi +wi + fi

qihi +qiwi + fiwi
(11)

Equation (7) has a compact and meaningful bound for equation (11). We achieve that by studying the
impact of the parameters T and n on the MAC algorithm in Fig. 2. Lemma 5.2 and equation (11) imply
equation (12).

Si ≤ hi +wi + fi

qihi +qiwi + fiqi
=

1
qi

(12)

Lemma 5.2. Suppose that n ≥ 2 is the number of listening/signaling periods, see line 2 of the code in Fig. 2.
Then wi ≥ qi.

Proof. Let us consider node pi ∈P that is in relative state Ready. Given that pi has vi neighbors that compete
for the same timeslot, the probability that pi gets allocated, qi |vi , is given by equation (13).

qi |vi=
n−1

∑
k=1

ρk (1−ρ1 − . . .−ρk)
vi (13)

Consider next that pi is in relative state Obtaining, and thus we know that pi transmitted during the preceding
broadcasting round and transited from relative state Ready to Obtaining. Moreover, pi is using the same
timeslot for the current broadcasting round. The only neighbors of pi that are using the same timeslot are
the neighbors that are also in relative state Obtaining and, have chosen the same listening/signaling period
as pi during the preceding broadcasting round. Let us denote by �i the number of such neighbors. Given �i

the probability wi |�i that pi is allocated to the timeslot is given by equation (14).

wi |�i=
n−1

∑
k=1

ρk (1−ρ1 −−ρk)
�i (14)

We have that �i is stochastically dominated by vi [40], i.e., E(�i)≤ E(vi). Indeed, vi is a random variable that
counts the number of neighbors that choose the same timeslot as pi while �i counts the number of neighbors
that choose the same timeslot and listening/signaling period as pi. For n ≥ 2, �i’s expected value is smaller
than vi’s expected value. To conclude, we remark that expressions (13) and (14) are the same decreasing
function, fi → ∑n−1

k=1 ρk (1−ρ1 − . . .−ρk)
fi , that is evaluated at two different point, vi and �i respectively.

Moreover, since �i is stochastically dominated by vi, equation (15) holds.

wi = E (wi |�i)≥ E (qi |vi) = qi (15)

Proposition 5.3 demonstrates equation (16) and leads us toward the proof of Theorem 5.1.

Proposition 5.3. Let ρi = 1/MaxRnd. Equation (16) bounds from below the probability qi, see Section 12
of the Appendix.

10

qi ≥ max{
(

n−1
2n

) di
T

,
1

di
T +1

(
1− 1

n

) di
T +1

} (16)

The first bound, 1
qi
≤ (2n

n−1

) di
T (equation (7)), has a simple intuitive interpretation. Let us consider first

that two nodes compete for a same timeslot. The two nodes choose independently any of the n listening/sig-
naling periods and there are n2 different possible outcomes. Among these outcomes n correspond to the
situation where the two nodes choose the same listening/signaling period and there is no winner. We then
have n2−n = n(n−1) outcomes that lead to a winner. There is then a probability of n(n−1)/n2 = (n−1)/n
that one of the node wins the (listening/signaling) competition. Since the game is symmetric, the probability
that pi wins is (n−1)/(2n). The fact that we have T timeslots divides the number of competing nodes, di,
and imply that there are di/T competing nodes to the same timeslot. If we interpret the game as a collection
of di/T independent games, where for each game pi wins with probability (n− 1)/(2n). Thus, the proba-

bility qi that pi wins is
(n−1

2n

) di
T . The inverse of this expression gives the average time for the event to occur

and is the bound by equation (7).

6 Network Convergence

We estimate the expected time for the entire network to reach a safe configuration in which all nodes are
allocated with timeslots. The estimation is based on the number of nodes that are the earliest to signal
in their broadcasting timeslot. These nodes are winners of the (listening/signaling) competition and are
allocated to their chosen timeslots. However, counting only these nodes leads to under-estimate the number
of allocated nodes, which then results in an over-estimation of the convergence time. Indeed, node pi ∈ P
might have a neighbor p j ∈ Ni that selects the earliest listening/signaling period in Ni, but p j does not
transmit because one of its neighbors, pk ∈ N j \Ni, had transmitted in an earlier listening/signaling period.
Our bound consider only pk while both pi and pk transmit, became p j is inhibited by pk’s BEACON.

Lemma 6.1 shows that the assumption that the nodes are allocated independently of each other’s is
suitable for bounding the network convergence time, S . Theorem 6.2 uses Lemma 6.1 for bounding the
network convergence time, S .

In Section 5, we prove a bound on the expected time, Si, for a single node to be allocated to a timeslot.
We observe that the bound depends uniquely on the number of listening/signaling periods, n, as well as the
ratio between the extended degree and the frame size, di/T . In order to obtain a bound valid for all nodes,
we bound this ratio with x/T where x is as defined in Lemma 6.1. We note that the time needed for the
allocation of timeslots to all the nodes depends on N, the total number of nodes.

In detail, the convergence time estimation considers the (fixed and independent) bound, qi, for the prob-
ability that a node reach the relative state Allocated within a broadcasting round. Then, the convergence
time, t, is a random variable with geometric probability, i.e., P(t = k) = (1 − q)k−1q. Let us denote t1, . . . tN
the time it takes for the nodes p1, . . . pN to respectively reach the relative state Allocated. The convergence
time, S , for all the nodes is given by max({t1, . . . tN}), which depends on N.

Lemma 6.1. The expected number of nodes, E(W), that win the (listening/signaling) competition after one
broadcasting round satisfies equation (17), where x = 2A

N , T is the number of timeslots, A the number of
edges in the interference graph, G, and N =| P | the number of nodes that attempt to access the communi-

11

cation media.

E(W)≥ N
n

∑
j=1

ρ j (1− (ρ1 + . . .+ρ j))
x
T (17)

Proof. The nodes that are allocated to a timeslot can previously being on relative state Ready or Obtaining.
The probability of a transition from relative state Obtaining to Allocated is wi, and, a transition from relative
state Ready to Allocated is qi. As proved in Lemma 5.2, we always have wi ≥ qi. To bound the number of
nodes that get allocated during a broadcasting round, we use the lower bound on the probability qi that a
node gets allocated to a timeslot. Moreover, in the computations, we use the AM-GM bound [46], which
says that if ∑bk = 1 then ∏abk

k ≤ ∑bkak and, denote di the number of neighbors of node pi. As proved in
Proposition 12.1, since there are T timeslots the number of neighbors of i that choose the same timeslot as
i and compete for it is bounded by di/T . This lemma is proved by equation (18), where the last line of the
expression holds because ∑i di = 2A.

E (W)≥ (18)

E

(
N

∑
i=1

1|pi selects the earliest signaling period

)
=

N

∑
i=1

⎛
⎝ρ1 (1−ρ1)

di
T + . . .ρn−1

(
1−

n−1

∑
k=1

ρk

) di
T
⎞
⎠ =

n

∑
j=1

N
N

∑
i=1

1
N

ρ j

(
1−

j

∑
k=1

ρk

) di
T

≥

N
n

∑
j=1

N

∏
i=1

ρ
1
N
j

(
1−

j

∑
k=1

ρk

) di
NT

= (19)

N
n

∑
j=1

ρ j

(
1−

j

∑
k=1

ρk

) 1
T N ∑di

=

N
n

∑
j=1

ρ j

(
1−

j

∑
k=1

ρk

) x
T

We note that we use the AM-GM bound to reach the 4-th raw of equation (18).

By arguments similar to the ones used in the proof of Proposition 5.3, we deduce that if N nodes compete,
the expected number E(W) of nodes that get allocated to a timeslot is lower bounded in equation (20).

E(W)≥ N max

{(
n−1

2n

) x
T

,

(n−1
n

) x
T +1

x
T +1

}
(20)

Theorem 6.2 bounds the system convergence time (see the proof in Section 13 of the Appendix).

12

Theorem 6.2 (Global Convergence). The expected number of retransmissions is smaller than
(2n

n−1

)d/T −1,
where d = max({di : pi ∈ P}). Hence, we have that the expected number of broadcasting rounds, S , that
guarantee that all nodes to reach the relative state Allocated satisfies equation (21).

S ≤
(

2n
n−1

)d/T

(21)

Moreover, given that there are N nodes in the network and α ∈ (0,1), the network convergence time is
bounded by equation (22) with probability 1−α.

k = 1+
log
(
1− N

√
1−α

)
log
(

1− (n−1
2n

) d
T

) (22)

This means that with probability α all nodes are allocated with timeslots in maximum k broadcasting rounds,
see Fig. (6).

We numerically validate Theorem 6.2, see Fig. 4. Moreover, our experiments showed that the average
convergence time of the network is below the upper bound of equation (21).

7 Implementation

Existing MAC protocols offer mechanisms for dealing with contention (timeslot exhaustion) via policies
for administering message priority, such as [39]. In particular, the IEEE 802.11p standard considers four
priories and techniques for facilitating their policy implementation. We explain similar techniques that can
facilitate the needed mechanisms.
Peritonized listening/signaling periods One can consider listening period parameters, [LSPstart , LSPend],
that refer to the first, and respectively, the last listening/signaling periods that a node can use when attempting
to acquire a broadcasting timeslot. E.g., suppose that there are six listening/signaling periods, and that nodes
with the highest priory may use the first three listening/signaling periods, [0,2], and nodes with the lowest
priority may use the last three, [3,5]. In the case of two neighbors with different listening period parameters,
say [0,2] and [3,5], that attempt to acquire the same broadcasting timeslot, the highest priority node always
attempts to broadcast before the lowest priority one.
TDMA-based back-off Let us consider two back-off parameters, CWstart and CWend , that refer to the
maximal and minimal values of the contention window. Before selecting an unused timeslot, the procedure
counts a random number of unused ones. Fig. 5 presents an implementation of the select unused() function
that facilitates back-off strategies as an alternative to the implementation presented in line 29 of Fig. 2.

The statically allocated variable count records the number of backoff steps that node pi takes until it
reaches the zero value. Whenever the function select unused() is invoked with counti = 0, node pi assigns
to counti a random integer from [CWstart ,CWend] (cf. line 7). Whenever the value of counti is not greater
than the number of unused timeslots, the returned timeslot is selected uniformly at random (cf. lines 8
to 9). Otherwise, a ⊥-value is returned after deducting the number of unused timeslots during the previous
broadcasting round (cf. lines 6 and 10).

8 Discussion

Thus far, both schedule-based and non-schedule-based MAC algorithms could not consider timing require-
ments within a provably short recovery period that follows (arbitrary) transient faults and network topology

13

Addtional constants and variables
2 CWstart and CWend : backoff parameters

count : statically allocated variable that counts the backoff steps
4

Function select unused(set)
6 let rtn val =⊥v // indicate busy channel (default return value)

if count ≤ 0 then count ← uni f orm select([CWstart ,CWend])
8 count ← count− | set |

if count ≤ 0 then (count,rtn val)← (0,uni f orm select(set))
10 return rtn val

Figure 5: select unused() with TDMA-based back-off

changes. This work proposes the first self-stabilizing TDMA algorithm for DynWANs that has a provably
short convergence period. Thus, the proposed algorithm possesses a greater degree of predictability, while
maintaining low communication delays and high throughput.

In this discussion, we would like to point out the algorithm’s ability to facilitate the satisfaction of severe
timing requirements for DynWANs by numerically validating Theorem 6.2. As a case study, we show that,
for the considered settings of Fig. 4, the global convergence time is brief and definitive. Fig. 6 shows that
when allowing merely a small fraction of the bandwidth to be spent on frame control information, say three
listening/signaling periods, and when considering 99% probability to convergence within a couple of dozen
TDMA frames, the proposed algorithm demonstrates a low dependency degree on the number of nodes in the
network even when considering 10,000 nodes. We have implemented the proposed algorithm, extensively
validated our analysis via computer simulation, and tested it on a platform with more than two dozen nodes.
(This technical report can be made available.) These results indeed validate that the proposed algorithm
can indeed facilitate the implementation of MAC protocols that guarantee satisfying these severe timing
requirements.

The costs associated with predictable communications, say, using base-stations, motivate the adoption
of new networking technologies, such as MANETs and VANETs. In the context of these technologies,
we expect that our proposal would contribute to the development of MAC protocols that can be used by
applications that needs guarantees for severe timing requirements.

References

[1] Norman Abramson. Development of the ALOHANET. Info. Theory, IEEE Trans. on, 31(2):119–123,
1985.

[2] Fabrizio Abrate, Andrea Vesco, and Riccardo Scopigno. An analytical packet error rate model for
wave receivers. In VTC Fall, pages 1–5. IEEE, 2011.

[3] David Aldous and Jim Fill. Reversible Markov chain and random walks on graph. unpublished,
available at http://www.stat.berkeley.edu/˜aldous/RWG/book.html, 1999.

[4] M. Arumugam and S.S. Kulkarni. Self-stabilizing deterministic time division multiple access for
sensor networks. AIAA Journal of Aerospace Computing, Info., and Comm. (JACIC), 3:403–419,
2006.

[5] Mahesh Arumugam and Sandeep S. Kulkarni. Self-stabilizing deterministic TDMA for sensor net-
works. In Goutam Chakraborty, editor, 2nd Inter. Conf. Distributed Computing and Internet Technol-
ogy (ICDCIT), volume 3816 of LNCS, pages 69–81. Springer, 2005.

14

20
20

2025

25

25

30

30
30

35
35

35
40

40

40
45

45

n

N

Global convergence time if T=1 with prob. 0.99

2 3 4 5 6 7 8 9 10

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Figure 6: Contour plot of equation (22) for s = d/T = 1. Contour charts [13] present two parameter
functions, e.g., the convergence time function, k(n,N) presented in equation (22). Contour lines in Fig. 6
connect values of k(n,N) that are the same (see the text tags along the line). When N nodes attempt to access
the medium, the conversance time, S (cf. the contour lines), is stable in the presence of a growing number,
n, of listening/signaling periods.

[6] Katrin Bilstrup, Elisabeth Uhlemann, Erik G. Ström, and Urban Bilstrup. Evaluation of the IEEE
802.11p MAC method for vehicle-to-vehicle communication. In VTC Fall, pages 1–5. IEEE, 2008.

[7] Katrin Bilstrup, Elisabeth Uhlemann, Erik G. Ström, and Urban Bilstrup. On the ability of the 802.11p
MAC method and STDMA to support real-time vehicle-to-vehicle communication. EURASIP Journal
on Wireless Comm. & Net., 2009:1–13, 2009.

[8] Jean R. S. Blair and Fredrik Manne. An efficient self-stabilizing distance-2 coloring algorithm. In Shay
Kutten and Janez Zerovnik, editors, SIROCCO, volume 5869 of Lecture Notes in Computer Science,
pages 237–251. Springer, 2009.

[9] Robert Cogburn. The Ergodic theory of Markov chains in random environments. Probability Theory
and Related Fields (Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete), 66(1):109–
128, 1984.

[10] Alejandro Cornejo and Fabian Kuhn. Deploying wireless networks with beeps. In Nancy A. Lynch
and Alexander A. Shvartsman, editors, 24th Inter. Symp. on Distributed Computing (DISC’10), volume
6343 of LNCS, pages 148–162. Springer, 2010.

15

[11] Hector Agustin Cozzetti and Riccardo Scopigno. Rr-aloha+: A slotted and distributed mac protocol
for vehicular communications. In Vehicular Networking Conference (VNC), 2009 IEEE, pages 1 –8,
Oct. 2009.

[12] Hector Agustin Cozzetti, Riccardo Scopigno, Luca Casone, and Giuseppe Barba. Comparative analysis
of ieee 802.11p and ms-aloha in vanet scenarios. In Markus Kirchberg, Patrick C. K. Hung, Barbara
Carminati, Chi-Hung Chi, Rajaraman Kanagasabai, Emanuele Della Valle, Kun-Chan Lan, and Ling-
Jyh Chen, editors, APSCC, pages 64–69. IEEE, 2009.

[13] AM Crocker, WL Godson, and CM Penner. Frontal contour charts. Journal of the Atmospheric
Sciences, 4(3), 1947.

[14] Ariel Daliot, Danny Dolev, and Hanna Parnas. Self-stabilizing pulse synchronization inspired by
biological pacemaker networks. In Shing-Tsaan Huang and Ted Herman, editors, 6th Inter. Symp. on
Self-Stabilizing Systems (SSS), volume 2704 of LNCS, pages 32–48. Springer, 2003.

[15] Murat Demirbas and Muzammil Hussain. A MAC layer protocol for priority-based reliable multicast in
wireless ad hoc networks. In 3rd Inter. Conf. on Broadband Comm., Net., and Systems (BROADNETS).
IEEE, 2006.

[16] Shlomi Dolev. Self-Stabilization. MIT Press, 2000.

[17] Shlomi Dolev and Ted Herman. Superstabilizing protocols for dynamic distributed systems. Chicago
J. Theor. Comput. Sci., 1997.

[18] Shlomi Dolev, Amos Israeli, and Shlomo Moran. Analyzing expected time by scheduler-luck games.
IEEE Trans. Software Eng., 21(5):429–439, 1995.

[19] Olga Goussevskaia, Roger Wattenhofer, Magnús M. Halldórsson, and Emo Welzl. Capacity of arbi-
trary wireless networks. In INFOCOM, pages 1872–1880. IEEE, 2009.

[20] Martin Haenggi. Outage, local throughput, and capacity of random wireless networks. Trans. Wireless.
Comm., 8(8):4350–4359, 2009.

[21] Magnús M. Halldórsson and Roger Wattenhofer. Wireless comm. is in apx. In Susanne Albers, Alberto
Marchetti-Spaccamela, Yossi Matias, Sotiris E. Nikoletseas, and Wolfgang Thomas, editors, ICALP
(1), volume 5555 of LNCS, pages 525–536. Springer, 2009.

[22] H. Hartenstein and K. Laberteaux. VANET: Vehicular Applications and Inter-Networking Technolo-
gies. Wiley, 2010.

[23] Ted Herman and Sébastien Tixeuil. A distributed TDMA slot assignment algorithm for wireless sensor
networks. In 5th Inter. Workshop on Algo. Aspects of Wireless Sensor Net. (ALGOSENSORS), volume
3121 of LNCS, pages 45–58. Springer, 2004.

[24] B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins. Global positioning System. Theory and Prac-
tice. Springer-Verlag, 1993.

[25] Kyle Jamieson, Bret Hull, Allen K. Miu, and Hari Balakrishnan. Understanding the real-world per-
formance of carrier sense. In ACM SIGCOMM Workshop on Experimental Approaches to Wireless
Network Design and Analysis (E-WIND), Philadelphia, PA, August 2005.

[26] Johan Ludwig William Valdemar Jensen. Sur les fonctions convexes et les inégalités entre les valeurs
moyennes. Acta Mathematica, 30(1):175–193, 1906.

[27] Arshad Jhumka and Sandeep S. Kulkarni. On the design of mobility-tolerant TDMA-based media
access control (MAC) protocol for mobile sensor networks. In Tomasz Janowski and Hrushikesha
Mohanty, editors, ICDCIT, volume 4882 of LNCS, pages 42–53. Springer, 2007.

16

[28] Fabian Kuhn, Nancy A. Lynch, and Calvin C. Newport. The abstract MAC layer. In Idit Keidar, editor,
23rd Inter. Symp. on Distributed Computing (DISC), volume 5805 of LNCS, pages 48–62. Springer,
2009.

[29] Sandeep S. Kulkarni and Mahesh Umamaheswaran Arumugam. Sensor Network Operations, chapter
SS-TDMA: A self-stabilizing MAC for sensor networks. IEEE Press, 2006.

[30] Andreas Lagemann, Jörg Nolte, Christoph Weyer, and Volker Turau. Mission statement: Applying self-
stabilization to wireless sensor networks. In 8th GI/ITG KuVS Fachgespräch “Drahtlose Sensornetze”
(FGSN), pages 47–49, August 2009.

[31] M. Lenoble, K. Ito, Y. Tadokoro, M. Takanashi, and K. Sanda. Header reduction to increase the
throughput in decentralized TDMA-based vehicular networks. In Vehicular Networking Conference
(VNC), 2009 IEEE, pages 1–4. IEEE, 2009.

[32] Christoph Lenzen, Thomas Locher, Philipp Sommer, and Roger Wattenhofer. Clock Synchronization:
Open Problems in Theory and Practice. In 36th Inter. Conf. on Current Trends in Theory and Practice
of Computer Science (SOFSEM), Ǒpindleruv Mlýn, Czech Republic, January 2010.

[33] Christoph Lenzen, Jukka Suomela, and Roger Wattenhofer. Local algorithms: Self-stabilization on
speed. In Rachid Guerraoui and Franck Petit, editors, 11th Inter. Symp. on Stabilization, Safety, and
Security of Distributed Systems (SSS), volume 5873 of LNCS, pages 17–34. Springer, 2009.

[34] Pierre Leone, Marina Papatriantafilou, and Elad Michael Schiller. Relocation analysis of stabilizing
MAC algorithms for large-scale mobile ad hoc networks. In 5th Inter. Workshop on Algo. Aspects of
Wireless Sensor Net. (ALGOSENSORS), pages 203–217, 2009.

[35] Pierre Leone, Marina Papatriantafilou, Elad Michael Schiller, and Gongxi Zhu. Analyzing protocols
for media access control in large-scale mobile ad hoc networks. In Workshop on Self-Organising
Wireless Sensor and Comm. Net. (Somsed), October 2009. Hamburg, Germany.

[36] Pierre Leone, Marina Papatriantafilou, Elad Michael Schiller, and Gongxi Zhu. Chameleon-mac:
Adaptive and self-� algorithms for media access control in mobile ad hoc networks. In Shlomi Dolev,
Jorge Arturo Cobb, Michael J. Fischer, and Moti Yung, editors, 12th Inter. Symp. on Stabilization,
Safety, and Security of Distributed Systems (SSS’10), volume 6366 of LNCS, pages 468–488. Springer,
2010.

[37] Torgny Lindvall. Lectures on the Coupling Method. Dover Publications, Inc., 1992.

[38] Mohamed Mustafa, Marina Papatriantafilou, Elad Michael Schiller, Amir Tohidi, and Philippas Tsi-
gas. Autonomous TDMA alignment for VANETs. In IEEE 76th Vehicular Technology Conference
(VTC’12-Fall), 2012.

[39] Raphael Rom and Fouad A. Tobagi. Message-based priority functions in local multiaccess communi-
cation systems. Computer Networks, 5:273–286, 1981.

[40] Sheldon M. Ross. Stochastic Processes. John Wiley & Sons, Inc., 1996.

[41] William G. Schmidt. Satellite time-division multiple access systems: Past, present and future.
TeleComm., 7:21–24, 1974.

[42] Johannes Schneider and Roger Wattenhofer. Coloring unstructured wireless multi-hop networks. In
Srikanta Tirthapura and Lorenzo Alvisi, editors, 28th Annual ACM Symp. on Principles of Distributed
Computing (PODC), pages 210–219. ACM, 2009.

[43] Riccardo Scopigno and Hector Agustin Cozzetti. Mobile slotted aloha for VANETs. In VTC Fall,
pages 1 – 5. IEEE, 2009.

17

[44] Riccardo Scopigno and Hector Agustin Cozzetti. GNSS synchronization in VANETs. In Khaldoun Al
Agha, Mohamad Badra, and Gregory B. Newby, editors, NTMS, pages 1–5. IEEE, 2009.

[45] Riccardo Scopigno and Hector Agustin Cozzetti. Evaluation of time-space efficiency in CSMA/CA
and slotted VANETs. In VTC Fall, pages 1–5. IEEE, 2010.

[46] J.M. Steele. The Cauchy-Schwartz Master Class. Cambridge University Press, 2004.

[47] Yukihiro Tadokoro, Kenji Ito, Junji Imai, Noriyoshi Suzuki, and Nobuo Itoh. Advanced transmission
cycle control scheme for autonomous decentralized TDMA protocol in safe driving support systems.
In Intelligent Vehicles Symposium, 2008 IEEE, pages 1062–1067, june 2008.

[48] Saira Viqar and Jennifer L. Welch. Deterministic collision free communication despite continuous
motion. In 5th Inter. Workshop on Algo. Aspects of Wireless Sensor Net. (ALGOSENSORS), pages
218–229, 2009.

[49] Roger Wattenhofer. Theory Meets Practice, It’s about Time! In 36th Inter. Conf. on Current Trends
in Theory and Practice of Computer Science (SOFSEM), Špindleruv Mlýn, Czech Republic, January
2010.

[50] Wei Ye, John S. Heidemann, and Deborah Estrin. An energy-efficient MAC protocol for wireless
sensor networks. In INFOCOM, 2002.

[51] Fan Yu and Subir Biswas. Self-configuring TDMA protocols for enhancing vehicle safety with dsrc
based vehicle-to-vehicle communications. Selected Areas in Communications, IEEE Journal on,
25(8):1526–1537, oct. 2007.

18

Appendix

9 Theorem 4.2

Theorem 4.2 shows that all nodes are allocated eventually with timeslots (convergence) and once all nodes
are allocated, they stay this way (closure). We note that Theorem 4.2 refers to Proposition 11.2.
Theorem 4.2 (Self-Stabilization) The MAC algorithm in Fig. 2 is a self-stabilizing algorithm with respect
to the task τTDMA .

Proof. • Convergence We need to show that properties (1) to (5) eventually hold in configuration
ctimeslot

0 (x+ y) for a finite value of y > 0. Propositions 10.1, 10.2 and 10.3 imply that properties (1), (2), and
respectively, (3) within two broadcasting round.

Propositions 11.1, 11.2 and 11.3 show that there is a nonzero probability that node pi enters the relative
state Allocated from either Ready or Obtaining within one broadcasting round. Thus, by the analyzing the
expected time of the scheduler-luck games [16, 18], we have y has a finite value.
• Closure Suppose that ctimeslot

0 (x)∈R is a safe configuration and let pi ∈P be any node. By the assumption
that ctimeslot

0 (x), we have that pi is in the relative state Allocated, i.e., properties (1) to (5) hold for any node
pi. We need to show that properties (1) to (5) holds in configuration ctimeslot

0 (x+1).
Propositions 10.1, 10.2 and 10.3 imply that properties (1), (2), and respectively, (3) (within one com-

plete broadcasting round).
Properties (4) to (5) are implied by Proposition 11.3 and the fact that Properties (4) to (5) holds in

ctimeslot
0 (x), i.e., M(x) = /0.

10 Properties (1) to (3)

Propositions 10.1, 10.2 and 10.3 imply that properties (1), (2), and respectively, (3) hold within two broad-
casting rounds (or one complete broadcasting round). Let R be an execution of the MAC algorithm in Fig. 2,
x > 0 an integer, and ctimeslot

0 (x) the first configuration in a complete broadcasting round R(x) = (ctimeslot
0 (x), . . .

ccarrier sense/receive
T−1 (x)). We note that ctimeslot

0 (x) follows an arbitrary starting configuration.
Proposition 10.1 shows that, within a broadcasting round from ctimeslot

0 (x), Property (1) holds.

Proposition 10.1. In ctimeslot
0 (x+1), it holds that signali = false.

Proof. The value of signali is updated in line 18 (assigned to true) and in lines 12, 20, and 27 (assigned to
false). Let us look into these assignments.

In every timeslot, the value false is assigned to signali (cf. line 12). Suppose that the function send() is
called, and thus, true is assigned to signali (line 18). We proposition that before returning from the function
send() and after true is assigned to signali (line 18), node pi must assign false to signali either in line 20
or 27. To see that, let us look at lines 18 and 19. Eventually either signali = false (because of an assignment
in line 27) or ρ(k) = true (line 19) holds (note the condition when k = MaxRnd). The latter case implies the
execution of line 20.

Proposition 10.2 shows that, within a broadcasting round from ctimeslot
0 (x), Property (2) holds.

Proposition 10.2. (∃t ∈ unused seti \{si})↔ (�pk ∈ Ni : sk = t) in ctimeslot
0 (x+1).

19

Proof. Recall that unused seti = {k : unusedi[k] = true} (see line 6) and that the proposition statement does
not consider the cases in which: (1) si = sk (because t �= si) in ctimeslot

0 (x+1), or (2) There exists a configuration
c ∈ R(x), such that sk �= ⊥ in c and sk = ⊥ in ctimeslot

0 (x+ 1) (because by unused set’s definition, ⊥ is never
in unused seti).

We note that in every broadcasting round, node pk ∈ P at most once: (1) Allocates the broadcasting
timeslot sk (when tk = 0, see line 11), (2) Transmits a packet (when tk = sk, see line 13), and (3) Deallocates
the broadcasting timeslot sk (by assigning ⊥ to sk when tk = sk and the carrier sense(t) event is raised, see
line 26). Moreover, node pi updates unusedi[t] only in lines 12 (true) and 27 (false), when pi removes stale
information just before timeslot t, and respectively, when the event carrier sense(t) is raised.

Line 12 is executed at the start of every timeslot, whereas line 27 is executed after, and only when the
event carrier sense(t) is raised. The event carrier sense(t) is raised after, and only when the node pk ∈ Ni

transmits in timeslot t. In other words, none of pi’s neighbors, pk ∈ Ni, that transmits in timeslot sk = t, can
avoid causing the event carrier sense(t) to be raised, and timeslot t to be included in unused seti \{si}.

Proposition 10.3 shows that, within a broadcasting round from ctimeslot
0 (x), Property (3) holds.

Proposition 10.3. (si �=⊥)∨ (unused seti \{si} �= /0) holds in ctimeslot
0 (x+1).

Proof. If si �= ⊥ in ctimeslot
0 (x+ 1), we are done. Let us suppose that si = ⊥ in ctimeslot

0 (x+ 1) and show that
unused seti \{si} �= /0 in ctimeslot

0 (x+1).
Let us assume, in the way of proof by contradiction that, unused seti \{si}= /0 and show that di/T > 1,

i.e., a contradiction with the assumption that ∀pi ∈ P : di/T � 1.
Recall that unused seti = {k : unusedi[k] = true} ⊆ [1,T] (see line 6). Therefore, the assumption that

si =⊥ implies that unused seti = unused seti \{si} ⊆ [1,T], because by unused set’s definition, ⊥ is never
in unused seti.

By Proposition 10.2, we can say that ∀t ∈ [1,T] : (�t ∈ unused seti) ↔ (∃pk ∈ Ni : sk = t). Since
unused seti ⊆ [1,T], we can write [1,T]\unused seti ⊆{sk ∈ [1,T] : pk ∈Ni}. By the fact that unused seti =
/0, we have that T ≤| {sk ∈ [1,T] : pk ∈ Ni} |. Since di =| Ni | (by definition), we have that | {sk ∈ [1,T] :
pk ∈ Ni} |≤ di, which implies T ≤ di: a contradiction with the assumption that di/T � 1.

11 Properties (4) to (5)

Section 10 of this Appendix shows that, starting from an arbitrary configuration, node pi ∈ P enters the
relative state Ready within two broadcasting rounds. This section shows considers the probability for pi to
enter the relative states Obtaining and Allocated.

Let x> 0 and R be an execution of the MAC algorithm in Fig. 2. Suppose that ctimeslot
0 (x) is the first config-

uration in a complete broadcasting round R(x) for which properties (1) to (3) hold in configuration ctimeslot
0 (x)

with respect to node pi ∈ P, i.e., pi is in relative state Ready, Obtaining or Allocated. Propositions 11.1, 11.2
and 11.3 show that there is a nonzero probability that node pi enters the relative state Allocated from either
Ready or Obtaining in configuration ctimeslot

0 (x+1).
Proposition 11.1 shows that pi attempts to broadcast once in every round.

Proposition 11.1. During broadcasting round R(x), pi executes line 13 and calls the function send().

Proof. If si �=⊥ in ctimeslot
0 (x), we are done by lines 11 and 13. Let us consider the case of si =⊥ in ctimeslot

0 (x).
By Property (4), unused seti �= /0 and thus when line 11 is executed, the function select unused() returns a
non-⊥ element from unused seti and si �=⊥ when executing line 13.

20

Defining optimal transmission probabilities for any choices of T,n,di is not possible. We choose
to consider and look for optimal choices when di � T (the ’hard’ case) and make a case for a
uniform probability ρi =

1
n : i ∈ [1,n].

Let us consider node pi ∈ P that competes, together with k − 1 other neighbors, for the same
unique timeslot. The probability that node pi wins the (listening/signaling) competition is
ρ1(1− ρ1)

k−1, where ρ1 is the probability of choosing the first listening/signaling period. The
value ρ1 =

1
k maximizes this probability. In the more general case where there is more than one

timeslot, we consider a strategy that aims at guessing the number, k, of competing neighbors,
which the optimal probability of transmission depends on. During the first listening/signaling
period, the strategy considers the case in which there are n = MaxRnd singling nodes, and thus,
the transmission probability is 1/MaxRnd, where MaxRnd � T . During the second listening/sig-
naling period, the strategy considers the case in which there are MaxRnd−1 neighbors, and thus,
the transmission probability is 1/(MaxRnd − 1), and so on. This sequential selection of the lis-
tening/signaling period leads to a uniform choice of a listening/signaling neighbor. The above
strategy is driven by a heuristic in which nodes signal with probability that is optimal for the case
of n � T , and thus, it depends on the number of competing neighbors.

Figure 7: Transition probability, ρi, for listening/signaling periods (line 19 in Fig. 2)

Propositions 11.2 and 11.3 consider the set Mi(x+1) = {pk ∈ Ni : sk = t ′} and the number mi = |Mi(x+
1)| of pi’s neighbors that attempt to broadcast during pi’s timeslot, t ′, of broadcasting round R(x).

Let ρ j be the probability for pi to transmit in the j-th listening/signaling period of timeslot t ′ (cf. line 19).
This paper considers the concrete transmission probability ρi = 1/MaxRnd. We motivate our implementa-
tion choice of the transmission probability, ρi, in Fig. 7. Note that the sequential selection of the broadcasting
rounds with probability 1/(MaxRnd − k+1) leads to the uniform selection ρk = 1/MaxRnd.

Proposition 11.2 considers pi’s chances to be the only one to transmit in its neighborhood.

Proposition 11.2. There is a nonzero probability, OnlyOnei(x) (cf. equation (23)), that only node pi trans-
mits in its broadcasting timeslot, t ′, of broadcasting round R(x).

OnlyOnei(x) |mi>0= ρ1(1−ρ1)
mi +ρ2(1−ρ1 −ρ2)

mi

+ . . .+ρn−1(1−∑n−1
�=1 ρk)

mi (23)

Proof. We show that there is a nonzero probability that only node pi transmits in its broadcasting timeslot,
t ′, of broadcasting round R(x). Let us look at pi and the nodes in Mi(x) while they attempt to broadcast in the
steps atimeslot,t′

i (x) and atimeslot,t′
k (x)|k∈Mi(x). All of these steps include the execution of line 19, viz., each node

chooses to transmit in listening/signaling period � ∈ [0,MaxRnd] with probability ρ� = 1/(MaxRnd − �).
Therefore, for any MaxRnd > 0, there is a nonzero probability, OnlyOnei(x) that, during timeslot t ′, node pi

transmits in the listening/signaling period a ∈ MaxRnd and no node in Mi(x) transmits in round a (or in an
earlier one).

We note that the fact that pi transmits first during timeslot t ′ implies that it is the only to transmit during
t ′. This is because once pi transmits a BEACON in step atimeslot,t′

i (x) (which includes the execution of line 21)
node p j ∈ Ni ⊇ Mi(x) raises the event carrier sense(t ′) immediately after atimeslot,t′

i (x). Thus, ∀p j ∈ Mi(x) we
have that immediately after step atimeslot,t′

i (x), node p j takes step a
carrier sense,t′
j (x), which includes the execution

21

of lines 26 and 27 that assigns ⊥ to s j and f alse to signal j. Thus, p j leaves the (listening/signaling)
competition for timeslot t ′ (see line 18) and does not transmits its DATA packet (see line 23).

We now turn to calculate OnlyOnei(x). Let the variable mi =| Mi(x) | denote the number of nodes that
select the same timeslot as pi in configuration ctimeslot: s�=⊥

0 (x). The value of OnlyOnei(x) depends on the value
of mi and we denote this dependence with the notation q(i) |mi (conditional probability). It means the value
of OnlyOnei(x) depends on the value of mi. The value of OnlyOnei(x) for mi = 0 is OnlyOnei(x) |mi=0= 1.
For the case of mi > 0, OnlyOnei(x)’s value is given by equation (23)) (that appears again below), where ρ j

is the probability for transmitting in the j-th listening/signaling period.

OnlyOnei(x) |mi>0= ρ1(1−ρ1)
mi +ρ2(1−ρ1 −ρ2)

mi

+ . . .+ρn−1(1−∑n−1
�=1 ρk)

mi [clone of equation (23)]

We note that the j-th term in equation (23), is the probability that node pi selects the j-th listening/sig-
naling period and all its neighbors select a later listening/signaling period.

Proposition 11.3 shows that once a node is the only one in its neighborhood to transmit during its
broadcasting timeslot, it enters the relative state Allocated.

Proposition 11.3. Mi(x) = /0 (or having none of the nodes in Mi(x) transmitting during timeslot t ′) implies
that node pi is in the relative state Allocated in ctimeslot

0 (x+1).

Proof. We need to show that, in ctimeslot
0 (x+1), we have that si = t ′ �=⊥ and ∀p j ∈ Ni : si �= s j.

Showing that si = t ′ �=⊥ in ctimeslot
0 (x+1) The proposition assumes that t ′ �=⊥ in ctimeslot

0 (x). We wish to
show that si = t ′ in ctimeslot

0 (x+1), which implies that si �=⊥ holds in ctimeslot
0 (x+1) and throughout R(x+1).

Since the variable si is assigned only in lines 11 (when ti = 0) and 26 (when ti = t ′), it is sufficient to show
that line 26 is not executed by any step during timeslot t ′ of broadcasting round R(x), i.e., a

carrier sense,t′
i (x) �∈

R(x).
Node pi raises the event carrier sense only during timeslots in which pi’s neighbor, p j, transmits. By

the proposition assumptions that, during timeslot t ′ of broadcasting round R(x), none of pi’s neighbors
transmits, we have a

carrier sense,t′
i (x) �∈ R(x). Moreover, atimeslot,t′

i (x+1) does not includes an execution of line 11
that changes the value of si, because si = t ′ �=⊥ in ctimeslot

0 (x+1).
Showing that ∀p j ∈ Ni : si �= s j in ctimeslot

0 (x + 1) The proposition assumes that ∀p j ∈ Ni : si �= s j

in ctimeslot
0 (x). We wish to show that the same holds in ctimeslot

0 (x+ 1). Since the variable s j is assigned to
a non-⊥ value only in line 11 when ti = 0, it is sufficient to show that when line 11 is executed in step
atimeslot,0

j (x+ 1) the function select unused() considers a set that does not includes pi’s timeslot, si. This is
implied by the facts that ∀p j ∈ Ni : unused j[t ′] = false (Claim 11.1) and si = t ′ (first item of (II) of this
proof) in ctimeslot

0 (x+1).

12 Bounding OnlyOnei(x)

Propositions 5.3 and 12.2 bound OnlyOnei(x)’s value, where R(x) is the x-th broadcasting round in execution
R of the MAC algorithm in Fig. 2. We assume that properties (1) to (5) holds in the first configuration,
ctimeslot

0 (x), of R(x). These bounds are obtained by computing the expectation of qi |mi with respect to mi,
where Mi(x) = {pk ∈ Ni : sk = t ′} in ctimeslot

0 (x) and mi = |Mi(x)|. The reason is that mi is a random variable,
i.e., qi = E (OnlyOnei(x) |mi), where the expectation is computed with respect to the random variable mi.

22

We note that all the terms in equation (23) are convex functions of mi. This means that by Jensen’s
inequality, we obtain a lower bound of qi in equation (24) by evaluating the expression qi |mi at mi’s expec-
tation, E(mi) [26].

qi = E (qi |mi)≥ qi |E(mi) (24)

The expression on the right side of the inequality can be again lower bounded if we estimate an upper
bound for E(mi). We proceed to the computations in the proof of the Proposition 12.2 after demonstrating
Proposition 12.1 which shows that E(mi) is bounded by the ratio di/T , which is rather intuitive but, needs
to be proved.

Proposition 12.1. In configuration ctimeslot
0 (x) in holds that E(mi)≤ di/T , where mi = |Mi(x)|.

Proof. We show that E(mi) = di/T by considering configuration ctimeslot
0 (x). The maximal number of pi’s

neighbors that might choose the same timeslot as pi in configuration ctimeslot
0 (x) is ∑p j∈Ni

1{s j=⊥}, because
any node, p j ∈ Ni, that chooses a new broadcasting timeslot immediately before ctimeslot

0 (x) must have s j =⊥
in configuration ctimeslot

0 (x). We compute the expected value of mi in equation (25) as a function of the
number of empty timeslots, ei, that pi selects from when choosing a new broadcasting timeslot, where ei =
| unused seti | in configuration ctimeslot

0 (x).

E (mi) = (25)

∑
t∈Ei

E (mi | si = t)Pr(si = t) =

∑
t∈Ei

1
ei

E (mi | si = t) =

∑
t∈Ei

1
ei

E

⎛
⎝ ∑

p j∈Ni

1{p j chooses timeslot t} | si = t

⎞
⎠=

∑
t∈Ei

1
ei

∑
p j∈Ni

1
| E j |1{t∈E j}1{s j=⊥}

Our assumption that di ≤ T − 1 implies that ei > 0. Using that di = ∑p j∈Ni

(
1{s j �=⊥}+1{s j=⊥}

)
and,

ei ≥ T −∑p j∈Ni
1{s j �=⊥}, we obtain equation (26).

E(mi)≤ ∑
t∈Ei

1
T −di +∑p j∈Ni

1{s j=⊥}
∑

p j∈Ni

1{t∈E j}1{s j=⊥}
| E j |

=
1

T −di +∑p j∈Ni
1{s j=⊥}

∑
p j∈Ni

1{s j=⊥}
| E j | ∑

t∈Ei

1{t∈E j}︸ ︷︷ ︸
|Ei

⋂
E j |

≤ ∑p j∈Ni
1{s j=⊥}

T −di +∑p j∈Ni
1{s j=⊥}

≤ di

T
(26)

23

Proposition 12.2.

qi ≥
n

∑
k=1

ρk

(
1−

k

∑
�=1

ρk

) di
T

[clone of equation (6)]

Proof. Proposition 12.1 shows that E(mi)≤ di/T . The proposition is demonstrated by evaluating expression
(23) at E(mi) = di/T , see equation (24).

Proposition 5.3 considers the concrete transmission probability ρi = 1/MaxRnd.
Proposition 5.3 Let ρi = 1/MaxRnd. Equation (16) bounds from below the probability qi.

Proof. In this proof, we use the letter n instead of MaxRnd for reason of space. We replace ρi with 1/n in
equation (6) to obtain equation (27).

qi ≥
n

∑
k=1

1
n

(
1− k

n

) di
T

(27)

Equation (28) is more compact than equation (27) and it is obtained by the fact that the function (1−x)s

is convex.

qi ≥ (28)
n

∑
k=1

1
n

(
1− k

n

) di
T

=

1
2n

n

∑
k=1

⎡
⎣(1− k

n

) di
T

+

(
1− n− k+1

n

) di
T

⎤
⎦≥

(convexity)
1
n

n

∑
k=1

(
1− n+1

2n

) di
T

=

(
1− n+1

2n

) di
T

Another way to bound equation (27) is by considering the decreasing function y → (1 − y)x, as in
equation (29).

qi ≥
n

∑
k=1

1
n

(
1− j

n

) di
T

≥
∫ 1

1
n

(1− y)
di
T dy (29)

=
1

di
T +1

(
1− 1

n

) di
T +1

24

13 Theorem 6.2

Theorem 6.2 bounds the system convergence time.
Theorem 6.2 (Global Convergence) The expected number of retransmissions, is smaller than

(2n
n−1

)d/T −1,
where d = maxi{di : di ∈ P}. Hence, we have that the expected number of broadcasting rounds, S , that
guarantee that all nodes to reach the relative state Allocated satisfies equation (21).

S ≤
(

2n
n−1

)d/T

[clone of equation (21)]

Moreover, given that there are N nodes in the network and α ∈ (0,1), the network convergence time is
bounded by equation (22) with probability 1−α.

k = 1+
log
(
1− N

√
1−α

)
log
(

1− (n−1
2n

) d
T

) [clone of equation (22)]

This means that with probability α all nodes are allocated with timeslots in maximum k broadcasting rounds,
see Fig. (6).

Proof. Theorem 5.1 bounds the convergence time of a particular processor, see equation (7). Lemma 6.1,
see equation (20) E(W) ≥ N(n−1

2n)x/T , proves that this bound is still valid if we replace the term di/T
with x/T , i.e., we consider the average degree instead of the particular degree of a node. If we replace
x/T by max{di}/T in expression (20) we obtain a larger bound because x/T ≤ max{di}/T , i.e. E(W) ≥
N(n−1

2n)x/T ≥ N(n−1
2n)max{di}/T .

The bound E(W)≥ N(n−1
2n)max{di}/T and the discussion in the 1st paragraph of section 6, show that the

number of processors that are allocated during a broadcasting round is bounded by the random variable
∑N

i=1 zi, where zi are identically and independently distributed random variables that are 1 with probability
(n−1

2n)max{di}/T and 0 with probability 1− (n−1
2n)max{di}/T (the second random variable dominate the first one,

see [37]). This means that we lower bound the number of processors that are allocated if we consider that
they are allocated independently with probability (n−1

2n)max{di}/T .
While the processors get allocated to a timeslot, the parameters di and T change because some timeslots

are no longer available (T decreases and some nodes are allocated di decreases). Actually the ratio becomes
max{di}−hi

T− fi
, where hi ≥ fi because if a timeslot is allocated or sensed used by processor pi then T , the number

of available timeslots decreases by 1 and di, the number of competing nodes, must decrease at least by
one since there must be at least one processor that uses the busy timeslot (there may be multiple that are
in state Obtaining). Under these circumstances we always have max{di}

T ≥ max{di}−hi
T− fi

. Thus, we can obtain
a lower bound for the expected time to reach the relative state Allocated by assuming that all nodes are
allocated independently with probability x = (n−1

2n)max{di}/T . We simplify the following arguments by using
this define of x.

To bound the number of broadcasting rounds we consider the following game. The bank pays 1 unit
to the nodes that get in state Allocated (get allocated to a timeslot), and receives x/(1− x) units per nodes
that fails to get in state Allocated. The game is fair because in each round the expected gain is 1× x−
x/(1− x)× (1− x) = 0. If we denote by Wi the number of processors that get in state Allocated during
the i-th broadcasting round and by Li the number of processors that fail we have that the gain is given by

25

equation 30, where t denotes the total number of rounds.

gain =
t

∑
i=1

(x
1− x

Li −Wi
)

(30)

The expected gain is 0 because the game is fair (E(gain) = 0) and ∑t
i=1Wi = N because eventually all the

nodes get in state Allocated and the bank pays 1 unit for each such processors. If we compute the expectation
on both sides of equation (30), we then obtain equation 31.

N =
x

1− x
E
(t

∑
i=1

Li
)

(31)

We observe that E(∑t
i=1 Li) is the expected total number of retransmissions and E(∑t

i=1 Li)/N is the average
expected number of retransmissions whose value is (1−x)/x. replacing x with its expression, we obtain that
the average number of retransmission is bounded by (2n/(n−1))max{di}/T −1 and, this leads to the bound
equation (21).

To prove the second assertion, let t1, . . . , tN be the convergence time of nodes 1, . . .N, respectively. The
random variables, ti, are bound by random variables with geometric random distribution with expectation of
(2n/(n− 1))d/T , with d = max{di : di ∈ P}. We require that tmax = max{t1, . . . , tN} in order to ensure that
all nodes are allocated with timeslots. The fact that the random variables, ti, are independent and identically
distributed, implies equation (32), where t is a random geometrical random variable, i.e., Pr(t = k′) =
(1−q)k′−1q and Pr(t ≥ k′) = (1−q)k′−1.

Pr
(
tmax ≤ k′

)
= P

(
t1 ≤ k′, . . . , tN ≤ k′

)
= (32)

Pr
(
t1 ≤ k′

) · . . . ·P(tN ≤ k′
)
= P

(
t ≤ k′

)N

Which tmax ≤ k′ satisfies equation (33) with probability α?

Pr(tmax < k′) = Pr
(
t < k′

)N
= (33)(

1− (1−q)k′−1
)N ≥ 1−α

By solving equation (33), we observe that equation (33) is satisfied for any k′ ≥ k, where k satisfies equa-
tion (22). This proves that, with probability 1−α, the network convergence time is bounded by equa-
tion (22).

26

KARYON ‐ FP7‐288195
D3.1 – First Report on Supporting Technologies (Annex)

© 2012 KARYON Project 67/188

KARY N

KARYON ‐ FP7‐288195
D3.1 – First Report on Supporting Technologies (Annex)

© 2012 KARYON Project 95/188

KARY N

A.1.6 Autonomous	TDMA	alignment	for	VANETs	

“Autonomous TDMA alignment for VANETs”. Mohamed Hassan Mustafa, Marina
Papatriantafilou, Elad M. Schiller, Amir Tohidi, and Philippas Tsigas, In IEEE 76th Vehicular
Technology Conference (VTC’12-Fall), 2012.

KARYON ‐ FP7‐288195
D3.1 – First Report on Supporting Technologies (Annex)

© 2012 KARYON Project 96/188

KARY N

This page is intentionally left blank.

Autonomous TDMA Alignment for VANETs ∗

Mohamed Mustafa Marina Papatriantafilou Elad M. Schiller Amir Tohidi Philippas Tsigas
Chalmers University of Technology, Sweden {mohmus, ptrianta, elad, tohidi, tsigas}@chalmers.se

Abstract—The problem of local clock synchronization is stud-
ied in the context of media access control (MAC) protocols,
such as time division multiple access (TDMA), for dynamic
and wireless ad hoc networks. In the context of TDMA, local
pulse synchronization mechanisms let neighboring nodes align
the timing of their packet transmissions, and by that avoid
transmission interferences between consecutive timeslots. Exist-
ing implementations for Vehicular Ad-Hoc Networks (VANETs)
assume the availability of common (external) sources of time, such
as base-stations or geographical positioning systems (GPS). This
work is the first to consider autonomic design criteria, which
are imperative when no common time sources are available,
or preferred not to be used, due to their cost and signal
loss. We present self-⋆ pulse synchronization strategies. Their
implementing algorithms consider the effects of communication
delays and transmission interferences. We demonstrate the al-
gorithms via extensive simulations in different settings including
node mobility. We also validate these simulations in the MicaZ
platform, whose native clocks are driven by inexpensive crystal
oscillators. The results imply that the studied algorithms can
facilitate autonomous TDMA protocols for VANETs.

I. INTRODUCTION

Recent work on vehicular systems explores a promising
future for vehicular communications. They consider innova-
tive applications that reduce road fatalities, lead to greener
transportation, and improve the driving experience, to name a
few. The prospects of these applications depend on the exis-
tence of predictable communication infrastructure for dynamic
networks. We consider time division multiple access (TDMA)
protocols that can divide the radio time regularly and fairly in
the presence of node mobility, such as Chameleon-MAC [8].
The studied problem appears when neighboring nodes start
their broadcasting timeslots at different times. It is imperative
to employ autonomous solutions for timeslot alignment when
no common (external) time sources are available, or preferred
not to be used, due to their cost and signal loss. We address the
timeslot alignment problem by considering the more general
problem of (decentralized) local pulse synchronization. Since
TDMA alignment is required during the period in which
communication links are being established, we consider non-
deterministic communication delays, the effect of transmission
interferences and local clocks with arbitrary initial offsets, see
Section II. We propose autonomous and self-⋆ algorithmic
solutions that guarantee robustness and provide an important
level of abstraction as they liberate the system designer from
dealing with low-level problems, such as availability and cost
of common time sources, see Section III. Our contribution also

∗ This work was partially supported by the EC, through project FP7-
STREP-288195, KARYON (Kernel-based ARchitecture for safetY-critical
cONtrol).

facilitates autonomous TDMA protocols for Vehicular Ad-Hoc
Networks (VANETs), see Section IV.

Let us illustrate the problem and the challenges of possible
strategies using an example. Consider three neighboring sta-
tions that have unique timeslot assignment, but their timeslots
are not well-aligned, see Fig. 1. Packet transmissions collide
in the presence of such concurrent transmissions. Suppose
that the stations act upon the intuition that gradual pairwise
adjustments are most preferable. Station pk is the first to align
itself with its closest neighbor, pj , see Fig. 2. Next, pj aligns
itself with pi and by that it opens a gap between itself and
pk. Then, pk aligns itself with pi and pj . The end result is
an all aligned sequence of timeslots. We call this algorithmic
approach the cricket strategy.

Observe that the convergence process includes chain reac-
tions, i.e., node pk aligns itself before and after pj’s alignment.
One can foresee the outcome of such chain reactions and let
pj and pk to concurrently adjust their clock according to pi.
This algorithmic approach, named the grasshopper, is faster
than the cricket, see Section IV. This improvement comes at
the cost of additional memory and processing requirements.
We integrate the proposed algorithms with the Chameleon-
MAC [8], which is a self-⋆, mobility resilient, TDMA proto-
col. After extensive simulations with and without mobility, we
observe tight alignment among the timeslots, and high MAC
throughput. Additional testbed experiments appear in [12].

ip

jp

kp

Fig. 1. Unaligned TDMA times-
lots. Solid and dashed lines stand
for transmission, and respectively,
idle radio times.

Biologically-inspired
synchronization mechanisms
are proposed in [3, 10, 11].
They, and others such as [14],
do not consider wireless
communication environments
with communication delays or
disruptions. More practical communication environments are
considered in [5, 15, 16], but they do not have TDMA MAC
in mind. In [5], Byzantine-tolerance and self-stabilization
properties are considered after communication establishment.
We are the first to consider TDMA timeslot alignment
during the period in which communication links are being
established.

II. PRELIMINARIES

The system consists of a set, N = {pi}, of n anonymous
communicating entities, which we call nodes. The radio time
is divided into fixed size TDMA frames and then into fixed
size timeslots [as in 8]. The nodes’ task is to adjust their local
clocks so that the starting time of frames and timeslots is
aligned. They are to achieve this task in the presence of: (1)

978-1-4673-1881-5/12/$31.00 ©2012 IEEE

a MAC layer that is in the process of assigning timeslots, (2)
network topology changes, and (3) message omission, say, due
to topological changes, transmission interferences, unexpected
change of the ambient noise level, etc.

ip

jp

kp

ip
jp
kp

jp
kp

ip jp,
kp

ip
jp

kp ip
jp kp,

ip
jp kp kp

ip jp,

ip

Fig. 2. The cricket strategy. Solid
and dashed lines stand for trans-
mission, and respectively, idle ra-
dio times. The circles above the
solid boxes represents the node’s
view on its neighbors’ TDMA
alignment at the start of its broad-
casting timeslot. Gaps between
two solid boxes represent align-
ment events.

Time, clocks, and synchrony
bounds We consider three no-
tations of time: real time is the
usual physical notion of contin-
uous time, used for definition
and analysis only; native time
is obtained from a native clock,
implemented by the operating
system from hardware counters;
local time builds on native time
with an additive adjustment fac-
tor in an effort to facilitate a
neighborhood-wise clock. Ap-
plications require the clock interface to include the READ op-
eration, which returns a timestamp value of the local clock. Let
Ci

k and ci
k denote the value pi ∈ N gets from the kth READ of

the native or local clock, respectively. Moreover, let ri
k denote

the real-time instance associated with that kth READ operation.
Pulse synchronization algorithms adjust their local clocks in
order to achieve synchronization, but never adjust their native
clocks. Namely, the operation ADJUST(add) adds a positive
integer value to the local clock. This work considers solutions
that adjust clocks forward, because such solutions simplify the
reasoning about time at the higher layers. We define the native
clocks offset δi,j(k, q) = Ci

k −Cj
q , and the local clocks offset

Λi,j(k, q) = ci
k − cj

q; where Δi,j(k, q) = ri
k − rj

q = 0. Given
a real-time instance t, we define the (local clock) synchrony
bound ψ(t) = max({Λi,j(k, q) ∶ pi, pj ∈ N ∧Δi,j(k, q) = 0})
as the maximal clock offset among the system nodes.

One may consider pi’s (clock) skew, ρi =
limΔi,i(k,q)→0 δi,i(k, q)/Δi,i(k, q) ∈ [ρmin, ρmax], where
ρmin and ρmax are known constants [4, 6]. The clock
skew of MicaZ nodes is bounded by a constant that
is significantly smaller than the communication delays.
Therefore, our simulations assume a zero skew. We validate
these simulations in the MicaZ platform.
Pulses Each node has hardware supported timer for gener-
ating (periodic) pulses every P (phase) time units. Denote
by ci

qk
the k − th time in which node pi’s timer triggers

a pulse, immediately after performing the READ operation
for the qk − th time. The term timeslot refers to the period
between two consecutive pulses at times ci

qk
and ci

qk+1
. We

say that ti = ci
qk

mod P is pi’s (pulse) phase value. Namely,
whenever ti = 0, node pi raises the event timeslot(si), where
si = k mod T is pi’s (broadcasting) timeslot number and T > 1
is the TDMA frame size.
The MAC layer The studied algorithms use packet
transmission schemes that employ communication operations
for receiving, transmitting and carrier sensing. Our imple-
mentation considers merely the latter two operations, as in
the Beeps model [2], which also considers the period prior
to communication establishment. We denote the operations’

time notation (timestamp) in the format ⟨timeslot, phase⟩,
where timeslot ∈ [0, T − 1] and phase ∈ [0, P − 1]. We
assume the existence of efficient mechanisms for timestamping
packets at the MAC layer that are executed by the transmission
operations, as in [4]. We assume the existence of an efficient
upper-bound, α ≪ P , on the communication delay between
two neighbors, that, in this work, has no characterized and
known distribution.
Task definition The problem of (decentralized) local
pulse synchronization considers the rapid reduction of all local
synchrony bounds ψ ≥ max({Λi,j(k, q) ∶ pi, pj ∈ N ∧ pj ∈
N T

i ∧ Δi,j(k, q) = 0}), where N T
i refers to pi’s recent

neighbors, see Fig. 3 for definition. Given the synchrony bound
ψ ≥ 0, we look at the convergence (rate bound), �ψ , which is
the number of TDMA frames it takes to reach ψ. Recall that
we consider only forward clock adjustments. We also study
local pulse synchronization’s relation to MAC-layer, network
scalability and topological changes.

III. PULSE SYNCHRONIZATION STRATEGIES

Pulse synchronization solutions require many considera-
tions, e.g., non-deterministic delays and transmission inter-
ferences. Before addressing the implementation details, we
simplify the presentation by first presenting (algorithmic)
strategies in which the nodes learn about their neighbors’ clock
values without delays and interferences.

We present two strategies that align the TDMA timeslots by
calling the function ADJUST(aim) immediately before their
broadcasting timeslot, see Fig. 2. The first strategy, named
Cricket, sets aim’s value according to neighbors that have
the most similar phase values. The second strategy, named
Grasshopper, looks into a greater set of neighbors before
deciding on aim’s value. Both strategies are based on the
relations among nodes’ phase values, see Fig. 3 for definitions.
Cricket strategy This strategy acts upon the intuition that
gradual pairwise adjustments are most preferable. Node pi

raises the event timeslot(si), when ti = 0, and adjusts its local
clock according to Eq. (1). At this time, PhaseOrderγi

’s first
item has zero value, because it refers to pi’s own pulse, the
second item refers to pi’s successor and the last item refers to
pi’s predecessor.

aimγi =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

headγi ∶ headγi < tailγi JUMP
0 ∶ headγi > tailγi WAIT
headγior 0; ∶ headγi = tailγi MIX

each with probability 1
2

(1)
The cricket strategy considers both pure deterministic ac-

tions (JUMP and WAIT) and a non-deterministic one (MIX).
○ JUMP: Whenever node pi is closer to its predecessor

than to its successor (headγi
< tailγi

), it catches up with its
predecessor by adding headγi

to its clock value, which is the
phase difference between itself and its predecessor.
○ WAIT: Whenever pi is closer to its successor than to

its predecessor (headγi
> tailγi

), pi simply waits for its
successor.
○ MIX: Node pi breaks symmetry whenever it is as close

to its predecessor as it is to its successor (headγi
= tailγi

). In

Learning about neighbors’ clock values At any real-time
instance t, pi’s reach set, Ri(t) = {pj} ⊆ N , represents the
set of nodes, pj , that receive pi’s transmissions. At the MAC
layer, the real-time instance t refers to the time in which
pj raises the carrier sense event. The set recent neighbors,
N T

i = {pj ∈ N ∶ starting-time(sj) ∈ [t, t
′] ∧ pi ∈ Rj(t(sj))},

refers to nodes whose broadcast in timeslot sj , arrive to node
pi, where t is a real-time instance that happens T timeslots
before the real-time instance t′ and starting-time(sj) ∈ [t, t

′]
refers to the starting time of pj’s timeslot.
Locally observed pulse profiles Given a real-time instance
t and node pi ∈ N , we denote the locally observed pulse
profile by γi(t) = (⟨sj , tj⟩)pj∈NT

i
, as a list of pi’s recently

observed timestamps during the passed T timeslots before t.
We sometimes write γi, rather than γi(t), when t refers to
the starting time of pi’s timeslot.
Phase orders Let Order = (pik

)n−1k=0 be an ordered list
of nodes in N , where pi’s predecessor and successor in N
are pik−1 mod n

, and respectively, pik+1 mod n
. The ordered list,

PhaseOrderγi
, of the pulse profile, γi, is sorted by the phase

field of γi’s timestamp ⟨timeslotj , phasej⟩ ∈ γi.
Predecessors, successors, heads, and tails Given a node,
pi, and its view on the pulse profile, γi, define the
predecessori and the successori as pi’s predecessor, and re-
spectively, successor in PhaseOrderγi

. Moreover, headγi
=

(ti − tpr)mod P and tailγi
= (tsu − ti)mod P is the phase

difference between pi’s phase value, ti and predecessori =
ppr, and respectively, successori = psu. These imply that
predecessori is pulsed headγi

time units before node pi

and successori is pulsed tailγi
time units after pi.

Fig. 3. Pulse profiles and the relations among nodes’ phase values

Set up: Given that the broadcasting schedule of nodes
N = {p1, . . . , p4} is by their index value, the pulse
profiles, {γi}pi∈N , encode pulses such that initially p1

and p3 have local dominant pulses.
Convergence: In the first TDMA frame, nodes N(1) =
{p2, p4} converge towards their respective local dom-
inant pulses in py ∈ {p1, p3}. In the second TDMA
frame, the local dominant pulses are nodes py ∈
{p1, p2}. Note that node p3’s pulse is no longer a local
dominant and it adjusts its phase according to Eq. (1),
i.e., N(2) = {p3, p4}

2p

1p

3p

4p

21, pp

43, pp

Second TDMA frame

First TDMA frame

Fig. 4. Cricket strategy convergence during the first two TDMA frames.

this case, pi randomly chooses between JUMP and WAIT.
Local dominant pulses Let us look into a typical con-
vergence of the cricket strategy, see Fig. 4. Given two nodes,
pi, pj ∈ N , and pi’s locally observed pulse profile, γi(t), we
say that pj’s pulse (phase value) locally dominates the one of
pi, if headγi

< tailγi
and pj is pi’s predecessor in γi. Observe

that clock updates can result in a chain reaction, see Fig. 4.
Lengthy chain reactions can prolong the convergence up to
O(n) TDMA frames, see Fig. 5.
Global dominant pulses In Fig. 5, all nodes eventually
align their timeslots with the one of p1, because p1’s pulse
immediately follows the maximal gap in γi. Pulse gaps provide

Set up: For ξ > 0 and pi ∈ N , the pulse pro-
files {γi}pi∈N encode pulses in which node
pi+1’s pulse occurs (n−i)ξ clock units after
pi’s pulse. Convergence: In the first TDMA
frame, only node pn can take JUMP action
to align with its neighbor local clock, pn−1,
because its headγn < tailγn . In the second
TDMA frame, nodes N(2) = {pn, pn−1}
adjust their clocks to be aligned with pn−2.
Thus, in the (n−1)-th TDMA frame, nodes
N(n − 1) = {pn, pn−1, . . . , p2} align with
node p1. Therefore, n−1 TDMA frames are
needed before convergence.

�

�

�

�

�

2

3

(n-1)

n
np

1�np

2�np

3�np

2p

1p

Fig. 5. Chain reactions of pulse updates: An example with O(n) TDMA
frames before convergence.

useful insights into the cricket strategy convergence. Given
node pi ∈ N , its pulse profile γi and k ∈ [1, ∣ N T

i ∣], we obtain
the (pulse) gaps between γi’s consecutive pulses, Gapγi

(k) =
(PhaseOrderγi

[k].phase − PhaseOrderγi
[k − 1].phase),

see Fig. 3 for definitions. For the case of k = 0, we define
Gapγi

(0) = (P − PhaseOrderγi
[∣ N T

i ∣].phase). The set,
MaxGapγi

, of pulses that immediately follow the maximal
gap in γi are named global dominates.

MaxGapγi
= argmax

k∈[0,∣NT
i ∣]

(Gapγi
(k)) (2)

Given three nodes, pi, pj , p� ∈ N , pi’s locally observed pulse
profile, γi(t), j ∈ MaxGapγi

and i, � /∈ MaxGapγi
, we say

that pj’s pulse globally dominates the one of pi, if at least one
of the following holds: (1) i = j (2) pj’s pulse locally domi-
nates the one of pi, or (3) pj’s pulse globally dominates the
one of p� and p�’s pulse locally dominates the one of pi. We
define pi’s clock offset towards its preceding global dominant
pulse as DomPulsei = P − PhaseOrderγi

[k].phase, where
k ∈MaxGapγi

is pi’s global dominant pulse, see Eq. (2).
We define OneGlobal(γi) = (∣ MaxGapγi

∣= 1) to be
true whenever γi encodes a single global dominant pulse.
For the cases in which there is more than one, we define
the term next (global) dominant pulse for node pi, where
i ∈ MaxGapγi

refer to pi’s global dominant pulse. In this
case, pi’s next (global) dominant pulse, NextDomPulsei =
DomPulsepr, is pi’s predecessor’s global dominant pulse,
where predecessori = ppr.

Next we present the grasshopper strategy, which uses the
notion of global dominant pulses to avoid lengthy chain
reactions in order to achieve a faster convergence.
Grasshopper strategy This strategy is based on the ability
to see beyond the immediate predecessor and local dominant
pulses. The nodes converge by adjusting their local clocks
according to the phase value of their global dominant pulses,
and by that avoid lengthy chain reactions of clock updates.

Eq. (3) defines the adjustment value, aim(γi), for the
grasshopper strategy. Whenever node pi ∈ N notices that its
clock phase value is dominated by the one of node pj ∈ N ,
node pi aligns its clock phase value with the one of pj , see
the JUMP step. Thus, whenever a single global dominant pulse
exists, the convergence speed-up is made simple, because all
nodes adjust their clock values according to the dominant pulse
of pj . Thus, there are no chain reactions of clock updates.
Note that node pj does not adjust its clock, see the WAIT

Set up: Given nodes N = {p1, . . . , p9}, the
pulse profiles, {γi}pi∈N , encode pulses, such
that initially p1 and p6 are global dominants.
Convergence: During the first TDMA frame,
nodes px ∈ {p2, . . . , p5} and py ∈ {p7, p8, p9}
take the JUMP action to align their local clocks
with their respective preceding global dominant
pulse, p1 and p6 (solid lines). Whereas, node p1

and p6 take the MIX action to either stay or align
to next dominant pulse (dotted lines).

1p
2p

3p
4p

5p6p
7p

8p
9p

Fig. 6. Typical convergence process of the grasshopper strategy.

step. For the possible case of many global dominant pulses,
we take the mixed strategy approach, see the MIX step. Here,
chain reactions of clock updates can occur (Fig. 6). They occur
only among the nodes whose clock phase values are global
dominants.

aimγi =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

DomPulsei ∶DomPulsei < P JUMP

0 ∶Domi = P
∧ OneGlobal(γi) WAIT

NextDomPulsei or 0; ∶ else MIX

each with probability 1
2

(3)

IV. EXPERIMENTAL EVALUATION

Computer simulations and the MicaZ platform are used for
showing that: (1) both proposed algorithms achieve a small
synchrony bound, and (2) the grasshopper, which has a higher
resource consumption cost, converges faster than the cricket.
Experiments design The proposed algorithms aim at
aligning the TDMA timeslots during the MAC’s timeslot
assignment period. Since communication interruptions can
occur, the nodes might not correctly observe their local
pulse profiles. Therefore, we compare the result parameters,
synchrony bound, ψ, and convergence time, �ψ , using both:
(1) a MAC protocol that uses preassigned timeslots, and (2)
Chameleon-MAC, a self-⋆ TDMA protocol [8]. Moreover, the
platform validation considers a control experiment using a
centralized pulse synchronizer. This external time source is
provided by a (base-station) node that periodically broadcasts.
The centralized pulse synchronizer serves as a baseline for
estimating the overheads imposed by the autonomous design.

The analysis considers the average over 8 experiments in
which the simulations consider a timeslot size of, P = 5 msec,
and a communication delay bound of, α = 5% of P .
Simulation experiments The proposed pulse synchroniza-
tion algorithms are simulated using TOSSIM [9] on single-
hop, multi-hop and mobile ad hoc networks. We observe the
synchrony bound and convergence time, and study the pro-
posed algorithms’ relation to MAC-layer, network scalability
and topological changes.
Single-hop Ad Hoc Network Both algorithms reduce the
synchrony bound down to 1% of the timeslot size, see
Fig. 7. Moreover, the synchrony bounds of the cricket and
grasshopper are 24%, and respectively, 62% lower when
using preassigned TDMA rather than Chameleon-MAC [8].
However, these values drop to 0.04%, and respectively, 0.4%
after convergence. Furthermore, the grasshopper convergence
is 5.4 times faster than of the cricket. In addition, the cricket

0

0

0

0

0

0

20

20

20

20

40

40

40

60

60

60

80

80

80

100

N
od

es
 n

um
be

r
(n

)

10 20 30 40 50 60

20

40

60

80

100

(a)

0

0

0

0

0

0

20
20

20

40

40

40

60
60

6080
80

80

10 20 30 40 50 60

20

40

60

80

100

(b)

0

0
20

20

20

20

40

40

40

60

60

60

Broadcasting frame number

N
od

es
 n

um
be

r
(n

)

10 20 30 40 50 60

20

40

60

80

100

(c)

0

0

0

20

20

20

40

40

40

60

60

60

Broadcasting frame number
10 20 30 40 50 60

20

40

60

80

100

(d)

Fig. 8. Synchrony bounds (as timeslot percentage) and throughput lev-
els (as radio time utilized percentage) for single-hop networks of n ∈
{10,20,30,⋯,100} nodes. Top and bottom contour plots show the synchrony
bounds, and respectively, throughput levels for cricket (a) and (c), and
grasshopper (b) and (d). Given these plots, the number of TDMA frames
needed to reach to a particular synchrony bound (or throughput) by a given
number of nodes can be estimated. E.g., 60 nodes reach 20% synchrony
within 25 frames using the cricket strategy.

and grasshopper converge 6.8%, and respectively, 40% times
faster when using preassigned TDMA rather than Chameleon-
MAC, see the cricket’s lengthy chain reactions explained in
Section III.

� �� �� �� �� �� ��

��

��

��

��

���

	
��������� �
��� �����

�
�
�
�
�
��
�
�

�
!
�
"
#$
%
&'
(
)
%
*�
&
+
)
��
)
�
&$
,
)
-

./���0��� 1
���/�22�

3
�������� 1
���/�22�

./���0��� .
��4��

3
�������� .
��4��

Fig. 7. 20 node single-hop network
with two kind of MACs.

We also study the
algorithms’ scalability by
considering a variable
number of nodes,
n ∈ {10,20,30, . . . ,100}.
The grasshopper converges
faster than the cricket
as the number of nodes
increases, cf. Fig. 8 (a)
and (b). The convergence
depends on the number
of nodes. E.g., for 10% synchrony bound, 0.3n + 6.4 and
0.0062n + 10.86 are linear interpolations of the convergence
time for the cricket, and respectively, grasshopper strategies.
Moreover, 2(log2(n) + 0.1) is a logarithmic interpolation
of the grasshopper convergence time. This suggests that the
grasshopper has lower dependency on the network size than
the cricket. During the grasshopper executions, we often
observed a single global dominant pulse that facilitates rapid
TDMA alignment, rather than a lengthy chain reactions,
see Section III. The proposed algorithms affect the MAC
throughput, which is the radio time utilization percentage,
cf. Fig. 8 (c) and (d). Both algorithms eventually reach a
throughput of 70%.
Multi-hop Ad Hoc Network Fig. 9-(left) considers net-
works with 45 nodes, and diameters of 6 hops. Often, syn-
chrony bounds depend on the network diameter [7]. The
observed synchrony bound increased to 3% of the timeslot

5 10 15 20

20

40

60

80

100

Broadcasting frame number

S
yn

ch
ro

ny
 b

ou
nd

 (
tim

es
lo

t %
)

Grasshopper
Cricket

33 34 35 36 37 38 39

10

20

30

40

50

Broadcasting frame number
S

yn
ch

ro
ny

 b
ou

nd
 (

tim
es

lo
t %

)

Fig. 9. (Left) Multi-hop network synchrony bound and convergence time
the algorithms using Chameleon-MAC. (Right) Cricket and grasshopper
convergence with mobile clusters.

20

20

20

40

40

40

60

60

60

80

80

80

10
0

100

S
pe

ed

Broadcasting frame number
5 10 15 20

10

20

30

40

50

20

20

20

40

40

40

60
60

60

80

80

80

100

10
0

Broadcasting frame number
5 10 15 20

10

20

30

40

50

Fig. 10. The synchrony bound (as timeslot percentage) for the cricket
(left) and grasshopper (right) using Chameleon-MAC and considering regular
interferences. The neighborhood change rate increases with speed, causing
the algorithms to spend longer time for convergence.

size and the grasshopper converged 3.25 times faster than the
cricket.
Mobile Ad Hoc Network We borrow two mobility models
from [8] for studying the algorithms. One in which radio
interferences follow regular patterns when the nodes are placed
in parallel lanes and move in opposite directions (72 node and
diameter of 12). Both algorithms have quickly reached to a
10% synchrony bound, see Fig. 10, where the transmission
(interference) radius was 22 distance units. The second model
considers 2 clusters of 50 nodes each that pass by each
other and thus they experience transient radio interferences,
see Fig. 9-(right). Initially, the two clusters differ in their
synchronized phase value. This difference results in timeslot
misalignment and an increase in synchrony bound when the
clusters are within each others interference range. We observed
that the grasshopper was able to show a shorter recovery time
and a greater resiliency degree.

V. DISCUSSIONS

The prospects of safety-critical vehicular systems depend
on the existence of predictable communication protocols that
divide the radio time regularly and fairly. This paper presents
autonomous and self-⋆ algorithmic solutions for the problem
of TDMA timeslot alignment by considering the more general
problem of (decentralized) local pulse synchronization. The
studied algorithms facilitate autonomous TDMA-based MAC
protocols that are robust to transient faults, have high through-
put and offer a greater predictability degree with respect to the
transmission schedule. These properties are often absent from
current MAC protocol implantations for VANETs, see [1, 13].

We saw that avoiding clock update dependencies can sig-
nificantly speed up the convergence and recovery processes.
In particular, the grasshopper algorithm foresees dependencies

among the clock updates, which the cricket cannot. However,
dependency avoidance requires additional resources.

Existing vehicular systems often assume the availability of
common time sources, e.g., GPS. Autonomous systems cannot
depend on GPS services, because they are not always avail-
able, or preferred not to be used, due to their cost. Arbitrarily
long failure of signal loss can occur in underground parking
lots and road tunnels. Moreover, some vehicular applications
cannot afford accurate clock oscillators that would allow them
to maintain the required precision during these failure periods.

By demonstrating the studied algorithms on inexpensive Mi-
caZ motes, we have opened up the door for hybrid-autonomous
designs (cf. centralized pulse synchronizer in Section IV).
Namely, nodes that have access to GPS, use this time source
for aligning their TDMA timeslots, whereas nodes that have
no access to GPS, use the studied strategies as dependable
fallback for catching up with nodes that have access to GPS.

We expect applicability of the hybrid-autonomous design
criteria to other areas of VANETs. E.g., spatial TDMA [13]
protocols base their timeslot allocation on GPS availability. As
future work, we propose dealing with such dependencies by
adopting the hybrid-autonomous design criteria.

REFERENCES

[1] K. Bilstrup, E. Uhlemann, E. G. Ström, and U. Bilstrup. “Evaluation of
the IEEE 802.11p MAC method for vehicle-to-vehicle communication,”
IEEE VTC Fall, pp. 1–5, 2008.

[2] A. Cornejo and F. Kuhn. “Deploying wireless networks with beeps,”
Distributed Systems and Networks, pp. 148–162, 2010.

[3] A. Daliot, D. Dolev, and H. Parnas. “Self-stabilizing pulse synchroniza-
tion inspired by biological pacemaker networks,” Stabilization, Safety,
and Security of Distributed Systems, pp. 32–48, 2003.

[4] T. Herman and C. Zhang. “Best paper: Stabilizing clock synchronization
for wireless sensor networks,” Stabilization, Safety, and Security of
Distributed Systems, pp. 335–349, 2006.

[5] E. N. Hoch. “Self-stabilizing byzantine pulse and clock synchroniza-
tion,” Master’s thesis, CSE Hebrew Univ. of Jerusaelm, 2007.

[6] J.-H. Hoepman, A. Larsson, E. M. Schiller, and P. Tsigas. “Secure and
self-stabilizing clock synchronization in sensor networks,” Stabilization,
Safety, and Security of Distributed Systems, v. 4838 of LNCS, pp. 340–
356. Springer, 2007.

[7] C. Lenzen, T. Locher, and R. Wattenhofer. “Tight bounds for clock
synchronization,” J. ACM, 57(2), 2010.

[8] P. Leone, M. Papatriantafilou, E. M. Schiller, and G. Zhu. “Chameleon-
mac: Adaptive and self-* algorithms for media access control in mobile
ad hoc networks,” Stabilization, Safety, and Security of Distributed
Systems, pp. 468–488, 2010.

[9] P. Levis, N. Lee, M. Welsh, and D. E. Culler. “TOSSIM: accurate
and scalable simulation of entire tinyos applications,” ACM SenSys, pp.
126–137, 2003.

[10] D. Lucarelli and I.-J. Wang. “Decentralized synchronization protocols
with nearest neighbor communication,” ACM SenSys, pp. 62–68, 2004.

[11] R. E. Mirollo, Steven, and H. Strogatz. “Synchronization of pulse-
coupled biological oscillators,” SIAM, 50:1645–1662, 1990.

[12] M. H. Mustafa. “Self-⋆ Pulse Synchronization for Autonomous TDMA
MAC in VANETs,” CSE, Chalmers Univ. of Tech., 2012.

[13] K. Sjöberg, E. Uhlemann, and E. G. Ström. “Delay and interfer-
ence comparison of CSMA and self-organizing TDMA when used in
VANETs,” Wireless Comm. & Mobile Comp., pp. 1488–1493, 2011.

[14] R. Solis, V.S. Borkar, and P.R. Kumar. “A New Distributed Time
Synchronization Protocol for Multihop Wireless Networks,” IEEE
Decision and Control, pp. 2734–2739. 2006.

[15] A. Tyrrell, G. Auer, and C. Bettstetter. “Fireflies as role models for
synchronization in ad hoc networks,” ACM ICST BIONETICS. 2006.

[16] G. Werner-Allen, G. Tewari, A. Patel, M. Welsh, and R. Nagpal. “Firefly-
inspired sensor network synchronicity with realistic radio effects,” ACM
SenSys, pp. 142–153. 2005.

KARYON ‐ FP7‐288195
D3.1 – First Report on Supporting Technologies (Annex)

© 2012 KARYON Project 102/188

KARY N

KARYON ‐ FP7‐288195
D3.1 – First Report on Supporting Technologies (Annex)

© 2012 KARYON Project 103/188

KARY N

A.1.7 Self‐Stabilizing	End‐to‐End	Communication	in	Bounded	Capacity,	
Omitting,	Duplicating	and	Non‐FIFO	Dynamic	Networks	

“Self-Stabilizing End-to-End Communication in Bounded Capacity, Omitting, Duplicating and
Non-FIFO Dynamic Networks”. S. Dolev, H. Ariel, E. M. Schiller and S. Sharma, 14th
International Symposium on Stabilization, Safety, and Security of Distributed Systems
(SSS’12), Toronto, Canada, October 2012.

KARYON ‐ FP7‐288195
D3.1 – First Report on Supporting Technologies (Annex)

© 2012 KARYON Project 104/188

KARY N

This page is intentionally left blank.

Self-stabilizing End-to-End Communication

in (Bounded Capacity, Omitting, Duplicating
and non-FIFO) Dynamic Networks�

(Extended Abstract)

Shlomi Dolev1, Ariel Hanemann1,
Elad Michael Schiller2, and Shantanu Sharma1

1 Department of Computer Science, Ben-Gurion University of the Negev, Israel
{dolev,hanemann,sharmas}@cs.bgu.ac.il��

2 Department of Computer Science and Engineering, Chalmers University of
Technology, Sweden

elad@chalmers.se� � �

Abstract. End-to-end communication over the network layer (or data
link in overlay networks) is one of the most important communication
tasks in every communication network, including legacy communication
networks as well as mobile ad hoc networks, peer-to-peer networks and
mash networks. We study end-to-end algorithms that exchange packets
to deliver (high level) messages in FIFO order without omissions or
duplications. We present a self-stabilizing end-to-end algorithm that can
be applied to networks of bounded capacity that omit, duplicate and
reorder packets. The algorithm is network topology independent, and
hence suitable for always changing dynamic networks with any churn rate.

1 Introduction

End-to-end communication is a basic primitive in communication networks. A
sender must transmit messages to a receiver in an exactly once fashion, where no
omissions, duplications and reordering are allowed. Errors occur in transmitting
packets among the network entities – one significant source of error is noise in
the transmission media. Thus, error detection and error correcting techniques are
employed as an integral part of the transmission in the communication network.
These error detection and correction codes function with high probability. Still,

� Also appears as a technical report in [10].
�� Partially supported by Deutsche Telekom, Rita Altura Trust Chair in Computer

Sciences, Lynne and William Frankel Center for Computer Sciences, Israel
Science Foundation (grant number 428/11), Cabarnit Cyber Security MAGNET
Consortium, Grant from the Institute for Future Defense Technologies Research
named for the Medvedi of the Technion, Israeli Internet Association, and Israeli
Defense Secretary (MAFAT).

� � � Work was partially supported by the EC, through project FP7-STREP-288195,
KARYON (Kernel-based ARchitecture for safetY-critical cONtrol).

A.W. Richa and C. Scheideler (Eds.): SSS 2012, LNCS 7596, pp. 133–147, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

134 S. Dolev et al.

when there is a large volume of communication sessions, the probability that
an error will not be detected becomes high, leading to a possible malfunction of
the communication algorithm. In fact, it can lead the algorithm to an arbitrary
state from which the algorithm may never recover unless it is self-stabilizing [8].
By using packets with enough distinct labels infinitely often, we present a
self-stabilizing end-to-end communication algorithm that can be applied to
dynamic networks of bounded capacity that omit, duplicate and reorder packets.

Contemporary communication and network technologies enhance the need
for automatic recovery and interoperability of heterogeneous devices and the
means of wired and wireless communications, as well as the churn associated
with the totally dynamic communication networks. Having a self-stabilizing,
predictable and robust basic end-to-end communication primitive for these
dynamic networks facilitates the construction of high-level applications. Such
applications are becoming extremely important nowadays where countries’
main infrastructures, such as the electrical smart-grid, water supply networks
and intelligent transportation, are based on cyber-systems. Defining the
communication network as a bounded capacity network that allows omissions,
duplications and reordering of packets and building (efficient) exactly once
message transmission using packets, allows us to abstract away the exact network
topology, dynamicity and churn.

The dynamic and difficult-to-predict nature of electrical smart-grid and
intelligent transportation systems give rise to many fault-tolerance issues and
require efficient solutions. Such networks are subject to transient faults due
to hardware/software temporal malfunctions or short-lived violations of the
assumed settings for the location and state of their nodes. Fault-tolerant systems
that are self-stabilizing [8,7] can recover after the occurrence of transient faults,
which can drive the system to an arbitrary system state. The system designers
consider all configurations as possible configurations from which the system is
started. The self-stabilization design criteria liberate the system designer from
dealing with specific fault scenarios, the risk of neglecting some scenarios, and
having to address each fault scenario separately.

Related Work and Our Contribution. End-to-end communication and
data-link algorithms are fundamental for any network protocol [25]. End-to-end
algorithms provide the means for message exchange between senders and
receivers over unreliable communication links. Not all end-to-end communication
and data-link algorithms assume initial synchronization between senders
and receivers. For example, Afek and Brown [1] presented a self-stabilizing
alternating bit protocol (ABP) for FIFO packet channels without the need for
initial synchronization. Self-stabilizing token passing was used as the bases for
self-stabilizing ABP over unbounded capacity and FIFO preserving channels
in [17,11]. Spinelli [24] introduced two self-stabilizing sliding window ARQ
protocols for unbounded FIFO channels. Dolev and Welch [15] considered
tolerating network errors in dynamic networks with FIFO non-duplicating
communication links, and use source routing over paths to cope with crashes. In

Self-Stabilizing End-to-End Communication in Dynamic Networks 135

contrast, we do not consider known network topology nor base our algorithms
on a specific routing policy. We merely assume bounded network capacity.

In [2], an algorithm for self-stabilizing unit capacity data link over a FIFO
physical link is assumed. Flauzac and Villai [16] described a snapshot algorithm
that uses bidirectional and FIFO communication channels. Cournier et al. [5]
considered a snap-stabilizing algorithm [3] for message forwarding over message
switched network. They ensure one time delivery of the emitted message to
the destination within a finite time using destination based buffer graph and
assuming underline FIFO packet delivery.

In the context of dynamic networks and mobile ad hoc networks, Dolev,
Schiller and Welch [14,12,13] presented self-stabilizing algorithms for token
circulation, group multicast, group membership, resource allocation and
estimation of network size. Following [14,12,13], similar approaches to cope with
constantly changing networks have been investigated [22] in addition to other
fundamental problems such as clock synchronization [21], dissemination [18,20],
leader election [19,6,4], and consensus [23] to name a few. In this paper,
we investigate the basic networking tasks of end-to-end communication over
the network layer (or overlay networks), that are required for the design
of fundamental problems, such as the aforementioned problems considered
in [21,22,18,20,19,6,4,23].

Recently, Dolev et al. [9] presented a self-stabilizing data link algorithm for
reliable FIFO message delivery over bounded non-FIFO and non-duplicating
channel. This paper presents the first, to the best of our knowledge,
self-stabilizing end-to-end algorithms for reliable FIFO message delivery over
bounded non-FIFO and duplicating channel.

Due to space limit, some of the proofs are omitted from this extended abstract
and can be found in [10].

2 System Settings

We consider a distributed system that includes nodes (or processors),
p1, p2, . . . , pN . We represent a distributed system by a communication graph
that may change over time, where each processor is represented as a node.
Two neighboring processors, pi and pj , that can exchange packets directly are
connected by a link in the communication graph. Packet exchange between
neighbors is carried via (directed) communication links, where packets are sent
from pi to pj through the directed link (pi, pj) and packets are sent from pj
to pi through (pj , pi), the opposite directed link. End-to-end communication
among non-neighbor nodes, ps and pr, is facilitated by packet relaying from
one processor to neighbors. Thus, establishing a (virtual) communication link
between ps and pr in which ps is the sender and pr is the receiver. We assume the
communication graph is dynamic, and is constantly changed, while respecting N
as the upper bound on the number of nodes in the system. Packets are exchanged
by the sender and the receiver in order to deliver (high level) messages in a
reliable fashion. We assume that the entire number of packets in the system
at any given time, does not exceed a known bound. We allow any churn rate,

136 S. Dolev et al.

assuming that joining processors reset their own memory, and by that assist in
respecting the assumed bounded packet capacity of the entire network.

The communication links are bidirectional. Namely, between every two nodes,
pi and pj , that can exchange packets, there is a unidirectional channel (set) that
transfers packets from pi to pj and another unidirectional channel that transfer
packets from pj to pi. We model the (communication) channel, from node pi
to node pj as a (non-FIFO order preserving) packet set that pi has sent to
pj and pj is about to receive. When pi sends a packet m to pj, the operation
send inserts a copy of m to the channel from pi to pj as long as the upper
bound of packets in the channel is respected. Once m arrives, pj triggers the
receive event and m is deleted from the set. The communication channel is
non-FIFO and has no reliability guarantees. Thus, at any time the sent packets
may be omitted, reordered, and duplicated, as long as the link capacity bound
is not violated. We note that transient faults can bring the system to consist
of arbitrary, and yet capacity bounded, channel sets from which convergence
should start. We assume that when node pi sends a packet, pckt, infinitely often
through the communication link from pi to pj , pj receives pckt infinitely often.
We intentionally do not specify (the possible unreliable) routing scheme that is
used to forward a packet from the sender to the receiver, e.g., flooding, shortest
path routing. We assume that the overall network capacity allows a channel
from pi to pj to contain at most capacity packets at any time, where capacity
is a known constant. However, it should be noted that although the channel has
a maximal capacity, packets in the channel may be duplicated infinitely many
times because even if the channel is full, packets in the channel may be either lost
or received. This leaves places for other packets to be (infinitely often) duplicated
and received by pj .

Self-stabilizing algorithms do not terminate (see [8]). The non-termination
property can be easily identified in the code of a self-stabilizing algorithm: the
code is usually a do forever loop that contains communication operations with
the neighbors. An iteration is said to be complete if it starts in the loop’s first
line and ends at the last (regardless of whether it enters branches).

Every node, pi, executes a program that is a sequence of (atomic) steps. Where
a step starts with local computations and ends with a single communication
operation, which is either send or receive of a packet. For ease of description,
we assume the interleaving model, where steps are executed atomically, a single
step at any given time. An input event can either be the receipt of a packet or
a periodic timer going off triggering pi to send. Note that the system is totally
asynchronous and the non-fixed spontaneous send of nodes and node processing
rates are irrelevant to the correctness proof.

The state, si, of a node pi consists of the value of all the variables of the node
including the set of all incoming communication channels. The execution of
an algorithm step can change the node state. The term (system) configuration
is used for a tuple of the form (s1, s2, · · · , sN), where each si is the state of
node pi (including packets in transit for pi). We define an execution (or run)

Self-Stabilizing End-to-End Communication in Dynamic Networks 137

R = c[0], a[0], c[1], a[1], . . . as an alternating sequence of system configurations
c[x] and steps a[x], such that each configuration c[x + 1] (except the initial
configuration c[0]) is obtained from the preceding configuration c[x] by the
execution of the step a[x]. We often associate the notation of a step with its
executing node pi using a subscript, e.g., ai. An execution R is fair if every node,
pi, executes infinitely many steps in R. We represent the omissions, duplications
and reordering using environment steps that are interleaved with the steps of the
processors in the run R. In every fair run, the environment steps do not prevent
communication, namely, infinite send operations of pi of a packet, pckt, to pj
implies infinite receive operations of pckt by pj.

The system is asynchronous and the notion of time, for example, when
considering system convergence to legal behavior, is measured by the number of
asynchronous rounds, where the first asynchronous round is the minimal prefix
of the execution in which every node sends at least one packet to every neighbor
and one of these packets is received by each neighbor. Thus, we nullify the infinite
power of omissions, duplications and reordering when measuring the algorithm
performance. Moreover, we ensure that packets sent are eventually received;
otherwise the channel is, in fact, disconnected. The second asynchronous round
is the first asynchronous round in the suffix of the run that follows the first
asynchronous round, and so on. We measure the communication costs by the
number of packets sent in synchronous execution in which each packet sent
by ps arrives to its destination, pr, in one time unit, and before ps sends any
additional packet to pr.

We define the system’s task by a set of executions called legal executions (LE)
in which the task’s requirements hold. A configuration c is a safe configuration
for an algorithm and the task of LE provided that any execution that starts in c
is a legal execution (belongs to LE). An algorithm is self-stabilizing with relation
to the task LE when every (unbounded) execution of the algorithm reaches a
safe configuration with relation to the algorithm and the task.

The self-stabilizing end-to-end communication (S2E2C) algorithm provides
FIFO guarantee for bounded networks that omit duplicate and reorder packets.
Moreover, the algorithm considers arbitrary starting configurations and ensures
error-free message delivery. In detail, given a system’s execution R, and a pair,
ps and pr, of sending and receiving nodes, we associate the message sequences
sR = m0,m1,m2, . . ., of messages fetched by ps, with the message sequence
rR = m′

0,m
′
1,m

′
2, . . . of messages delivered by pr. Note that we list messages

according to the order they are fetched (from the higher level application) by
the sender, thus two or more (consecutive or non-consecutive) messages can be
identical. The S2E2C task requires that for every legal execution R ∈ LE, there
is an infinite suffix, R′, in which infinitely many messages are delivered, and
sR′ = rR′ . It should be noted that packets are not actually received by the
receiver in their correct order but eventually it holds that messages are delivered
by the receiver (to higher level application) in the right order.

138 S. Dolev et al.

3 The End-to-End Algorithm

Dynamic networks have to overcome a wide range of faults, such as message
corruption and omission. It often happens that networking techniques, such as
retransmissions and multi-path routing, which are used for increasing robustness,
can cause undesirable behavior, such as message duplications and reordering.
We present a self-stabilizing end-to-end communication algorithm that uses
the network’s bounded capacity, to cope with packet corruptions, omissions,
duplications, and reordering. We abstract the entire network by two directed
channels, one from the sender to the receiver and one from the receiver to the
sender, where each abstract channel is of a bounded capacity. These two abstract
channels can omit, reorder and duplicate packets. We regard two nodes, ps, pr,
as sender and receiver, respectively. Sender ps sends packets with distinct labels
infinitely often until ps receives a sufficient amount of corresponding distinct
acknowledgment labels from the receiver pr.

For the sake of readability, we start describing the algorithm using large
overhead, before showing ways to dramatically reduce the overhead. The sender
repeatedly sends each message m with a three state alternating index, which
is either 0, 1 or 2. We choose to discuss, without the loss of generality, the
case of a message with alternating index 0, where 〈0,m〉 is repeatedly sent in
(2 · capacity + 1) packet types. Each type uses a distinct label in the range
1 to twice the capacity plus 1. Namely, the types are: 〈0, 1,m〉, 〈0, 2,m〉, . . .,
〈0, 2 · capacity + 1,m〉. The sender waits for an acknowledgment of the packet
arrival for each of the (2 · capacity + 1) distinct labels, and an indication that
the receiver delivered a message due to the arrival of (capacity+1) packets with
alternating index 0. The receiver accumulates the arriving packets in an array of
(2 · capacity+1) entries, where each entry, j, stores the last arriving packet with
distinct label j. Whenever the receiver finds that (capacity + 1) recorded array
entries share the same alternating index, for example 1, the receiver delivers
the message m encapsulated in one in-coming packet recorded in the array –
this packet has the alternating index of the majority of recorded packets; 1 in
our example. Then, the receiver resets its array and starts accumulating packets
again, until (capacity + 1) recorded copies, with the same alternating index
reappear. The receiver always remembers the last delivered alternating index,
ldai, that caused the reset of its array, and does not deliver two successive
messages with the same alternating index. Each packet 〈ai, lbl,m〉 that arrives
to the receiver is acknowledged by 〈lbl, ldai〉. The sender accumulates the arriving
packet in an array of (2 · capacity + 1) entries and waits to receive a packet for
each entry, and to have a value of ldai that is equal to the alternating index
the sender is currently using in the sent packets in at least (capacity + 1) of
the recorded packets. Once such a packet set arrives, the sender resets its array,
fetches a new message, m′, to be delivered, and increments the alternating index
by 1 modulo 3 for the transmission process of the next message, m′.

The correctness considers the fact that the receiver always acknowledges
incoming packets, and hence the sender will infinitely often fetch messages.
Following the first fetch of the sender, the receiver follows the sender’s alternating

Self-Stabilizing End-to-End Communication in Dynamic Networks 139

index, records it in ldai, and acknowledges this fact. We consider an execution in
which the sender changes the alternating index in to x, x+1, x+2, x (all modulo
3). In this execution, the sender is acknowledged that the receiver changes ldai to
x+1 and then to x+2, while the sender does not send packets with alternating
index x, thus, the last x delivery in the sequence must be due to fresh packets,
packets sent after the packets with alternating index x+ 2 were sent, and cause
a delivery.

In the preceding text a simplified algorithm with a large overhead was
presented – a more efficient algorithm is described in the following. The basic
idea is to enlarge the arrays to have more than n > (2 · capacity + 1) recorded
packets. Roughly speaking, in such a case the minority of the distinct label
packets accumulated in the arrays are erroneous, i.e., packet copies that were
accumulated in the network prior to the current fetch (maximum capacity). The
other (n− capacity) distinct label accumulated packets are correct. Thus, as we
know the maximal amount of unrelated packets, we can manipulate the data so
that the n− capacity correct packets, each of length pl will encode, by means of
error correcting codes, pl messages each of length ml, a length slightly shorter
than n. The sender fetches a window of pl messages each of length ml, where
pl is the maximal packet length beyond the header. The sender then uses error
correcting codes so that a message of length ml is coded by a word of length n,
such that the encoded word can tolerate up to capacity erroneous bits. The pl
encoded messages of length n are then converted to n packets of length pl in a
way that the ith message out of theml fetched messages is encoded by the ith bits
of all the n distinct packets that are about to be transmitted. So eventually, the
first bit of all distinct labeled packets, ordered by their distinct labels, encode,
with redundancy, the first message, and the second bit of all distinct labeled
packets, encode, with redundancy, the second message, etc. Fig. 1 shows the
formation of the n packets from the pl messages. When the receiver accumulates
n distinct label packets, the capacity of the packets may be erroneous. However,
since the ith packet, out of the n distinct packets, encodes the ith bits of all
the pl encoded messages, if the ith packet is erroneous, then the receiver can
still decode the data of the original pl messages each of length ml < n. The ith

bit in each encoded message may be wrong, in fact, capacity of packets maybe
erroneous yielding capacity of bits that may be wrong in each encoded message,
however, due to the error correction, all the original pl messages of length ml can
be recovered, so the receiver can deliver the correct pl messages in the correct
order.

In this case, the sender repeatedly sends n distinct packets and the receiver
keeps sending (capacity + 1) packets each with a distinct label in the range
1 to (capacity + 1). In addition, each of these packets contains the receiver’s
current value of ldai. The packets from the receiver are sent infinitely often, not
necessarily as a response to its received packets. When the receiver accumulates
n distinct label packets with the same alternating index, it recovers the original
pl messages, delivers them, resets its received packets array and changes its ldai
to the alternating index of the packets that it just delivered. We note that these

140 S. Dolev et al.

received packets must be different from its current ldai because the receiver does
not accumulate packets if their alternating index is equal to its current ldai. The
sender may continue sending the n packets with alternating index ldai, until the
sender accumulates (capacity + 1) distinct label acknowledging packets with
alternating index ldai. However, because now the packets’ alternating index is
equal to its current ldai, the receiver does not accumulate them, and hence does
not deliver a duplicate. Once the sender accumulates (capacity+1) packets with
ldai equal to its alternating index, it will fetch pl new messages, encode and
convert them to n distinct label packets and increase its alternating index by 1
modulo 3.

� ��� ��

� ��

pl

3

2

1

n

aiai ai

1 2

ml n > ml

lbl

AltIndex

Error
Correcting
Encoding

Ist Packet IIed Packet nth Packet

plth Message

IIed Message

Ist Message

�

Fig. 1. Packet formation from messages

The correctness
arguments use the same
facts mentioned above
in the majority based
algorithm. Eventually,
we will reach an
execution in which
the sender fetches a new
set of messages infinitely
often and the receiver
will deliver the messages
fetched by the sender
before the sender fetches
the next set of messages.
Eventually, every set of pl fetched messages is delivered exactly once because
after delivery the receiver resets its packets record array and changes ldai to
be equal to the senders alternating index. The receiver stops accumulating
packets from the sender until the sender fetches new messages and starts
sending packets with a new alternating index. Between two delivery events of
the receiver, the receiver will accumulate n distinct label packets of an identical
alternating index, where (n− capacity) of them must be fetched by the sender
after the last delivery of messages by the receiver. The fact, which reflects such
behavior at the receiver node, is that the sender only fetches new messages after
it gets (capacity + 1) distinct packets with ldai equal to its current alternating
index. When the receiver holds n distinct label packets with maximum capacity
erroneous packets, it can convert the packets back to the original messages by
applying the error correction code capabilities and deliver the original message
correctly.
Algorithm Description. Algorithms 1 and 2 implement the proposed S2E2C
sender-side and receiver-side algorithms, respectively. The two nodes, ps and
pr, are the sender and the receiver nodes respectively. The Sender algorithm
consists of a do forever loop statement (line 2 of the Sender algorithm), where
the sender, ps, assures that all the data structures comprises only valid contents.
I.e., ps checks that the ACK sets holds packets with alternating index equal to
the senders current AltIndexs and the labels are between 1 and (capacity + 1).

Self-Stabilizing End-to-End Communication in Dynamic Networks 141

Algorithm 1. Self-Stabilizing End-to-End Algorithm (Sender)

Persistent variables:
AltIndex: an integer ∈ [0, 2] that states the current alternating index value
ACK set: at most (capacity + 1) acknowledgment set, where items contain
labels and last delivered alternating indexes, 〈lbl, ldai〉
packet set: n packets, 〈AltIndex, lbl, dat〉, to be sent, where lbl ∈ [1, n] and dat
is data of size pl bits

Interface:
Fetch(NumOfMessages) Fetches NumOfMessages messages from the
application and returns them in an array of size NumOfMessages according to
their original order
Encode(Messages[]) receives an array of messages of length ml each, M , and
returns a message array of identical size M ′, where message M ′[i] is the
encoded original M [i], the final length of the returned M ′[i] is n and the code
can tolerate capacity errors

1 Do forever begin
2 if (ACK set �⊆ {AltIndex} × [1, capacity + 1]) then

(ACK set,messages)← (∅, Encode(Fetch(pl)))
3 foreach pckt ∈ packet set() do send pckt

4 Upon receiving ACK = 〈lbl, ldai〉 begin
5 if lbl ∈ [1, capacity + 1] ∧ ldai = AltIndex then
6 ACK set← ACK set ∪ {ACK}
7 if capacity <| ACK set | then begin
8 AltIndex← (AltIndex+ 1) mod 3
9 (ACK set,messages)← (∅, Encode(Fetch(pl)))

10 Function packet set() begin
11 foreach (i, j) ∈ [1, n]× [1, pl] do let data[i].bit[j] = messages[j].bit[i]
12 return {〈AltIndex, i, data[i]〉}i∈[1,n]

In case any of these conditions is unfulfilled, the sender resets its data
structures (line 2 of the Sender algorithm). Subsequently, ps triggers the Fetch
and the Encode interfaces (line 2 of the Sender algorithm). Before sending the
packets, ps executes the packet set() function (line 3 of the Sender algorithm).

The Sender algorithm, also, handles the reception of acknowledgments
ACKs = 〈lbl, ldai〉 (line 4 of the Sender algorithm). Each ACKs has distinct
labels, corresponding to already transmitted packets. On the reception of the
(capacity + 1) distinct label ACKs, ps keeps ACKs in ACK sets (line 6 of the
Sender algorithm), if ACKs have the value of ldai (last delivered alternating
index) equals to AltInex (line 5 of the Sender algorithm). When ps gets an
ACKs packet (capacity + 1) times (line 7 of the Sender algorithm), ps changes
AltIndexs (line 8 of the Sender algorithm). Afterwards, ps does reset ACK sets
and calls Fetch() and Encode() interfaces (line 9 of the Sender algorithm).

142 S. Dolev et al.

Algorithm 2. Self-Stabilizing End-to-End Algorithm (Receiver)

Persistent variables:
packet set: packets, 〈AltIndex, lbl, dat〉, received, where label ∈ [1, n] and dat is
data of size pl bits
LastDeliveredIndex: an integer ∈ [0, 2] that states the alternating index value
of the last delivered packets

Interface:
Decode(Messages[]) receives an array of encoded messages, M ′, of length n
each, and returns an array of decoded messages of length ml, M , where M [i] is
the decoded M ′[i]. The code is the same error correction coded by the sender
and can correct up to capacity mistakes
Deliver(messages[]) receives an array of messages and delivers them to the
application by the order in the array

Macros:
P (ind) = {〈ind, ∗, ∗〉 ∈ packet set}

1 Do forever begin
2 if {〈ai, lbl〉 : 〈ai, lbl, ∗〉 ∈ packet set} �⊆

{[0, 2] \ {LastDeliveredIndex}} × [1, n]× {∗}∨
(∃〈ai, lbl, dat〉 ∈ packet set : 〈ai, lbl, ∗〉 ∈ packet set \ {〈ai, lbl, dat〉})∨
(∃pckt = 〈∗, ∗, data〉 ∈ packet set :| pckt.data |�= pl)∨
1 <| {AltIndex : n ≤| {〈AltIndex, ∗, ∗〉 ∈ packet set} |} | then
packet set← ∅

3 foreach i ∈ [1, capacity + 1] do send 〈lbl, LastDeliveredIndex〉
4 Upon receiving pckt = 〈ai, lbl, dat〉 begin
5 if 〈ai, lbl, ∗〉 �∈ packet set∧

〈ai, lbl〉 ∈ ({[0, 2] \ {LastDeliveredIndex}} × [1, n])∧ | dat |= pl then
6 packet set← packet set ∪ {pckt}
7 if ∃ ! ind : ind �= LastDeliveredIndex ∧ n ≤| P (ind) |: P (ind) =

{〈ind, ∗, ∗〉 ∈ packet set} then
8 foreach (i, j) ∈ [1, pl]× [1, n] do
9 let messages[i].bit[j] = data.bit[i] : 〈ind, j, data〉 ∈ P (ind)

10 (packet set,LastDeliveredIndex)← (∅, ind)
11 Deliver(Decode(messages))

The Receiver algorithm executes at the receiver side, pr. The receiver pr
assures its data structure, namely, packet setr, in do forever loop (line 2 of the
Receiver algorithm). The receiver pr audits: (i) the packet setr holds packets
with alternating index, ai ∈ [0, 2], except LastDeliveredIndexr, labels (lbl)
between 1 and n and data of size pl; (ii) the packet setr holds exactly one group
of ai that has at least n elements. When any of the aforementioned conditions are
falsified, pr assigns the empty set to packet setr. In addition, pr acknowledges
ps by (capacity + 1) packets (line 3 of the Receiver algorithm).

Self-Stabilizing End-to-End Communication in Dynamic Networks 143

Node pr receives a packet pcktr = 〈ai, lbl, dat〉, see line 4 of the Receiver
algorithm. If pcktr has data (dat) in the size of pl bits and pcktr has alternating
index (ai) in the range from 0 to 2, excluding the LastDeliveredIndex and
pcktr has a label (lbl) in the range of 1 to n (line 5 of the Receiver algorithm),
pr puts pcktr in packet setr (line 6 of the Receiver algorithm). When pr gets
n distinct label packets of identical ai (line 7 of the Receiver algorithm),
pr forms the message from the packets (line 9 of the Receiver algorithm).
Subsequent steps include the reset of the packet setr data structure and change
of LastDeliveredIndexr to ai (line 10 of the Receiver algorithm). Next, pr
decodes and delivers the message (line 11 of the Receiver algorithm).

Correction proof. The correct packet exchange between the sender and
the receiver requires coordination. The sender should wait after fetching a
new message batch, i.e., executing lines 8 to 9 of the Sender algorithm, until
the receiver delivers a message batch, i.e., executing line 11 of the Receiver
algorithm. We describe the set of legal executions for correct packet exchange
before demonstrating that the Sender and the Receiver algorithms satisfy these
requirements in Theorem 1, which says that the studied algorithms implement
self-stabilizing end-to-end communication (S2E2C) task.

Let asα be the αth time that the sender is fetching a new message batch,
i.e., executing lines 8 to 9 of the Sender algorithm. Let arβ be the βth

time that the receiver is delivering a message batch, i.e., executing line 11
of the Receiver algorithm. With respect to the self-stabilizing end-to-end
communication (S2E2C) task and the algorithms of the Sender and the Receiver,
the legal execution set includes executions, R, that interleave the asα and the
arβ steps in a manner that matches the alternating index labels. Namely, after
the occurrence of asα ∈ R in which the sender fetches a new message batch, the
step asα+1 should not occur before arβ ∈ R in which the receiver delivers that
message batch (Lemma 3). Similarly, after the occurrence of arβ ∈ R in which
the receiver delivers a message batch, the step arβ+1

should not occur before
asα ∈ R in which the sender fetches the next message batch (Lemma 4).

In addition, the asα and the arβ steps should have matching alternating
indices. The proof shows that the sender, ps, increments its AltIndexs =
s indexα value on every asα in a modulo 3 fashion, and the receiver, pr, adopts
s indexα and deliver its message batch in step arβ after receiving at least
(n− capacity) packets that are tagged by s indexα. Similarly, pr acknowledges
the received packets using the tag LastDeliveredIndexr = r indexβ, and then
ps proceeds to fetch a next message batch in asα+1 after receiving at least more
than capacity acknowledgments.

We note that the proof implies that within a constant number of asynchronous
rounds, the receiver, pr, receives an entire batch of n packets from its incoming
abstract channel out of which (n − capacity) packets are from the sender,
ps. This is true because: (1) we assume that when the sender sends a packet
infinitely often through the abstract channel, the receiver receives the packet
infinitely often, and (2) the proof shows that the sender does not stop sending its
current batch of messages, before guaranteeing that the current message batch

144 S. Dolev et al.

had arrived to the receiver, pr, and pr had delivered it. Moreover, analogous
arguments to arguments (1) and (2) above imply the number of asynchronous
rounds, in which the sender, ps, receives an entire batch of (capacity + 1)
acknowledgments that at least one of them is from the receiver.

Lemmas 1 and 2 are needed for the proof of lemmas 3 and 4. Throughout we
refer to R as an execution of the Sender and the Receiver algorithms, where ps
executes the Sender algorithm and pr executes the Receiver algorithm.

Lemma 1. Let csα(x) be the xth configuration between asα and asα+1 and
ACKα = {ackα(�)}�∈[1,capacity+1] be a set of acknowledgment packets, where
ackα(�) = 〈�, s indexα〉. For any given α > 0, there is a single index value,
s indexα ∈ [0, 2], such that for any x > 0, it holds that AltIndexs = s indexα

in csα(x). Moreover, between asα and asα+1 there is at least one configuration
crβ , in which LastDeliveredIndexr = s indexα. Furthermore, between asα and
asα+1 , the sender, ps, receives from the channel from pr to ps, the entire set,
ACKα, of acknowledgment packets (each packet at least once), and between (the
first) crβ and asα+1 the receiver must send at least one ackα(�) ∈ ACKα packet,
which ps receives.

Proof. We start by showing that s indexα exists before showing that crβ exists
and that ps receives ackα from pr between asα and asα+1 .

The value of AltIndexs = s indexα is only changed in line 8 of the Sender
algorithm. By the definition of asα , line 8 is not executed by any step between asα
and asα+1 . Therefore, for any given α, there is a single index value, s indexα ∈
[0, 2], such that for any x > 0, it holds that AltIndexs = s indexα in csα(x).

We show that crβ exists by showing that, between asα and asα+1 , there is
at least one acknowledge packet, 〈lbl, ldai〉, that pr sends and ps receives, where
ldai = s indexα. This proves the claim because pr’s acknowledgments are always
sent with ldai = LastDeliveredIndexr, see line 3.

We show that, between asα and asα+1 , the receiver pr sends at least one of
the ackα(�) ∈ ACKα packets that ps receives. We do that by showing that ps
receives, from the channel from pr to ps , more than capacity packets, i.e., the
set ACKα. Since capacity bounds the number of packets that, at any time, can
be in the channel from pr to ps , at least one of the ACKα packets, say ackα(�

′),
must be sent by pr and received by ps between asα and asα+1 . This in fact proves
that pr sends ackα(�

′) after crβ .
In order to demonstrate that ps receives the set ACKα, we note that

ACK set = ∅ in configuration csα(1), which immediately follows asα , see line 9
of the Sender algorithm. The sender tests the arriving acknowledgment packet,
ackα, in line 5 of the Sender algorithm. It tests ackα’s label to be in the range of
[1, capacity + 1], and that they are of ackα’s form. Moreover, it counts that
(capacity + 1) different packets are added to ACK set by adding them to
ACK set, and not executing lines 8 to 9 of the Sender algorithm before at
least (capacity + 1) distinct packets are in ACK set.

Lemma 2 (proof appears in [10]). Let crβ (y) be the y
th configuration between

arβ and arβ+1
, and PACKETβ(r index′

β) = {packetβ(�, r index′
β)}�∈[1,n] be

Self-Stabilizing End-to-End Communication in Dynamic Networks 145

a packet set, where packetβ,r index′
β
(�) = 〈r index′

β , �, ∗〉. For any given β >

0, there is a single index value, r indexβ ∈ [0, 2], such that for any y >
0, it holds that LastDeliveredIndexr = r indexβ in configuration crβ (y).
Moreover, between arβ and arβ+1

there is at least one configuration, csα , such
that AltIndexs �= r indexβ. Furthermore, there exists a single r index′

β ∈
[0, 2] \ {r indexβ}, such that the receiver, pr, receives all the packets in
PACKETβ(r index′

β) at least once between csα and arβ+1
, where at least

n− capacity > 0 of them are sent by the sender ps between arβ and arβ+1
.

Lemmas 3 and 4 borrow their notations from lemmas 1 and 2. Lemma 4 shows
that between asα and asα+1 , there is exactly one arβ step.

Lemma 3. Between asα and asα+1 , the receiver takes exactly one arβ step, and
that between arβ , and arβ+1

, the sender takes exactly one asα+1 step.

Proof. We start by showing that between asα and asα+1 , there is at least one
arβ step before showing that there is exactly one such arβ step when α > 2.
Then, we consider a proof for showing that between arβ and arβ+1

, there is at
least one asα step before showing that between arβ and arβ+1

, there is exactly
one asα step when β > 2.

By Lemma 1 and line 8 of the Sender algorithm, in any configuration, cs1(x),
that is between as1 and as2 , the sender is using a single alternating index,
s index1, and in any configuration, cs2(x), that is between as2 and as3 , the
sender is using a single alternating index, s index2, such that s index2 =
s index1+1 mod 3. In a similar manner, we consider configuration, csα(x), that
is between asα and asα+1 .

Lemma 1 also shows that for α ∈ (1, 2, . . .), there are configurations, crα ,
in which LastDeliveredIndexr = s indexα. This implies that between asα and
asα+1 , the receiver changes the value of LastDeliveredIndexr at least once,
where α ∈ (1, 2, . . .). Thus, by arβ ’s definition and line 10 of the Receiver
algorithm, there is at least one arβ step between asα and asα+1 .

To see that when α > 2 there is exactly one such arβ step between asα and
asα+1 , we consider the case in which between asα and asα+1 , there are several arβ
steps, i.e., arβfirst

, . . . , arβlast
. In particular we consider the asα−1 , arβ−1last

, asα ,

arβfirst
, arβlast

, asα+1 steps and show that arβ+1first
= arβ+1last

. Let us assume,

in the way of a proof by contradictions that arβ+1first
�= arβ+1last

. We show that

there is an asα′ step between arβ+1first
and arβ+1last

.

By Lemma 2, between arβfirst
and arβlast

, there is at least one configuration,

csα′ (x), for which AltIndexs �= r indexβ−1last
, and at least one configuration,

csα′′ (x), for which AltIndexs �= r indexβ+1first
.

Suppose that α′ = α′′. By asα ’s definition, line 3 of the Sender algorithm
and the function packet set(), the sender changes AltIndexs’s value in step
asα′ that occurs between arβ+1first

and arβ+1last
. For the case of α′ �= α′′,

we use similar arguments and consider the sequence of all csα′ (x), csα′′ (x), . . .
configurations between arβfirst

and arβlast
and their corresponding AltIndexs’s

values. By similar arguments to the case of α′ = α′′, any consecutive pair of

146 S. Dolev et al.

AltIndexs implies the existence of an asα between arβfirst
and arβlast

. Thus, a

contradiction.

Lemma 4 shows that between arβ and arβ+1
, there is exactly one asα step, and

its proof follows similar arguments as the ones in Lemma 3.

Lemma 4 (proof appears in [10]). Between arβ and arβ+1
, the sender takes

exactly one asα+1 step.

Lemmas 3 and 4 facilitates the proof of Theorem 1.

Theorem 1 (S2E2C). Within a constant number of asynchronous rounds,
the system reaches a safe configuration (from which a legal execution starts).
Moreover, following a safe configuration, Algorithm 2 delivers every new sent
message batch within a constant number of asynchronous rounds.

4 Conclusions

Self-stabilizing end-to-end data communication algorithms for bounded capacity
dynamic networks have been presented in this extended abstract. The proposed
algorithms inculcate error correction techniques for the delivery of messages
to their destination without omissions, duplications or reordering. We consider
two nodes, one as the sender and the other as the receiver. In many cases,
however, two communicating nodes may act both as senders and receivers
simultaneously. In such situations, acknowledgment piggybacking may reduce
the overhead needed to cope with the capacity irrelevant packets that exist in
each direction, from the sender to the receiver and from the receiver to the
sender. Using piggybacking, the overhead is similar in both directions. The
obtained overhead is proportional to the ratio between the number of bits in the
original message, and the number of bits in the coded message, which is a code
that withstands capacity corruptions. Thus, for a specific capacity, assuming the
usage of efficient encoding, the overhead becomes smaller as the message length
grows.

References

1. Afek, Y., Brown, G.M.: Self-stabilization over unreliable communication media.
Distributed Computing 7(1), 27–34 (1993)

2. Awerbuch, B., Patt-Shamir, B., Varghese, G.: Self-stabilization by local checking
and correction. In: FOCS, pp. 268–277. IEEE Computer Society (1991)

3. Bui, A., Datta, A.K., Petit, F., Villain, V.: State-optimal snap-stabilizing pif in
tree networks. In: Workshop on Self-stabilizing Systems (ICDCS 1999), pp. 78–85.
IEEE Computer Society (1999)

4. Chung, H.C., Robinson, P., Welch, J.L.: Brief Announcement: Regional
Consecutive Leader Election in Mobile Ad-Hoc Networks. In: Scheideler, C. (ed.)
ALGOSENSORS 2010. LNCS, vol. 6451, pp. 89–91. Springer, Heidelberg (2010)

Self-Stabilizing End-to-End Communication in Dynamic Networks 147

5. Cournier, A., Dubois, S., Villain, V.: A snap-stabilizing point-to-point
communication protocol in message-switched networks. In: 23rd IEEE
International Symposium on Parallel and Distributed (IPDPS 2009), pp. 1–11
(2009)

6. Datta, A.K., Larmore, L.L., Piniganti, H.: Self-stabilizing Leader Election in
Dynamic Networks. In: Dolev, S., Cobb, J., Fischer, M., Yung, M. (eds.) SSS 2010.
LNCS, vol. 6366, pp. 35–49. Springer, Heidelberg (2010)

7. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

8. Dolev, S.: Self-Stabilization. MIT Press (2000)
9. Dolev, S., Dubois, S., Potop-Butucaru, M., Tixeuil, S.: Stabilizing data-link over

non-fifo channels with optimal fault-resilience. Inf. Process. Lett. 111(18), 912–920
(2011)

10. Dolev, S., Hanemann, A., Schiller, E.M., Sharma, S.: Self-stabilizing data link
over non-fifo channels without duplication. Technical Report 2012:01, Chalmers
University of Technology (2012) ISSN 1652-926X

11. Dolev, S., Israeli, A., Moran, S.: Resource bounds for self-stabilizing message-driven
protocols. SIAM J. Comput. 26(1), 273–290 (1997)

12. Dolev, S., Schiller, E., Welch, J.L.: Random walk for self-stabilitzing group
communication in ad hoc networks. In: PODC, p. 259 (2002)

13. Dolev, S., Schiller, E., Welch, J.L.: Random walk for self-stabilizing group
communication in ad-hoc networks. In: 21st Symposium on Reliable Distributed
Systems (SRDS 2002), pp. 70–79 (2002)

14. Dolev, S., Schiller, E., Welch, J.L.: Random walk for self-stabilizing group
communication in ad hoc networks. IEEE Trans. Mob. Comput. 5(7), 893–905
(2006)

15. Dolev, S., Welch, J.L.: Crash resilient communication in dynamic networks. IEEE
Trans. Computers 46(1), 14–26 (1997)

16. Flauzac, O., Villain, V.: An implementable dynamic automatic self-stabilizing
protocol. In: ISPAN, pp. 91–97. IEEE Computer Society (1997)

17. Gouda, M.G., Multari, N.J.: Stabilizing communication protocols. IEEE Trans.
Computers 40(4), 448–458 (1991)

18. Haeupler, B., Karger, D.R.: Faster information dissemination in dynamic networks
via network coding. In: 30th Annual ACM Symposium on Principles of Distributed
Computing (PODC 2011), pp. 381–390 (2011)

19. Ingram, R., Shields, P., Walter, J.E., Welch, J.L.: An asynchronous leader election
algorithm for dynamic networks. In: 23rd IEEE International Symposium on
Parallel and Distributed Processing (IPDPS 2009), pp. 1–12 (2009)

20. Jelasity, M., Montresor, A., Babaoglu, Ö.: Gossip-based aggregation in large
dynamic networks. ACM Trans. Comput. Syst. 23(3), 219–252 (2005)

21. Kuhn, F., Locher, T., Oshman, R.: Gradient clock synchronization in dynamic
networks. Theory Comput. Syst. 49(4), 781–816 (2011)

22. Kuhn, F., Lynch, N.A., Oshman, R.: Distributed computation in dynamic
networks. In: ACM Symposium on Theory of Computing (STOC 2010), pp.
513–522 (2010)

23. Kuhn, F., Oshman, R., Moses, Y.: Coordinated consensus in dynamic networks.
In: 30th ACM Symposium on Principles of Distributed Computing (PODC 2011),
pp. 1–10 (2011)

24. Spinelli, J.: Self-stabilizing sliding window arq protocols. IEEE/ACM Trans.
Netw. 5(2), 245–254 (1997)

25. Tanenbaum, A.S.: Computer networks, 4th edn. Prentice-Hall (2002)

KARYON ‐ FP7‐288195
D3.1 – First Report on Supporting Technologies (Annex)

© 2012 KARYON Project 120/188

KARY N

KARYON ‐ FP7‐288195
D3.1 – First Report on Supporting Technologies (Annex)

© 2012 KARYON Project 121/188

KARY N

A.2 Adaptive	Middleware	for	Advanced	Control	Systems	

A.2.1 Lightweight	Dependable	Adaptation	for	Wireless	Sensor	Networks	

“Lightweight Dependable Adaptation for Wireless Sensor Networks”. L. Marques and A.
Casimiro, Technical Report DI/FCUL, September 2012, Lisbon, Portugal.

KARYON ‐ FP7‐288195
D3.1 – First Report on Supporting Technologies (Annex)

© 2012 KARYON Project 122/188

KARY N

This page is intentionally left blank.

Lightweight Dependable Adaptation
for Wireless Sensor Networks

Luı́s Marques
lmarques@lasige.di.fc.ul.pt

FC/UL

António Casimiro
casim@di.fc.ul.pt

FC/UL

Abstract

Achieving dependable and real-time operation in Wireless Sensor Networks (WSNs) is a hard and
open problem. This can be an obstacle for many applications, namely in the automotive and medical
domains, particularly if safety-critical control is envisaged. To overcome the communication uncertainties
that are intrinsic to wireless and dynamic environments, a generic approach is to constantly adapt to
environment conditions. This requires appropriate solutions to characterize such conditions.

This paper contributes with a lightweight solution for a dependable characterization of network QoS
metrics, which is appropriate to support dependable adaptation in WSNs. The proposed solution offers
probabilistic guarantees, building on non-parametric stochastic analysis to achieve fast and effective
results. The paper also provides an evaluation of the solution.

Keywords

Wireless Sensor Networks; dependability; adaptation; non-parametric; lightweight; QoS;

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are used to sense and collect the state of physical entities.
Applications that use this kind of networks can therefore obtain a representation of the state
of such entities, which they use in monitoring and control functions. Each application has
its own requirements regarding how faithful such representation must be, compared with the
true state of the sensed entity. The problem that arises in WSNs is the lack of guarantees
relative to its timeliness. This means that applications have no guarantees regarding the degree
of synchronization, or the consistency, between the sensor data they are using and the real state
of the environment. Consequently, they cannot also guarantee that monitoring and/or control
functions are performed in a timely way.

The lack of real-time guarantees in WSNs results from a variety of factors. These include,
among others, uncertainties introduced by medium access control protocols, transmission inter-
ferences common to wireless communication, dynamic changes occurring in the network, such
as node failures or their movement, and the lack of real-time behavior of the nodes themselves.

In practice, some of these factors, which we may call architectural factors, are under the
designer control and thus their influence on uncertainty can be minimized or eliminated. For
instance, nodes can be designed and built using traditional real-time operating system techniques,
with real-time scheduling, and communication protocols can be made deterministic with respect
to a set of assumptions on the communication medium. Still, there are a number of factors out
of the designer’s control, which we may call external factors or perturbations, that occur with

This work was partially supported by EC, through project IST-STREP-288195 (KARYON) and by FCT through the Multiannual
Funding and CMU-Portugal Programs and the Individual Doctoral Grant SFRH/BD/45344/2008.

uncertain patterns and lead to uncertainty, assumption violation and lack of real-time guarantees.
Note that these perturbations can be characterized as part of the fault model. For instance,
omission faults, caused by electromagnetic interference or by physical obstacles, or temporal
faults, caused by network contention and transmission back-off.

One possible way of dealing with these perturbations and improving timeliness characteristics
of a WSN is by employing redundancy. A given amount of perturbations can be tolerated
through some combination of multiple nodes at different locations, communication over different
channels, multiple copies of the same messages, etc. This is particularly true if fault independence
can be assumed, which is often the case.

Fortunately, WSNs do typically possess great amounts of redundancy, which can be employed
to increase the guarantees of successful communication. On the other hand, one of the main
concerns in this type of networks is to save energy, and thus radio transmissions should be
avoided as much as possible, as they are one of the main sources of energy consumption.
That being, the operational objective of sensor networks should be that of satisfying application
requirements through the use of the strictly necessary redundant resources. In other words, simply
adding a fixed amount of redundant resources is not the best solution since it just pushes the
bounds further, allowing a larger tolerance of perturbations, but not necessarily the adequate
or sufficient one. Achieving some level of dependability and efficiency requires some effective
way of dealing with the mentioned perturbations, whose distribution is a priori unknown and
for which might not even be practical to define an arbitrary limit.

From a theoretical standpoint, not having a guaranteed limit on the amount of perturbations
that can occur on WSNs makes it impossible to offer hard real-time guarantees. From a practical
standpoint, even if the amount of perturbations never reaches the maximum amount that a sensor
network can tolerate, it is not desirable to constantly use the maximum amount of redundant
resources available. One alternative to offering strict hard real-time guarantees is to offer, instead,
probabilistic guarantees. Therefore we consider that perturbations occur in a probabilistic manner.
By analyzing the statistical behavior of such perturbations we can derive the necessary amount of
redundancy that is necessary to satisfy application requirements, with a given probability. Since
this behavior can change throughout time, as environment conditions change so must the system
adapt, so that application requirements are continuously satisfied. In this paper we consider how
to implement such statistical analysis and adaptation in a manner that is appropriate for WSNs.

We propose an approach for monitoring and raising awareness of communication latency that
is based on non-parametric stochastic analysis. From a complexity perspective, the solution is
extremely simple and thus appropriate for resource-constrained systems, such as WSNs. Despite
its simplicity, it builds upon established theory on stochastic systems and allows probabilistic
guarantees to be asserted to relevant temporal bounds. To conclude about the potential merits
and the effectiveness of the proposed approach, we compared it with another solution, called
Adaptare [1], which is based on complex and expensive stochastic analysis mechanisms. To
ensure a fair comparison, we used the same data traces that were previously used for validating
Adaptare, and we observed that our approach is very effective in general, although it exhibits
some comparative limitations when the required probabilistic guarantees are very high. We
believe that this trade-off may be acceptable in the context of WSNs, given that it still provides
valuable monitoring data at an extremely low-cost.

The paper is thus organized. In the following section we provide some context and introduce
various concepts. Then, Section III presents the idea of lightweight adaptation based on non-
parametric analysis. In Section IV we evaluate and benchmark several aspects of the solution

2

and in Section V we present related work. Section VI concludes the paper.

II. PROBLEM CONTEXT

Dealing with predictability or real-time requirements in WSNs is a difficult and open problem,
which may be addressed from several perspectives. While the provision of strict real-time requires
satisfying very stringent assumptions, focusing on the provision of some Quality of Service (QoS)
is a reasonable alternative to address the problem. In fact, several authors have explored the issue
of providing QoS guarantees in WSNs, which we review in more detail in Section V. Our work
is also developed in this context.

Proposed solutions explore topological aspects, such as end-to-end path discovery, resource
reservation along discovered paths and path recovery from topological changes, build on proper
scheduling of real-time traffic (e.g. decentralized EDF scheduling), and define efficient network
protocols to support the necessary QoS features. Such solutions deal mainly with problems
that are architectural and internal to WSNs, namely how to match the low-power and dynamic
nature of WSNs with the strict requirements of various types of real-time communication.
Another body of work has explored how to make radio communication efficient and resilient.
Employed techniques include detecting interferences [2] and dynamically changing channels to
avoid them [3], [4].

But no matter the techniques and approaches that may be used to endow WSN-based systems
with better predictability and greater ability of dealing with user QoS requirements, we believe
that the likely occurrence of perturbations still makes it inappropriate to specify fixed upper
bounds on system variables, such as the maximum number of omission faults, latencies, query
load, and so on. Because of that, monitoring and adaptation appear to be relevant techniques
to deal with this uncertainty, contributing to achieve systems that perform more closely to the
allowed environment conditions and thus leading to improved QoS.

Quite clearly, one fundamental issue in this context is how QoS is defined. Different metrics (or
estimators of metrics) can be considered, and they should be in some way related to application
requirements. Possible metrics and estimators may include: rate of arrival of updates, number
of duplicate packets received, jitter in the arrival of updates, packet loss rate, Packet Error Rate
(PER), Received Signal Strength Indicator (RSSI), and single hop or end-to-end latency.

From the application perspective, QoS requirements tend to be less functional. For instance,
for the correctness of monitoring and control applications what is essential is to ensure that
real-time sensor data is accurate, close (within some error interval) to the real value of the
monitored or controlled entity. We refer to this as a requirement for perception quality, that is,
how accurately the application perceives the reality. Given the uncertainties affecting WSNs, and
being inappropriate to assume fixed upper bounds for network latencies, the notion of perception
quality encompasses both the acceptable error for sensor data and the probability that this error
bound will be secured at run time. In summary, high perception quality means ensuring a very
small perception error with a very high probability. We also say that the assumed error bound is
secured with a certain coverage, i.e. the probably of the observed value being within the required
error margin.

However, as mentioned above, in practice it is usually necessary to translate higher-level,
possibly non-functional, application requirements to observable metrics. In this paper we consider
that the propagation latency is the relevant QoS metric. Without loss of generality, we consider
as a simplifying assumption that there is an inverse proportional relation between end-to-end
latency and perception quality.

3

III. LIGHTWEIGHT DEPENDABLE ADAPTATION

We consider that the environment behaves as a stochastic process. That means that each
relevant QoS property of the system is defined (at a given instant) by a random variable. Such
random variable describes the values that the property can take, and with which probabilities
— that is, its probability distribution. As time progresses and the environment changes, new
random values will take the place of old ones, in ways characterized by the stochastic process.

For adaptation to occur it is necessary to characterize environment conditions. To deduce at
a given time what is the state of the environment it is necessary to first sample its behavior.
Using a sample we can then make inferences regarding the state of the system, and in particular
estimate the probability distributions of the random variables.

In the same way that there are an infinity of numbers, there are also an infinity of possible
probability distributions. In practice, some numbers are particularly common or important and
thus become well-known, such as the numbers 1, 2, π or

√
2. Likewise, there are various

well-known families of probability distributions, such as the Normal, Exponential and Poisson
distributions. Despite their name, each well-known “distribution” does not specify a particular
probability distribution function. Instead, they have parameters which control properties of the
distribution, such as their average value or dispersion, giving rise to an infinity of fully specified
probability distribution functions.

Traditionally, the process of statistical inference is done through parametric methods. That
is, methods which assume that the sample values are the result of a random variable whose
distribution function belongs to a well-known family, but for which the parameters must be
estimated. This assumption, when valid, brings several benefits. It allows estimators to have more
statistical power, producing estimates that are more accurate or that otherwise could not even
be determined. The simplicity and benefits of parametric methods made them widely applied,
and they are often used even when no distribution perfectly matches the studied phenomenon.
However, when the assumptions made by parametric statistics do not hold the results can be
extremely misleading. Because parametric methods strongly depend on their assumptions they
are not statistically robust.

Prior work applying statistical adaptation [1] has tried to guarantee the parametric assumptions
by employing runtime statistical diagnostics. That involves checking the goodness of fit of the
observations of a random variable against the possible distributions. If the fit is good enough (i.e.,
very unlikely to be due to chance) then parametric methods can be used safely. Unfortunately,
the disadvantages of such strategy are particularly onerous for WSNs. Most importantly, the
necessary statistical tests are computationally expensive, making them unfeasible for limited
devices such as sensor nodes.

As an alternative, we propose to achieve lightweight dependable adaptation through the use
of non-parametric statistics — that is, methods which are distribution-free. Non-parametric
methods are robust, since they apply to all probability distributions, making them fit for the
wide variety of WSN scenarios and protocols. They are also lightweight, requiring only very
simple computations, thus conserving energy. And, despite their simplicity, they can also be
surprisingly effective.

A. Non-parametric statistical analysis
The fundamentals of how non-parametric statistics are used in the proposed solution, and how

they differ from the parametric methods of previous work, can be explained by comparing the
two histograms in Figure 1.

4

5 10 15 20 25 30 35

0.05

0.10

0.15

5 10 15 20 25 30 35

20

40

60

80

100

Figure 1: Two histograms for one same sample: normal and cumulative

The left histogram of Figure 1 shows twenty bins, each of which counts the frequency of
values occurring in a particular interval. By glancing at such an histogram we can informally
check if there is a good fit between the sample values and well-known distributions. In this case
we do not immediately recognize some of the most well-known distributions: the distribution
is asymmetric, so it is not a Normal distribution; after the third bin the histogram resembles an
Exponential distribution, but the first two bins do not match; it is also not quite the shape of a
Poisson distribution with a low λ value.

If we included a near-infinite amount of distributions against which to test the goodness of
fit of our sample values then, eventually, we would find a good match. But such method would
not achieve good results: the performance of testing huge amounts of distributions would not be
sustainable on a sensor node. We would also match many possible distributions, so we would
not know which to use to better predict yet unobserved values and their probabilities.

An alternative to matching the sample values to a theoretical model, and then using the
properties of the theoretical model to drive adaptation, is to use only the statistical properties
of collected sample itself, free of distribution assumptions. The right histogram of Figure 1
illustrates that approach, by virtue of being a cumulative histogram.

In a cumulative histogram the bins count the occurrences (or relative frequency) of values
that fall in the range of those bins or the preceding ones. It thus becomes easier to see what
percentage of the sample values is equal or smaller than some other value. For instance, we
see that about 80% of the sample values are equal or smaller than 15. If this were a sample
of latencies in the system then we could use this non-parametric analysis as statistical evidence
to drive the adaptation. For instance, we could make sensor nodes wait for some event only up
to 15 time units, and that way know that timing failures would occur only for approximately
20% of the events. That is, we would be using the empirical distribution to guide the process
of adaptation.

Directly using the empirical distribution to make statistical inferences about the sampled
system disregards the problem of sampling error. For instance, by using the empirical distribution
present in Figure 1 we might be tempted to conclude that a time bound of 35 time units would
be enough to receive 100% of events, and that way avoid timing failures. Of course, this ignores
the possibility that there might be a small percentage of events which have higher latencies but,
by chance, were not captured in the sample.

One possible solution then is to increase the sample size. As the number of sample values
approaches infinity the statistics of the sample converge to the true values of the population.

5

Alas, it is not practical to use nearly infinite sample sizes. For one, it would be computationally
expensive, particularly in sensor nodes. Also, as the environment changes the older values would
no longer reflect its state.

The solution, therefore, must entail taking into account the sampling error and estimating how
much of the population really is equal or less than a given sample value. In fact, this is not
done for the sample value per se but, instead, for its ordinal ranking in the sample. So, in the
example given before, 35 time units was estimated to cover 100% of the population not because
the value was 35 but because that was the nth order statistic of a sample with n values (i.e.
the maximum)1. What we want, then, is to make such inferences but taking into account the
sampling error, and for a generic order statistic. For that we can use the Beta distribution.

The kth order statistic of the Uniform distribution can be described by a Beta(α, β) distribution
with parameters α = k and β = n+ 1− k. The mean of the Beta distribution is given by:

mean =
α

α + β
(1)

Therefore, the mean for the kth order statistic is given by:

mean =
k

n+ 1
(2)

Consider then a sample for a Uniform(0, 1) distribution, with n = 20. In that case the order
statistic k(20) would take, on average, the value of 20

21
, or approximately 0.95. If we used the

order statistic as an upper bound we could then infer to be covering, on average, 95% of the
population, instead of the 100% we would expect while not taking into account the sampling
error.

We could take such a direct conclusion because for a Uniform(0, 1) distribution the rank of
a quantile is equal to the value of the quantile itself. For instance, the quantile q0.25 represents
the value x such that the probability of a random variable being less than or equal to x is 25%.
For a Uniform(0, 1) distribution the value x is also 0.25, the same as the rank.

For other distributions the values are not uniformly apportioned between 0 and 1. Nevertheless,
the quantiles are, by definition, uniformly distributed between 0 and 1. As such, it is still correct
to use a Beta distribution to infer what is the average rank of the quantile to which an order
statistic corresponds. The next section explains how to generically apply this to a monitoring
solution.

B. Monitoring Method
The overall process of adaptation is done by sampling the environment, inferring the state of

the system from the sample values and adapting to that environment. The adaptation itself can
start as soon as enough values are collected. The necessary amount of sample values depends
on the desired (or target) average coverage.

On the one hand, it depends on the minimum desired coverage. The nth order statistic has an
average value of n/(n + 1). As such, with 1 sample value it is possible to start the adaptation
for minimum coverages of up to 1/(1 + 1) = 50%, with 2 values for minimums of up to
2/(2 + 1) = 66.7%, with 3 values for up to 75%, and so on.

1The ith order statistic of S is the ith smallest element of S. Such an element is said to have rank i.

6

��

����

����

����

����

�	

�� ���� ���� ���� ���� �	

�����

����

��
��
��
���
��
��
��
��
��
�

������������������

 !	�
 !"�

 !���

Figure 2: Non-parametric average coverages for different sample sizes

On the other hand, the number of required sample values also depends on how accurately
the coverage must be matched. Figure 2 illustrates (with lines of different widths) the impact of
choosing different sample sizes on the average coverage obtained by applications.

Ideally, the process of adaptation would result in applications obtaining a coverage equal to
the one asked by the application. What we see is that with a sample of only 10 values there
are large gaps between various coverages the application can ask for and the coverage that is
obtained. Also, even by choosing the largest value from the sample the application will only
obtain (on average) a coverage of 90.9%, which is not very high. On the other hand, for a sample
with 30 values the gaps between the requested coverages and the average ones become more
reasonable. Finally, for a large sample of 200 values we observe that the adaptation process
starts to approach an optimal diagonal line, and can reach a high coverage of about 99.5%.

Having a sufficient number of sample values, we then order the sample and chose the value
whose rank best matches a target average coverage. If we take equation 2, substitute the mean
by a target coverage C and solve for the rank k we get:

k = C ∗ (n+ 1) (3)

This should give us the rank of the sample value which matches the target coverage C.
Unfortunately, the equation does not consider two problems. One is that the derived rank might
be non-integral, if no rank exactly matches the requested average coverage. Another is that the
computed rank may be out of bounds, if the sample size does not achieve a low enough or high
enough average coverage.

Algorithm 1 takes the base calculation of equation 3, performs the necessary adjustments
to deal with those two problems, and returns the sample value whose rank best matches the
requested coverage. It is also adjusted for a zero-based indexing of the sample array, for additional
clarity of implementation.

While coverages of exactly 0% and 100% would never be valid for samples of finite size,
Algorithm 1 accepts target coverages with values of 0 and 1. Since floating point numbers have

7

Algorithm 1 Bound estimation algorithm
Input: ordered sample array sample[n]
Input: desired average coverage C (floating point)
Output: time bound (with average coverage C)

1: assert (C ≥ 0.0 and C ≤ 1.0)
2: index ← �(C ∗ (n+ 1))− 0.5�
3: if index < 0 then
4: index ← 0
5: else if index ≥ n then
6: index ← n− 1
7: end if
8: return sample[index]

finite dynamic range, similar values may happen to be rounded to those limit values. With the
addition of the guard conditions on lines 3–7 such cases are gracefully handled anyway.

After the minimum sample size is attained we can continue to append new values to the sample.
The maximum sample size should be chosen according to the limitations of the hardware and
the dynamics of the environment. For rapidly changing environments smaller sample sizes must
be chosen, to ensure that the adaptation process does not reflect stale views of that environment.
Section IV-C evaluates the empirical impact of different sample sizes. Once the sample is filled
to its maximum the oldest values should be discarded before adding new values. This results in
a sliding window.

IV. EVALUATION

A. Complexity Analysis
Non-parametric order statistics entail selecting a kth smallest value from an ordered sample.

Our sample is a constantly changing (unordered) sliding window, updated from the latencies of
received packets, up to a size n. This sliding window can be implemented as circular buffer,
with an array for the sample values, a pointer to the beginning of the window and a fill counter.
This way, adding new values to the sample takes O(1) time, with a very low constant.

An obvious way to select the kth smallest values from the unordered sample is to create a copy
of the sample, sort it, and select the kth value. Such solution has a worst-case time complexity of
O(n log n) and a space complexity of O(n). For small sample sizes this cost can be reasonable,
even on a limited device such as a sensor node. A sorting function can generally be reused from
the sensor node’s software library, not incurring an extra code space penalty.

For larger sample sizes a better alternative is to use the selection algorithm first described in [5]
and more clearly explained in [6], which has a O(n) worst-case time complexity and O(1) space
complexity. This algorithm is, on average, less efficient than Hoare’s Selection Algorithm, but is
safer for real-time sensors, since the later algorithm has a nonlinear worst-case time complexity,
making it less predictable.

If sublinear time complexity is required then a red-black tree can be used, at the expense of
additional memory and an increase in insertion time. Updating the tree-based ordered sample
takes time with O(log n) complexity, instead of O(1), but the order statistic can be found in
O(log n) time.

8

B. Performance Magnitude
Today’s sensor nodes are equipped with very rudimentary CPUs. While that is expected to

eventually change, for now that is a reality that must be dealt with.
Besides being slow, the CPUs of sensor nodes also typically lack a floating point unit. While

it is possible to add floating point software emulation libraries, such libraries would make
computations even slower. They would also take up a lot of code space, which is very limited
on sensor nodes, generally on the order of a few kilobytes. Since the general bound selection
algorithm provided in Algorithm 1 relies on floating point, for practical implementations it must
be optimized.

One possible alternative is to use fixed-point arithmetic. For instance, instead of specifying
a coverage of 85% as the floating point number 0.85 it can instead be specified by the integer
85. Such alternative algorithm can be implemented using an integer division, plus a few basic
operations.

Still, even an integer division is a complex operation. In fact, the CPU of the popular MICA2
mote (an Atmel AVR ATmega128) does not even implement a native integer divide instruction.
One possible solution is to use a software division routine. For that CPU, a 16 / 16 bit division,
with 16 + 16 bit signed result can be implemented in 39 code words, taking 255 execution cycles
to compute (16 bits allows for samples with more than 256 values).

Another possibility, which avoids division instructions, is to receive the input coverage as
an integer in the range [0, 127], instead of [0, 100%]. Algorithm 2 exemplifies how such an
optimized bound estimation algorithm can be implemented.

Algorithm 2 Fixed-point bound estimation algorithm
(coverage range [0, 1] mapped to {0, 1, ..., 127})

Input: ordered sample array sample[n]
Input: desired average coverage C (integer)
Output: time bound (with average coverage C)

1: assert (C ≥ 0 and C ≤ 127)
2: index ← ((C ∗ (n+ 1))− 128)
3: index ← index/128
4: if index < 0 then
5: index ← 0
6: else if index ≥ n then
7: index ← n− 1
8: end if
9: output sample[index]

While Algorithm 2 shows a division by 128 at line 3, that division can be implemented as a
right shift instruction, and thus be computed very quickly.

With the presented simplifications, the algorithm requires on the order of less than 100 simple
instructions. To this we must add the additional cost of sorting the sample, or of using a linear
time selection algorithm. Assuming the worst-case cost of 5.4305∗n comparisons for the selection
algorithm reported in [5], also assuming about 5 cycles per comparison, and a sample size of
30 values, we would be adding 815 cycles. That is still well under 1000 cycles total. We can

9

therefore estimate a performance magnitude of more than 8,000 bound estimations per second,
for a simple 8 MHz CPU.

As such, we conclude that the proposed adaptation algorithm can be made lightweight enough
for Wireless Sensor Networks. It is not a bottleneck and should not have a significant impact
on energy consumption.

C. Adaptation Benchmark
The statistical properties in which we rely for monitoring the environment and driving the

adaptation process are theoretically guaranteed. In practice, they only hold if the assumptions
in which they are based can be relied upon. Particularly, we assume that the behavior of the
environment is stochastic, with limited dynamics.

In this section we benchmark an adaptation process, which uses the proposed bound estimation
algorithm, to determine the empirical effectiveness of the non-parametric method. The benchmark
verifies if, given a stream of real network latencies, the estimated bounds are able to maintain
the desired average coverage. We selected the following collection of network latency traces for
the benchmark:
• Inmotion: FTP file transfers between cars traveling at various speeds and an 802.11b access

point;
• Umass: Wireless traces from University of Puerto Rico, using laptops over various distances;
• Dartmouth: Wireless traces from Dartmouth College;
• LBNL/Datcat: Traffic of an enterprise network from Lawrence Berkeley National Labora-

tory (LBNL);
• RON: Latency samples from the RON (Resilient Overlay Network) testbed;
These traces were previously used to benchmark Adaptare, an adaptation framework based on

parametric methods, and are referenced in [1]. Using these specific traces has some advantages.
Because we are reusing the same traces that were used to benchmark Adaptare, it allows us to
accurately compare our results, with regards to the obtained coverage. The traces also exhibit a
great variety of behaviors. Since the field of WSNs is still evolving rapidly (with no de facto
standard for MAC and network protocols), and sensor networks can be applied in very different
scenarios, it is important to test if the proposed method is effective for a variety of latency
patterns.

In Figure 3 we plotted the chosen traces, showing the evolution of latencies throughout time.
No scale was included for simplicity, but the figure allows us to visually confirm that the traces
do exhibit a wide variety of patterns, and therefore are suitable to validate the proposed method.

There is necessarily a trade-off (all things being the same) between higher bounds, which
can guarantee a higher coverage but will result in lower performance, and lower bounds, which
provide lower coverages but also allow higher performances. As such, this benchmark tries
to evaluate the capability of the proposed algorithm to estimate bounds which best match a
requested coverage, with its implied trade-off.

One trial of the benchmark was performed as follows. We evaluated both the proposed non-
parametric method and the Adaptare framework, for each trace. We selected the most favorable
sample size to Adaptare, 30 values [1], to assure a meaningful comparison, despite that sample
size limiting the maximum coverage of the non-parametric method to about 96.77%. For each
method, we examined a range of target coverages, from 1% to 99%, in 1% increments. For
each trace, the first 30 values were used to fill the sample, leaving the other trace values to
test the bound estimation. For each of the remaining trace values we repeated these steps: 1)

10

��������	
����
�� ��������	
�������� ���	
��	�����������

������	
�� ������	��� ����	�����������	
�

��������������	
� ��������������	
� ��������������	
�

�������	 �������	 ��������	

��������
 ��������� ������	��
��������

	
�����
��������� 	
��������
��
 	
������������

Figure 3: Plots of recorded latencies, exhibiting different dynamics

11

��

����

����

����

����

�	

�� ���� ���� ���� ���� �	

���		

��

�
��

��
��

��
��

��
�

�����������������

�����������#�$
%��&����'���(����#�$

%��&����'���(�)�����(�*����#�$
+��,�(���������

Figure 4: Empirical average coverages (n = 30)

estimated latency bounds using both the non-parametric method and Adaptare; 2) increased
timeout counters for each method, if the trace value exceeded the estimated bound; 3) removed
the oldest value from the sample; 4) added the new trace value to the sample. At the end of the
process we computed the obtained average coverage for each method, using the formula:

coverage = 1− (timeouts/tested samples). (4)

Figure 4 plots an average of the coverages that were obtained for all the tested traces. Looking
at this figure we can take the following conclusions:
• Both the proposed non-parametric method and the Adaptare framework are able to adapt

to different target coverages, increasing the empirical coverage for higher target coverages;
• Despite its simplicity, the non-parametric method comes much closer to matching the target

coverage (the “perfect adaptation” line), especially for higher coverages;
• Due to the small sample size the non-parametric method exhibits a significant staircase

effect. These is the result of choosing the same order statistic for different target coverages,
and is to be expected;

• Also due to the chosen sample size, the non-parametric method is unable to achieve
the highest target coverages. Contrarily, the Adaptare framework can deduce statistical
properties of the environment not directly present in the sample, to successfully estimate
bounds for the highest coverages.

Figure 4 summarizes the results for the tested traces, by presenting an average of those results.
It is legitimate to question what variation there is in the individual results. Figure 5 and Figure 6
present the best and the worst individual results, respectively.

We see in Figure 5 that the non-parametric method achieves nearly perfect adaptation, while
the Adaptare framework retains a behavior similar to the average. In Figure 6 we observe that
both for the non-parametric method as for the Adaptare framework there is some disruption in

12

��

����

����

����

����

�	

�� ���� ���� ���� ���� �	

��
��

��
��
�	

�
��

�
�

����������	
�����

���������������
�
�������������������

�
����������������
��������������
����������������
�

Figure 5: Empirical coverages: ‘ron2-ms60-30’

��

����

����

����

����

�	

�� ���� ���� ���� ���� �	

��
��

��
��
�	

�
��

�
�

����������	
�����

���������������
�
�������������������

�
����������������
��������������
����������������
�

Figure 6: Empirical coverages: ‘inmotion-15mph-day3-30’

the adaptation, compared to the averages. Still, the non-parametric method is on average closer
to the target coverage.

Observing Figure 3 we note that the latency plots for the RON traces do exhibit a seemingly
stochastic behavior, while the traces for Inmotion have repeating patterns (e.g. inmotion-15mph-
day3) and other forms of low randomness. Also, while the RON traces reflect the prolonged
interaction of many different network nodes, the Inmotion traces capture brief file transfers
between a single mobile node and a base station, distant from other active network nodes.
Therefore, we believe that the differences in the obtained results reflect how well the different
scenarios meet our assumptions.

13

��

����

����

����

����

�	

�� ���� ���� ���� ���� �	

�����

��

 �
��

��
��

��
��

��
�

������ �����������

���������� �������	���
������ �!��� � ���

Figure 7: Empirical average coverages (n = 100)

Since we aim to apply the presented adaptation methods to WSNs, which typically have many
nodes and operate in open environments, we believe that these results validate the adaptation
capabilities of the non-parametric method. In scenarios which closely match our assumptions
the results show a nearly perfect adaptation, while in adverse scenarios the method still achieves
coverages generally close to the target. For the favorable scenarios the only significant limitations
that were found were due to the limited sample size. For that reason, another trial of the
benchmark evaluated a larger sample size.

Figure 7 presents the coverages of the non-parametric method, averaged from all traces, using a
large sample: 100 values. We observe that, as expected, a larger sample size raised the maximum
achievable coverage, to more than 99%. The larger sample size also removed the staircase
effect and resulted in empirical coverages much closer to the target. For instance, the maximum
coverage obtained was 99.07%, close to the theoretical average of 99.01%. These results also
validate our assumption of limited environment dynamics, since with a larger sample (i.e. with
one which includes older values) we still achieved a very good adaptation — in fact, better than
with a smaller sample.

V. RELATED WORK

There are two important lines of work related to this paper. One concerns protocols and other
architectural mechanisms which aim to achieve real-time or QoS-driven behavior in WSNs.
Another one deals with reliable wireless communication, including the physical mediums, radio
propagation, link quality, interferences and similar issues. In this section we review related work
on these subjects.

A. QoS and Real-Time
Two surveys of WSNs which summarize various QoS and real-time related issues can be

found in [7] and [8]. These issues include the network architecture, platform and sensor hardware,

14

collaboration and coordination protocols and middleware, as well as MAC, network and transport
layer protocols.

The work presented in [9] focuses on issues related to traffic QoS, and on various routing and
MAC protocols that were proposed to address QoS requirements.

For exploiting the redundancy of WSNs, multi-path protocols have been proposed, for instance
in [10]. Also relevant for QoS provisioning, the Multi-Path and Multi-Speed Routing Protocol
(MMSPEED) is described in [11]. It tries to achieve QoS differentiation in two independent do-
mains: timeliness and reliability. To achieve the necessary reliability, MMSPEED also attempts to
exploit the redundancy of dense sensor networks and uses multipath forwarding. Differently from
our approach, MMSPEED uses rudimentary mathematical calculations that are not supported by
a statistical method. The end-to-end communication success probability is extrapolated at each
node by keeping track of just a packet loss rate and adjusting for error probability for the path’s
number of hops.

Similarly, the RAP architecture [12] tries to provide real-time communication in large-scale
WSNs. By giving higher priority to packets with longer routing distances the architecture’s
scheduling reduces deadline misses for packets far-away from their destination.

The paper in [13] presents a middleware mechanism that allows users of the network to request
different QoS requirements. It also considers that stricter QoS requirements can be achieved by
exploiting the redundancy of WSNs.

Various QoS aware routing protocols exist, which try to achieve the necessary quality while
still conserving energy. Examples include the protocols published in [14] and [15].

In this paper we implicitly assumed that a sensor network implementing the proposed mecha-
nism would be able to measure the relevant QoS metrics, such as packet latencies. One common
way to achieve those capabilities is to have a notion of global time. The work in [16] proposes
a way to achieve efficient global clock synchronization for WSNs.

B. Reliable Wireless Communication
The study of reliable wireless communication in the context of WSNs has investigated several

issues. One problem that has been identified is that, as the popularity of WSNs and other networks
grows, the existing electromagnetic spectrum will get crowded [17].

To some extent the problem is already being observed in existing environments. Experiments
referred in the work of [4] identify a packet loss between 3% and 58% for a multi-hop 802.15.4
sensor network, sharing the 2.4 GHz frequency with a WiFi network, depending on the sending
rate of the competing WiFi network and the length of the WSN routing path.

The problem can be dealt from different perspectives. One, particularly relevant to this paper, is
to allow the networks to cooperatively allocate resources to control QoS among themselves [17].
Another solution, also relevant for reliability, is to increase the redundancy of communication,
allowing nodes to operate over various communication channels and frequencies [18], [19] or
even providing them with multiple radios [20].

Another issue that has received attention is understanding and modeling the propagation of
radio waves. Higher accuracy models have been devised [21], [22], which are relevant for
highly tuned QoS-driven architectures and for simulations to validate their results [23]. Correct
models are necessary to understand the causes of packet delivery failure [24], the probability of
failure [25] and consequences on multi-path routing [26].

Also relevant to dependable adaptation is how to assess the wireless link quality [27], [28],
[29] and how to detect the occurrence of radio interferences [30], which is necessary to trigger

15

adaptation.

VI. CONCLUDING REMARKS

We presented a lightweight solution for the dependable characterization of network QoS met-
rics, based on non-parametric statistics, which allows WSNs and their applications to dependably
adapt to changing conditions.

We evaluated the complexity and performance of the proposed solution, concluding it to be
lightweight enough for WSNs. We also benchmarked its adaptation effectiveness. The benchmark
validated the capability of the proposed technique to successfully adapt in a variety of real-world
conditions.

ACKNOWLEDGMENT

The authors would like to thank Teresa Alpuim for her support.

REFERENCES

[1] Dixit, M., Casimiro, A., Lollini, P., Bondavalli, A., Verissimo, P.: Adaptare: Supporting automatic and
dependable adaptation in dynamic environments. ACM Transactions on Autonomous and Adaptive Systems
(to appear) (2011) also as Technical Report DI/FCUL TR-09-19.

[2] Zhou, G., He, T., Stankovic, J.A., Abdelzaher, T.: Rid: Radio interference detection in wireless sensor networks.
In: in INFOCOM. (2005)

[3] Xu, W., Trappe, W., Zhang, Y.: Channel surfing: defending wireless sensor networks from interference. In:
Information Processing in Sensor Networks. (2007) 499–508

[4] Musaloiu-elefteri, R., Terzis, A.: Minimising the effect of wifi interference in 802.15.4 wireless sensor
networks. International Journal of Sensor Networks 3 (2008) 43–54

[5] Blum, M., Floyd, R.W., Pratt, V.R., Rivest, R.L., Tarjan, R.E.: Time bounds for selection. Technical report,
Stanford, CA, USA (1973)

[6] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. The MIT Press, New York
(2001)

[7] Martı́nez, J.F., Garcı́, A.B., Corredor, I., López, L., Hernández, V., Dasilva, A.: Qos in wireless sensor
networks: survey and approach. In: Proceedings of the 2007 Euro American conference on Telematics and
information systems. EATIS ’07, New York, NY, USA, ACM (2007) 20:1–20:8

[8] Akyildiz, I.F., Melodia, T., Chowdhury, K.R.: A survey on wireless multimedia sensor networks. Computer
Networks 51 (2007) 921–960

[9] Younis, M., Akkaya, K., Eltoweissy, M., Wadaa, A.: On handling qos traffic in wireless sensor networks.
Hawaii International Conference on System Sciences 9 (2004) 90292a

[10] Li, S., Neelisetti, R., Liu, C.: Efficient multi-path protocol for wireless sensor networks. International Journal
of Wireless and Mobile Networks (IJWMN) (Jan 2010)

[11] Felemban, E., gun Lee, C., Ekici, E., Boder, R., Vural, S.: Probabilistic qos guarantee in reliability and
timeliness domains in wireless sensor networks. In: Proc. of the IEEE Infocom. (2005) 2646–2657

[12] Lu, C., Blum, B., Abdelzaher, T., Stankovic, J., He, T.: Rap: A real-time communication architecture for
large-scale wireless sensor networks. In Real-Time Technology and Applications Symposium (2002)

16

[13] Sharifi, M., Taleghan, M.A., Taherkordi, A.: A middleware layer mechanism for qos support in wireless sensor
networks. Mobile Communications and Learning Technologies, Conference on Networking, Conference on
Systems, International Conference on 0 (2006) 118

[14] Mahapatra, A., Anand, K., Agrawal, D.: Qos and energy aware routing for real-time traffic in wireless sensor
networks. Computer Communications (Jan 2006)

[15] Akkaya, K., Younis, M.: Energy and qos aware routing in wireless sensor networks. Cluster Computing (Jan
2005)

[16] Li, Q., Rus, D.: Global clock synchronization in sensor networks. IEEE Transactions on Computers 55(2)
(2006)

[17] Zhou, G., Stankovic, J.A., Son, S.H.: Crowded spectrum in wireless sensor networks. In: Proceedings of
Third Workshop on Embedded Networked Sensors (EmNets. (2006)

[18] Xu, W., Trappe, W., Zhang, Y.: Channel surfing: defending wireless sensor networks from interference. In:
Information Processing in Sensor Networks. (2007) 499–508

[19] Kim, Y., Shin, H., Cha, H.: Y-mac: An energy-efficient multi-channel mac protocol for dense wireless sensor
networks. In: Information Processing in Sensor Networks. (2008) 53–63

[20] Ansari, J., Zhang, X., Mähönen, P.: Multi-radio medium access control protocol for wireless sensor networks.
In: Conference On Embedded Networked Sensor Systems. (2007)

[21] Scott, T., Wu, K., Hoffman, D.: Radio propagation patterns in wireless sensor networks: new experimental
results. In: Proceedings of the 2006 international conference on Wireless communications and mobile
computing. 857–862

[22] Zhou, G., He, T., Krishnamurthy, S., Stankovic, J.A.: Models and solutions for radio irregularity in wireless
sensor networks. ACM Transactions on Sensor Networks 2 (2006) 221–262

[23] Martınez-Sala, A., Molina-Garcıa-Pardo. . . , J.: An accurate radio channel model for wireless sensor networks
simulation. Journal of Communications and Networks (Jan 2005)

[24] Srinivasan, K., Dutta, P., Tavakoli, A., Levis, P.: Understanding the causes of packet delivery success and
failure in dense wireless sensor networks. Technical report, In Technical report SING-06-00 (Jan 2006)

[25] Cerpa, A., Wong, J.L., Kuang, L., Potkonjak, M., Estrin, D.: Statistical model of lossy links in wireless sensor
networks. In: Information Processing in Sensor Networks. (2005) 81–88

[26] Cerpa, A., Wong, J.L., Potkonjak, M., Estrin, D.: Temporal properties of low power wireless links: modeling
and implications on multi-hop routing. In: Mobile Ad Hoc Networking and Computing. (2005) 414–425

[27] Baccour, N., Koubı́a, A., Ben Jamı́a, M., do Rosário, D., Youssef, H., Alves, M., Becker, L.B.: Radiale: A
framework for designing and assessing link quality estimators in wireless sensor networks. Ad Hoc Netw. 9
(September 2011) 1165–1185

[28] Baccour, N., Koubaa, A., Jam Atextcenta, M.B., Youssef, H., Zuniga, M., Alves, M.: A comparative simulation
study of link quality estimators in wireless sensor networks. (2009) 1–10

[29] Xu, Y., chien Lee, W.: Exploring spatial correlation for link quality estimation in wireless sensor networks.
In: in Proc. IEEE PerCom. (2006) 200–211

[30] Zhou, G., He, T., Stankovic, J.A., Abdelzaher, T.: Rid: Radio interference detection in wireless sensor networks.
In: in INFOCOM. (2005)

17

KARYON ‐ FP7‐288195
D3.1 – First Report on Supporting Technologies (Annex)

© 2012 KARYON Project 140/188

KARY N

KARYON ‐ FP7‐288195
D3.1 – First Report on Supporting Technologies (Annex)

© 2012 KARYON Project 141/188

KARY N

A.2.2 Programming	abstractions	and	middleware	for	building	control	
systems	as	networks	of	smart	sensors	and	actuators	

“Programming abstractions and middleware for building control systems as networks of smart
sensors and actuators”. Sebastian Zug, Michael Schulze, Andre Dietrich, Joerg Kaiser,
September 2010, ETFA 2010 - 15th IEEE International Conference on Emerging Technologies
and Factory Automation, Bilbao, Spain.

KARYON ‐ FP7‐288195
D3.1 – First Report on Supporting Technologies (Annex)

© 2012 KARYON Project 142/188

KARY N

This page is intentionally left blank.

Programming abstractions and middleware for building control systems as
networks of smart sensors and actuators

Sebastian Zug, Michael Schulze, André Dietrich, Jörg Kaiser
Universität Magdeburg

Department for Distributed Systems
Universitätsplatz 2, 39106 Magdeburg, Germany

{zug, schulze, dietrich, kaiser}@ivs.cs.uni-magdeburg.de

Abstract

Developing complex sensor/actuator systems, like ro-
bot applications, is challenged by a multitude of different
hardware platforms, networks, programming languages,
data formats, etc. In this paper, we present our architec-
ture that copes with this heterogeneity and allows for a
flexible composition of smart sensors and actuators. The
main focus lies on a two layered approach combining the
communication middleware FAMOUSO and the program-
ming abstraction MOSAIC. FAMOUSO enables the infor-
mation exchange between networked systems, hides the
high degree of heterogeneity on hardware and network
level, and is usable from different programming environ-
ments. MOSAIC uses FAMOUSO and provides a generic
access to the exchanged information. Furthermore, it of-
fers a way to abstract from different sensor and actuator
hardware and provides a framework for application de-
velopment with predefined components, enabling compre-
hensive fault detection. The paper concludes with a case
study that shows how the middleware and programming
abstractions are used to build a distributed modular sys-
tem for a robot manipulator.

1 Introduction

Networked components like smart sensors, actuators
and special computational devices emerge as the hardware
building blocks for large scale automation systems. They
offer the potential to build such control systems in a modu-
lar and incremental way or even allow dynamic extension
of the system when mobile units connect to fixed environ-
mental sensors spontaneously. Unfortunately, many prob-
lems have to be solved on the way to a reliable, seamlessly
integrated system that is easy to program, easy to extend
and easy to maintain.

One problem originates in the high degree of hetero-
geneity on all system levels that adversely affects inte-
gration. The diversity appears not only on the lower sys-
tem levels, i.e. different controllers, field-busses, proto-

cols and operating systems, but also on the level of pro-
gramming languages and domain specific tools to pro-
gram, monitor and maintain these systems. Changes of
the system configuration (e.g. replacement of a compo-
nent) or low level changes in one component (e.g., a net-
work address) may involve a chain of dependent changes
in other components which may require specific tools and
tedious reprogramming of flash memory. This kind of het-
erogeneity problem can be tackled by an adequate com-
munication model and middleware that hides the network
addressing schemes and offers a content- or subject-based
routing scheme. We assume that the individual smart com-
ponents have substantial resource constraints. Many smart
components in the automotive and also automation indus-
try are based on 8 or 16-Bit CPUs and the communication
networks have limited bandwidth. Thus, the middleware
must be able to work on these systems.

A second problem is the diversity of sensors with many
different modalities and data formats. This can be solved
by a standard that must cover a wide range of possible
sensors from simple temperature sensors to cameras. The
usual way to achieve this is defining a standard descrip-
tion of a sensor in the form of electronic data sheets, like
in [11, 17], but modifications and extensions are needed,
as we describe later. Moreover, defining a structured pro-
gramming model and a general interface simplifies the im-
plementation of sensor components, greatly.

The third problem is related to the structure of a sensor
and addresses reliability issues. Assuming a decentral-
ized system of sensors and actuators connected by wired
and wireless networks, an indication of correctness of in-
formation is important. Firstly, the compatibility of in-
formation like physical units and the temporal settings
during the system integration and configuration phases
must ensured. We tackle this problem with expressive
descriptions of components and endowing the compiler
and integration tools with the respective checking capa-
bilities [28]. The second aspect is related to the assess-
ment of the quality of individual sensor measurements
during run-time. This requires self-checking capabilities
of the components. The proposed sensor structure exploits

model-based analytic redundancy and comprises building
blocks for the detection of outliers and other typical sensor
faults [9].

This paper gives an overview of our architecture, de-
scribes the middleware and the sensor structure, and
presents a case study of a robot application that includes
many sensors, actuators, networks, and monitoring and vi-
sualization components. The contribution of the paper is
to show the problems when integrating such a system and
how the developed concepts and mechanisms ease pro-
gramming of such systems and system integration. In
the next section we survey related work in the relevant
areas. Then we sketch the main properties of the mid-
dleware FAMOUSO and briefly present the sensor model
MOSAIC. Section 4 introduces the case study and high-
lights the benefits of the proposed architecture. A sum-
mary and outlook on ongoing work concludes the paper.

2 Related Work

The related work section examines two main fields that
are challenging when integrating networks of smart com-
ponents. Firstly, we need appropriate middleware that en-
ables communication across different kinds of networks,
covering the field-bus level and energy-efficient wireless
protocols. This middleware must run on different hard-
ware platforms down to small micro-controllers. Sec-
ondly, we require a programming abstraction that offers
a uniform access to the exchanged information and a pre-
defined processing structure, utilizing this common inter-
face. In the following section we examine existing ap-
proaches with respect to our general requirements.

2.1 Communication Approaches
Internet Scale Middleware SIENA [6], HERMES [25]
or READY [12] are publish/subscribe systems, based on a
static broker overlay network with reliable TCP/IP con-
nections. Thus, these systems support information ex-
change for distributed application, but they demand a stan-
dard operating system like Linux or Windows, requiring
powerful devices.

The Network Data Distribution Service NDDS [24] or
the ACE ORB (TAO [13]) are publish/subscribe systems,
which support many platforms and also offer soft real-
time features. However, the communication is based on
UDP/IP, having also requiring powerful devices.

In general, traditional middleware systems such as
DCOM (Distributed Component Object Model [10]), JMS
(Java Messaging Service [31]) or CORBA-DDS (Com-
mon Object Request Broker Architecture-Data Distribu-
tion Service [23]) are normally heavyweight in terms of
memory and computation and therefore not suitable for
the use on resource-constrained embedded systems.

Robotic Middleware In the robotic field, middleware
systems have been developed that try to ease the de-
velopment by composing the robot’s control system at

the software level with components or services. Sys-
tems like OROCOS (Open RObot Control Software www.
orocos.org), OCERA (Open Components for Em-
bedded Real-time Applications www.ocera.org) or
Microsoft RoboticStudio [21] fall into this category.
OROCOS and OCERA are component systems, using
a CORBA-DDS implementation for the information ex-
change of distributed applications. However, integrating
low-level components connected via an industrial field-
bus the communication model is different, and applica-
tions have to know where information are located and real-
ize the access to such a bus by itself to get the required in-
formation, which makes the development uncomfortable.

In contrast to the component approach, the Microsoft
RoboticStudio uses a service-oriented architecture, which
supports the simulation of robot behavior in a virtual en-
vironment, based on realistic physical models that repro-
duce the mechanical behavior and offers the simulation of
most common sensors and actuators. Furthermore, it al-
lows applying the same control schemes to real hardware.
However, the disadvantage is the high resource require-
ments, because it uses TCP/IP for the communication and
needs a whole .NET framework to be worked.

Sensor Network Middleware For Wireless Sensor Net-
works (WSNs) only few middleware systems are avail-
able, like MIRES [30] supporting publish/subscribe com-
munication or TinyLIME [7] providing a tuple space. Us-
ing these middleware systems means to be tied to the com-
ponent model of TinyOS [16], because both are developed
on top of this. Furthermore, applications have to be pro-
grammed in NesC, the programming language of TinyOS,
which means on the one hand the developer can not use
its preferred tools and on the other hand it needs to learn a
new language. However, the main drawback of using the
mentioned systems is the lack of support of TinyOS for
different platforms, because at the moment of this writing
only three different CPUs are supported.

2.2 Programming Abstraction Approaches
Instrumented Logical Sensor Henderson et al. pro-
posed hierarchically applicable fusion/filter units, called
Logical Sensors or Instrumented Logical Sensors [14] and
developed a complete toolchain with a sensor descrip-
tion, configuration, and code generation. Henderson’s ap-
proach focuses on an adaptability of each Logical Sen-
sor to a varying number of incoming data. A sensor se-
lection mechanism manages the data acquisition for this
purpose and tries to compensate missing individual sen-
sor measurements or network inputs. The Logical Sensor
integrates network interfaces only. Real transducers and
their drivers are executed separately in a special gateway
instance of a Logical Sensor. The characteristic output
vector, defined for each Logical Sensor, does not consider
several aspects of sensor applications like perception un-
certainties, units of measurement, etc. necessary for a tai-
lored processing or fusion.

2

Fusion Channels The fundamental abstraction of the
architecture described by Agarwalla et al. in [26] is called
a Fusion Channel (FC). A FC abstracts a set of inputs and
encapsulates a programmer defined fusion function. The
inputs are obtained from a distinct address space or from
a remote host. The behavior of the fusion process is con-
trollable by requests to the FC or triggered in case of new
input data. Applications access the FC result in two ways:
as a single value with a timestamps or the whole FC out-
put buffer. Requests specify a minimum number of inputs
and a timeout to get a result. Further, FC may be orga-
nized in hierarchical structures. The FC approach does
not consider an abstract description of the exchanged in-
formation. The developer, who prepares a fusion applica-
tion running inside a FC, has to have an explicit knowl-
edge of the memory usage. An implementation of the FC
concept in the Dfuse framework [19] requires a complex
predefined infrastructure and uses Ethernet based proto-
cols only.

Virtual Sensors The traditional Virtual Sensor merges
several measurements into a joint estimation, quite often
based on a physical model as presented in [2] . In contrast,
Bose et al. [4] describe a programming abstraction for dis-
tributed applications and defines a number of subclasses
for different purposes of hierarchical ordering. The first
level, the Singleton Virtual Sensor (SVS), accepts only in-
dividual measurements and assigns sensor position, sensor
ID, etc. A Basic Virtual Sensor (BVS) combines multiple
SVSs of the same type and provides a better reliability. A
Derived Virtual Sensor integrates different BVSs and pro-
vides abstract SQL queries to raw and joint data. In case of
crashed Virtual Sensors the network structure is reconfig-
ured automatically. The reconfiguration mechanism lim-
its the Virtual Sensors to simple sensor assumption about
sensor specifications i. e., equal measurement noise, equal
range, etc. for all sensors. Additionally, Virtual Sensor
applications are limited to a hierarchical depth of three
nodes, according to the definition of the three subclasses.

Smart Transducer Interface (STI) The OMG Smart
Transducer Interface Specification [22] provides an access
to sensor measurements via the CORBA real-time service
interface. The standardization of the different interfaces
is mapped on an interface file system (IFS) typically in
the memory of each Smart Transducer. For an interpreta-
tion of the outputs an additional metadata for each IFS are
stored on a central node with higher performance. The in-
tegration of CORBA limits the implementation of the STI
approach to powerful CPUs. The authors of [11] enhanced
the STI concept and developed an XML description of
the functionality for simple fusion tasks, also offering a
TTP/A network support.

IEEE 1451 The Smart Transducer Interface represents
a family of standards for connecting smart devices [17].

IEEE 1451.2 defines an electronic data sheet and a dig-
ital sensor interface to access sensor measurements, set
actuators, control maintenance functions, or to obtain the
data sheet of the sensor/actuator system. Hence, the
standard establishes the communication between a Net-
work Capable Application Processor (NCAP) and an ac-
tual sensor node called Smart Transducer Interface Mod-
ules (STIM). The combination enables a flexible access
to different networks via special NCAP gateways. The
standards 1451.3 to 1451.5 enhance the interaction be-
tween STIMs and NCAPs to various protocols and inter-
faces. The description of the sensors, stored at each node,
contains a detailed specification of the sensor’s vendor,
firmware, and physics in a compressed Transducer Elec-
tronic Data Sheets (TEDs). TEDs do not support complex
sensor information like characteristic curves for lineariza-
tion or probability functions of sensor’s noise. The use in
realistic sensor scenarios without this information is quite
limited. Compared to other mentioned approaches IEEE
1451 represents an abstract description of the sensors in-
terfaces only, which have to be mapped to a predefined
number of sensor types. In [18] the authors use some
concepts of the standard to develop a more common pro-
gramming abstraction with middleware interactions but
restricted to simple sensor models.

2.3 Conclusion
The described middleware implementations are usable

in their specific contexts. They support special types of
networks and protocols and are either limited in scope
and functionality when supporting small devices or they
require very powerful nodes. None of the enumerated ab-
stractions, standards, etc. fully meets our expectations for
a unified programming abstraction for sensors and actua-
tors that considers varying configurations with a common
interface access and are executable on performance lim-
ited devices. Moreover, the related schemes do not pro-
vide integrated fault-tolerance mechanisms.

3 Architecture

We propose an architecture, providing the flexibility to
integrate and segregate components during run-time, dy-
namically. For this purpose we combine a communication
middleware and a programming abstraction for distributed
applications. The middleware organizes the transmission
of all necessary information, while the programming ab-
straction is responsible for an adequate filtering, selection,
fusion, and validation.

3.1 Communication – FAMOUSO
Our middleware FAMOUSO (Family of Adaptive

Middleware for autonomOUs Sentient Objects [15, 27,
29]) provides an event-based communication over differ-
ent network types, according to the publisher/subscriber
paradigm. In contrast to an address-based communica-
tion, an anonymous content-based communication is used,

3

where events are exchanged between communication end-
points. Publishers as well as subscribers are roles that
applications have during the communication. Related to
its characteristic as publisher, subscriber, or both, applica-
tions specify the kind of events they produce or consume.
On that simple scheme, FAMOUSO provides spontaneous
and dynamic many-to-many communication without any
assumptions about synchrony of events. The communi-
cation is always asynchronous, avoiding control flow de-
pendencies and enabling the autonomy of communication
participants.

The exchanged information – FAMOUSO events –
consists of three parts: a subject, optional attributes, and
content. Optional attributes could be context attributes,
which deliver additional information about the origin of
the event like location or timestamp. Subjects are defined
by the applications, and they build a global address space,
spanning across all networks. This feature is exploited
by gateways that enable and manage communication be-
tween different networks. The uniqueness of subjects is
used firstly to filter the information flow on network bor-
ders if a subject is only required within a specific subnet,
and secondly to perform forwarding if the subject is sub-
scribed outside.

From the perspective of most applications, the defi-
nition of events and its use should be sufficient. How-
ever, in the embedded field, applications have often qual-
ity of service (QoS) demands regarding real-time or de-
pendability issues. These demands have repercussions to
the underlying support system, because the system has
to ensure and enforce given guarantees. To tackle that
challenge, FAMOUSO has the notion of event channel,
which is used firstly as an abstraction for event dissem-
inations, secondly for the specification of dissemination
requirements like deadline, jitter, omission degree, etc.,
and thirdly for reserving the needed local as well as net-
work resources to enforce the given guarantees if possi-
ble. Further, FAMOUSO supports with its Multi-Level
Composability Check Architecture (MLCCA [28]) an in-
tegrated component that detects a misconfiguration or an
unrealizable application demand as early as possible. If
an event channel is correctly setup, events can be trans-
ferred through this event channel to its destinations, if the
subject of the event corresponds to that from the channel.

FAMOUSO is realized as a layered architecture. The
number of layers depends on the selected middleware con-
figuration, but FAMOUSO has usually three layers, as de-
picted schematically in Figure 1. The number of layers
grows in case of complex configurations for e. g., gate-
ways due to the need to integrate the respective functional-
ity into the infrastructure. On each layer certain function-
ality is implemented, and the abstraction level increases
from the concrete network layer up to the event layer,
which provides the publisher/subscriber interface. Appli-
cations get and use, independently of the actual configu-
ration of the middleware, only this interface.

The different layers offer special functionalities. On

Concrete Network Layer

Abstract Network Layer

Event Layer

Application Layer

Publish/Subscribe Interface

HRT-ECHFragmentation
Protocol

ECH
Resource

Management

Configuration
Protocol

Binding
Protocol

event

message

network
specific
packet

CAN WirelessEthernet

MATLAB/Simulink Python

C/C++ LabVIEW
Java

.NET

Figure 1. Schematic view on the layered ar-
chitecture of FAMOUSO

the Event Layer level, the event channels are managed by
the Event Channel Handler (ECH). The ECH takes care
about necessary resources, and observes the guaranteed
QoS parameters at run-time. For example, if an appli-
cation specifies a period of 50ms for incoming events
on an event channel, and within the last 50ms no event
arises, leading to a specification violation, the middleware
calls an error-handler callback for this event channel. The
callback mechanism of the middleware permits indicating
specification violations, enabling applications to be aware
of violations, and thus reacting accordingly for example
with a fail-safe state or with adaptation.

The following layer, which is the Abstract Network
Layer, is responsible for functionality that can be realized
independently of specific network characteristics and thus
made available for several networks. One example is the
adaptive fragmentation protocol, which enables transfer-
ring large events over networks that are not able to send
such events as a whole. Furthermore, the layer provides
the real-time communication mechanisms for events that
are termed as messages here.

The Concrete Network Layer (CNL), the lowest layer,
encapsulates all this functionality that is absolutely spe-
cific for the respective network, because networks differ
in a lot of ways (e. g., address scheme and message for-
mat) and a generalization of all functionality is not possi-
ble. Firstly, the CNL contains the binding protocol, which
is responsible for binding the subject to a specific network
representation, because this totally differs between CAN
or Ethernet, and secondly, the configuration protocol con-
figures the node to give it a unique network name. To
ensure the compliance of the network protocol character-

4

istics, the protocols exist in specialized versions for each
supported network and they are part of the respective net-
work layer realization, which supports the upper layers
with functionality for the communication.

FAMOUSO supports a broad variety of different
hardware platforms ranging from low-end 8-Bit micro-
controllers up to high-end 64-Bit server systems and en-
ables interaction over different communication media like
the CANfield-bus, Wireless Sensor Networks (WSN) like
IEEE 802.15.4,Wireless Mesh Networks like AWDS [3],
and Ethernet like UDP broad- and multicast (Figure 1).
FAMOUSO can be used from different programming lan-
guages (C/C++, Python, Java, .NET) as well as from engi-
neering tools (LabVIEW, MATLAB/Simulink) simultane-
ously. Thus, the middleware enables the developers to in-
dividually choose their preferred combination of tools and
languages. Objectives of FAMOUSO are configurability,
adaptability, portability, and efficient resource usage to al-
low also the deployment on small resource-constrained
embedded devices.

3.2 MOSAIC
A programming abstraction for distributed applications

should offer three core elements: firstly, it needs a generic
access to the exchanged information and an abstract in-
terface to sensors/actuators. Secondly, it should provide a
modular structure for applications, because such a prede-
fined modular structure allows a flexible replaceability of
inner components and enables a comprehensive fault de-
tection and classification as the third important property.

Based on these requirements we developed our fraMe-
work for fault-tOlerant Sensor dAta processIng in dy-
namiC environments (MOSAIC) that defines an appropri-
ate programming abstraction – the “Smart Abstract En-
tity”. This approach extends and combines the concept of
preprocessed and self describing measurements done by
Smart Sensors in combination with the Abstract Sensor
concept of Marzullo [20].

Due to the flexible composability and in relation to
the different purposes of Smart Abstract Entities, we dis-
tinguish between three variants that can be combined in
distributed applications: the first one, the Smart Abstract
Sensor, visible in Figure 2, uses one or more real trans-
ducers to perceive the environment and communicates the
measurements after filtering and validation tasks. In con-
trast to this variant, the second one is the Smart Abstract
Actuator, which controls a mechatronic device based on
the information obtained form the communication inter-
face. The Smart Abstract Fusion Node does neither in-
clude sensors nor actuators and uses the communication
interface only. Such entities are used for measurement fu-
sion and processing, simulated sensors, etc.

In Figure 2 we depict the basic building blocks of a
Smart Abstract Sensor. Except for the actuator output
interface, Smart Abstract Actuators are structured very
similarly to Smart Abstract Sensors. From the applica-
tion point of view we have to cope with two interface

FAMOUSO

Sensor(s)

Abstract Sensor Interface

Application

Outlier
Detection

Fault
Detection

Statistical
Check

Validity
Calculation

Abstract Network Interface

Pub/Sub

Fa
ul

tD
et

ec
tio

n

Figure 2. Smart Abstract Sensor Structure

types in general. The first one organizes the access to
data contained in FAMOUSO events, arranges and buffers
the data according to application requirements and col-
lects fault notifications from FAMOUSO (for instance due
to the absence of periodic events). The knowledge about
the data format of events is located within an XML elec-
tronic data sheet for each FAMOUSO event channel. This
XML-document contains all information that are neces-
sary to interpret an incoming event correctly (data types,
attributes, units, uncertainties, etc.) and to supervise the
channel (deadlines, periods, and omissions).

The second interface of a Smart Abstract Entity de-
picted in the upper part of Figure 2 is responsible for
the communication with sensor and actuator hardware,
and furthermore linearizes and transforms sensor mea-
surements (e. g., voltage from ADC into degree Celsius
for temperature sensors). We used the same approach
again and developed an XML description that contains
sensor and hardware specific properties and embed them
into a toolchain for Abstract Entities based on MAT-
LAB/Simulink [5]. In combination with the FAMOUSO
event channel descriptions, the developer obtains an ap-
plication framework that includes both abstract interfaces.
The specific configuration of sensor interfaces is encap-
sulated in the model generation process. Thus, the en-
gineer focuses on the application development, uses do-
main specific development tools, and does not need not to
cope with communication mechanisms nor hardware im-
plementation.

A predefined application structure is important to en-
able fault detection mechanisms in all components, be-
cause it is a cross cutting concern. We enhanced the exist-
ing idea of Smart Sensors with the fault-tolerance aspect.
Each component of the application framework calculates
a fault probability that is merged in a fault detection com-
ponent and assigned to each generated event at the end.
Therefore, we analyzed the faults of distributed sensor
and actuator applications and discussed possible detec-
tion methods and derived a modular structure for Smart
Abstract Sensors in [9]. Besides, the flexible communi-

5

CAN

CAN

Ethernet

CANFAMOUSO

AVR
(C++)

Distance
Sensor

PowerPC
(C++)

Robot
Control

PC
(Python)

Virtual
Sensor

PC
(MATLAB)

Path
Calc

PC
(C++)

Visuali-
sation

Basic System Safety Extension

Enhanced System

Figure 3. Scenario structure combining FAMOUSO and MOSAIC

cation infrastructure enables new fault-tolerance methods
for Smart Abstract Sensors. Each Smart Abstract Sensor
is subscribed to the fusion result that is potentially avail-
able. This feedback offers redundant information and en-
ables an efficient validation of the current measurement.

As shown in this section, we continued the layered ar-
chitecture of FAMOUSO in our programming abstraction,
reduced the integration effort for sensors and communica-
tion interfaces, and presented a comprehensive program-
ming abstraction for distributed applications.

4 Scenario

Using our layered FAMOUSO/MOSAIC architecture
throughout the system allows to setup distributed applica-
tions easily. Furthermore, applications may be enhanced
by adding components dynamically and without any need
to change application code of other running system com-
ponents. In industrial environments for example, a high
level plant asset management system subscribes to in-
formation of different production lines for monitoring or
even control purposes. On a lower system level, additional
sensors can be integrated to extend the sensor-based per-
ception area of the environment.

We present a scenario that serves as a typical exam-
ple to emphasize the benefits of our approach by show-
ing aspects like modularity and dynamic composability.
As a physical actuator, we use a robot manipulator that is
equipped with a limited number of real distance sensors,
observing the near environment. The manipulator follows
a pre-calculated trajectory and stops in case of a detected
obstacle. Next, we integrate a safety extension, which al-
lows for adding e. g. virtual walls dynamically, in order to
restrict the manipulator’s working area for safety reasons.
Furthermore, we use this example setup in the develop-
ment phase of reliable and maintainable robot applications
as well as when exploring extended human-robot interac-
tion schemes.

Figure 3 presents the schematic structure of the sce-

nario and illustrates the diversity of components, pro-
gramming languages, and underlying communication net-
works. Due to the FAMOUSO middleware and MO-
SAIC all components can be easily integrated or segre-
gated without much effort. Implementing the scenario
without the support of FAMOUSO and MOSAIC is possi-
ble, however, it means implementing the low-level access
to a CAN network “Basic System” and accessing a UDP
network from three different programming languages.
The data exchange between the CAN and UDP network
is also in the responsibility of the developer, but using
FAMOUSO gateways (not depicted in Figure 3) are an
integral part of the infrastructure. In the same way an im-
plementation may be done without fault-tolerance mech-
anisms and individual data formats instead of generalized
definitions in electronic data sheets. However, the effort to
establish a dynamic configurable and maintainable appli-
cation increases significantly and error-proneness grows.

4.1 Basic System
The basic robot application consists of two elements

that are connected via CAN. These are a PowerPC, in
the role of a Smart Abstract Actuator, and a Smart Ab-
stract Distance Sensor that is controlled by an AVR
AT90CAN128, both programmed in C++. The AVR pub-
lishes events, periodically. Events contain a distance mea-
surement, the related validity value, and respective sensor
failure/error modes. The PowerPC is responsible for con-
trolling the Katanta robot, a five degrees of freedom ma-
nipulator. This Robot Control publishes status data (e. g.,
angles of robot’s axes, different modes, and present cur-
rent) and subscribes to control commands for movement,
speed, and emergency stop.

4.2 Safety System
The basic system may be enhanced by a safety system

without changing anything at the base system. As shown
in Figure 3, we integrate a safety system consisting of
two additional PCs that are connected to the Ethernet. A

6

FAMOUSO gateway connects both networks and ensures
that events are routed to the interested participants. One
of the additional components, a Virtual Sensor, is imple-
mented in Python, and it publishes distance values. These
distance values are calculated from the robot’s distance to
some virtual walls. In this way it is possible to define vir-
tual safety areas the robot is not allowed to leave. The
only data that is required by the Virtual Sensor here are
the angles of robot’s axes.

The second component, the Path Calculation is real-
ized on a separate PC and is implemented in MATLAB.
The manipulator’s trajectory is calculated depending on
all available sensor distance data – real or virtual – as well
as to the values and states of the robot’s axes. A path is
composed by multiple stages that are published sequen-
tially in form of axes values. A new stage is transmitted
when the robot reaches a target position. If the robot is un-
able to reach its target position due to a detected obstacle,
another path will be calculated and published.

4.3 Visualization
As a third part of our scenario, we add a Visualization,

again without any adaptation of other components of the
original system at all. This application is for supporting
factory workers, developers, and maintenance workers by
using the technique of Augmented Reality, which presents
an enhanced visual representation of a work space. The
realization of the Visualization uses ARToolKit [1] and
OpenGL to overlay real world camera images with addi-
tional information. A detailed description of the benefits
of using Augmented Reality to support different kinds of
users in industrial application is beyond the scope of this
paper and can be found in [8].

The Visualization component subscribes to different
information (e. g., axes positions, sensor measurements,
stages of path calculation) according to user require-
ments and presents the information in an appropriate man-
ner. For visualizing the information perspectively correct,
Augmented Reality needs to match the real and virtual im-
ages. The ARToolKit uses marker-based object identifica-
tion, and information is relatively drawn to the detected
markers.

The screenshot taken from an ordinary monitor in Fig-
ure 4 shows such an Augmented Reality in operation. It
depicts for example a view for a developer, which dif-
fers completely from the view that a factory worker would
need to interact with the robot. For these scenarios and ap-
plications head-mounted displays will be more appropri-
ate than monitors, however the application can be adapted
very easily to these more advanced devices.

A factory worker requires a proper graphical represen-
tation of safety areas (subscription to Virtual Sensor), ro-
bot’s future trajectories (subscription to Path Calculation),
or a graphical representation of robot’s states (subscrip-
tion to Robot Control).

The visualization for developers like in our scenario
can be more complex to enable playing around with the

Figure 4. Visualization for engineers, pre-
senting the current sensor output

experimental system to acquire experience. This includes
for example sensor data (subscription to Virtual Sensor
and Distance Sensor), robot’s states and position of axes
(subscription to Robot Control). While in this case it is
also appropriate to use colors, color transitions or trans-
parency to visualize additional information like uncertain-
ties, ranges, or the age of sensor data. Additional informa-
tion like diagrams or robot’s contour can be placed onto
display as well.

5 Conclusions and Outlook

MOSAIC and FAMOUSO ease the development of
extensible, distributed and modular applications across
different platforms and networks. We demonstrated the
benefits in a robotic scenario. The communication mid-
dleware enables a dynamic composition during develop-
ment process, configuration and even on run-time for sys-
tem upgrades. FAMOUSO supports domain specific lan-
guages and flexible and seamless integration of distributed
hardware and software modules. This opens an easy way
for Hardware-/Software-in-the-Loop test scenarios. To
address the specific problems of correct sensor informa-
tion in a decentralized and dynamic scenario, MOSAIC
establishes a generic smart component structure and inter-
face.

Next steps will include improvement of the code gen-
eration process for constrained platforms, integration of
multilevel compliance checks based on our XML descrip-
tions and extended detection mechanisms for faults, typi-
cal for smart distributed sensors.

Acknowledgement

This work is partly founded by the Ministry of Educa-
tion and Science (BMBF) within the project “Virtual and
Augmented Reality for Highly Safety and Reliable Em-
bedded Systems” (ViERforES - no. 01IM08003C).

7

References

[1] Artoolkit. http://www.hitl.washington.edu/
artoolkit/, 2007. [(online), as at: 25.02. 2010].

[2] P. Albertos and G. Goodwin. Virtual sensors for control
applications. Annual Reviews in Control, 26(1):101–112,
2002.

[3] AWDS project. http://awds.berlios.de, 2009.
[4] R. Bose, A. Helal, V. Sivakumar, and S. Lim. Virtual sen-

sors for service oriented intelligent environments. In Pro-
ceedings of the third conference on IASTED International
Conference: Advances in Computer Science and Technol-
ogy, pages 165–170, Phuket, Thailand, 2007. ACTA Press.

[5] T. Brade, M. Schulze, S. Zug, and J. Kaiser. Model-Driven
development of embedded systems. In 12th Brazilian
Workshop on Real-Time and Embedded Systems (WTR),
Gramado, Brazil, 24 May 2010. Brazilian Computer Soci-
ety.

[6] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design
and Evaluation of a Wide-Area Event Notification Service.
ACM Trans. Comput. Syst., 19(3):332–383, 2001.

[7] C. Curino, M. Giani, M. Giorgetta, A. Giusti, A. Murphy,
and G. Picco. TinyLIME: Bridging Mobile and Sensor
Networks through Middleware. In Third IEEE Interna-
tional Conference on Pervasive Computing and Commu-
nications, pages 61–72, Kauai Island, HI, USA, March
2005.

[8] A. Dietrich, M. Schulze, S. Zug, and J. Kaiser. Visu-
alization of Robot’s Awareness and Perception. In First
International Workshop on Digital Engineering (IWDE),
Magdeburg, Germany, 14 June 2010.

[9] A. Dietrich, S. Zug, and J. Kaiser. Detecting external
measurement disturbances based on statistical analysis for
smart sensors. In Procedings of the IEEE International
Symposium on Industrial Electronics (ISIE), 2010.

[10] G. Eddon and H. Eddon. Inside Distributed COM. Mi-
crosoft Press, 1998. ISBN 1-57231-849-x.

[11] W. Elmenreich, S. Pitzek, and M. Schlager. Model-
ing Distributed Embedded Applications on an Interface
File System. In Proceedings of the Seventh IEEE Inter-
national Symposium on Object-Oriented Real-Time Dis-
tributed Computing (ISORC’04), pages 175–182, Vienna,
Austria, 2004.

[12] R. Gruber, B. Krishnamurthy, and E. Panagos. The Ar-
chitecture of the READY Event Notification Service. In
Proceedings of the 19th IEEE International Conference
on Distributed Computing Systems Middleware Workshop,
pages 01–08, 1999.

[13] T. H. Harrison, D. L. Levine, and D. C. Schmidt. The De-
sign and Performance of a Real-time CORBA Event Ser-
vice. ACM SIGPLAN Notices, 32(10):184–200, October
1997.

[14] T. C. Henderson and M. Dekhil. Instrumented Sensor Sys-
tem Architecture. The International Journal of Robotics
Research, 17(4):402–417, 1998.

[15] A. Herms, M. Schulze, J. Kaiser, and E. Nett. Exploiting
Publish/Subscribe Communication in Wireless Mesh Net-
works for Industrial Scenarios. In Proceedings of Emerg-
ing Technologies in Factory Automation (ETFA ’08), pages
648–655, Hamburg, Germany, September 2008.

[16] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System Architecture Directions for Networked
Sensors. ACM SIGPLAN Notices, 35(11):93–104, Novem-
ber 2000.

[17] IEEE Standards Association. IEEE Standard for a Smart
Transducer Interface for Sensors and Actuators (IEEE
1451.2), 1997.

[18] J. Kaiser and H. Piontek. CODES: Supporting the devel-
opment process in a publish/subscribe system. In Proceed-
ings of the fourth Workshop on Intelligent Solutions in Em-
bedded Systems WISES 06, pages 1–12, Vienna, 30. June
2006. ISBN: 3-902463-06-6.

[19] R. Kumar, M. Wolenetz, B. Agarwalla, J. Shin, P. Hutto,
A. Paul, and U. Ramachandran. Dfuse: a framework
for distributed data fusion. In Proceedings of the 1st
international conference on Embedded networked sensor
systems, pages 114–125, Los Angeles, California, USA,
2003. ACM.

[20] K. Marzullo. Tolerating Failures of Continuous-Valued
Sensors. ACM Transactions on Computer Systems
(TOCS), 8(4):284–304, November 1990.

[21] Microsoft Corporation . Microsoft robotics stu-
dio. online, http://msdn.microsoft.com/
en-gb/library/bb881626.aspx.

[22] Object Managment Group (OMG). Smart Transducer IN-
terface Specification, 2003.

[23] OMG. Data Distribution Service for Real-time Systems
Version 1.2. Object Managment Group, 1. January 2007.

[24] G. Pardo-Castellote and S. A. Schneider. The Network
Data Delivery Service: Real-Time Data Connectivity for
Distributed Control Applications. In Proceedings of the
ICRA, volume 4, pages 2870–2876, San Diego, CA, USA,
May 1994. IEEE Computer Society Press.

[25] P. R. Pietzuch and J. Bacon. Hermes: A Distributed Event-
Based Middleware Architecture. In ICDCSW ’02: Pro-
ceedings of the 22nd International Conference on Dis-
tributed Computing Systems, pages 611–618, Washington,
DC, USA, 2002. IEEE Computer Society.

[26] U. Ramachandran, R. Kumar, M. Wolenetz, B. Cooper,
B. Agarwalla, J. Shin, P. Hutto, and A. Paul. Dynamic
Data Fusion for Future Sensor Networks. ACM Transac-
tions on Sensor Networks (TOSN), 2(3):404–443, 2006.

[27] M. Schulze. FAMOUSO – Eine adaptierbare Publish/ Sub-
scribe Middleware für ressourcenbeschränkte Systeme.
Electronic Communications of the EASST (ISSN: 1863-
2122), 17, 2009.

[28] M. Schulze and G. Lukas. MLCCA – Multi-Level Com-
posability Check Architecture for Dependable Communi-
cation over Heterogeneous Networks. In Procedings of
14th International Conference on Emerging Technologies
and Factory Automation, Mallorca, Spain, 22-26 Sept-
meber 2009. IEEE.

[29] M. Schulze and S. Zug. Exploiting the FA-
MOUSO Middleware in Multi-Robot Application Devel-
opment with Matlab/Simulink. In Proceedings of the
ACM/IFIP/USENIX Middleware ’08 Conference Compan-
ion, pages 74–77, Leuven, Belgium, 1-5 December 2008.
ACM.

[30] E. Souto, a. Germano Guimar G. Vasconcelos, M. Vieira,
N. Rosa, and C. Ferraz. A Message-Oriented Middle-
ware for Sensor Networks. In MPAC ’04: Proceedings
of the 2nd workshop on Middleware for pervasive and ad-
hoc computing, volume 77 of ACM International Confer-
ence Proceeding Series, pages 127–134, Toronto, Ontario,
Canada, 2004. ACM.

[31] Sun Microsystems, Inc. Java Message Service (JMS)
Specification 1.0.2, 1999.

8

KARYON ‐ FP7‐288195
D3.1 – First Report on Supporting Technologies (Annex)

© 2012 KARYON Project 151/188

KARY N

A.2.3 A	fault‐aware	sensor	architecture	for	cooperative	mobile	applications	

“A fault-aware sensor architecture for cooperative mobile applications”. Joerg Kaiser,
Sebastian Zug, May 2012, 26th IEEE International Parallel and Distributed Processing
Symposium, Shanghai, China.

KARYON ‐ FP7‐288195
D3.1 – First Report on Supporting Technologies (Annex)

© 2012 KARYON Project 152/188

KARY N

This page is intentionally left blank.

A fault-aware sensor architecture for cooperative
mobile applications

Jörg Kaiser, Sebastian Zug
Universität Magdeburg

Department for Distributed Systems
Universitätsplatz 2, 39106 Magdeburg, Germany

{kaiser,zug}@ivs.cs.uni-magdeburg.de

Abstract—One of the striking characteristics of mobile em-
bedded systems is the interaction with the physical world.
Prerequisite for this interaction is the reliable perception of
the environment by sensors. Exploiting remote sensors of an
instrumented environment and other mobile systems will extend
the range and modalities of sensing and, in principle, will
contribute to a better environment perception. However, such
as distributed sensor system also puts new substantial challenges
on the assessment and dynamic use of sensor data. This paper
focus on dependability issues and presents a fault abstraction and
fault-handling concept, that encapsulates individual sensor faults
and encourages multi-level fault detection. Based on an analysis
of sensor faults, our approach generates a validation for each
sensor measurement. This allows assessing remote sensor data
quality in a uniform way and provides the basis for a distributed
mobile application in which new sensor sources can be discovered
and exploited dynamically.

Index Terms—Fault detection, Fault abstraction, Fault model,
Distributed application, Smart sensors,

I. INTRODUCTION

It is a commonplace today that most computers work as
an embedded system. The list of emerging applications is
long and well-known examples comprise navigation systems,
intelligent cars, electrical machines in the household or, at the
industrial end, smart payloads and handling systems in logis-
tics or autonomous transportation and processing in industrial
automation. There is a key property that all these systems
have in common. They all perceive aspects of their physical
environment and react on it proactively and autonomously.
Networking capabilities of the devices open the door to share
a rich set of environmental information with other systems,
extending the range of perception and the modalities of
information sources. In industrial automation, autonomous ve-
hicles may exploit navigational information or remote obstacle
information from sensors of roadside instrumentation or from
other vehicles and adjust trajectory planning accordingly. In
logistics, payload and transportation system may cooperate to
negotiate the handling and the destination. Systems of ambient
intelligence or ubiquitous computing, seen as a network of
things, include co-operating cars, things in the household and
also mobile robots for assisted living or in search and rescue
missions. The crucial point of all these applications is the need
for reliable and trustworthy environmental information that is
sampled by a large number of sensors, some of them may be

local in the system, some of them may be networked sensors
supplying remote data.

Because these systems interact with the physical environ-
ment and particularly with humans there is the danger of dam-
age and injury. Therefore the environment perception requires
an increased effort to achieve a high level of dependability,
particularly under the aspect of functional safety. While in con-
ventional systems, the number of sensors is fixed, the sampling
periods are thoroughly adjusted according to the time-value
relation, the communication is scheduled deterministically,
and consequently the quality of sensing information and the
jitter of arrival is known, all these parameters are subject of
substantial uncertainty in a scenario described above. This puts
substantial new challenges to the field of control.

It points out that firstly distribution and secondly mobility
adds new levels of variability. Distribution leads to the situa-
tion that readings from a fixed set of sensors encapsulated in
event messages may not be available when a control decision
has to be taken. Thus the control algorithm has to deal
with a varying number of sensors readings and the age of
sensor information that is affected by latency characteristics
of general-purpose wireless connections. To put that further,
mobile systems may use information of sensors that are
discovered dynamically. Thus the set, modality and quality
of sensors will be subjects of change and the quality of
information may be uncertain.

Using spontaneously distributed sensor information in a
control loop requires a substantial advance over conventional
techniques. Firstly, it would be desirable to obtain an esti-
mation of sensor data quality together with the actual mea-
surement data. This refers to a self-assessment of a sensor
and would allow an application selecting the most appropriate
sensors form the available sources1. Next, there must be a
notion of age of sensor data and also a model that relates this
error in the temporal domain to the error in the value domain.
This is particularly important because of varying network

1Clearly, self-assessment always bears the danger of being faulty if the
computational components of the networked sensor are affected by a fault.
However in this paper we deal with failures of the sensing component in the
first line and therefore do not address for the moment, common mode failures
(the analogue and the digital parts are affected simultaneously) and faults in
the digital components.

latencies in a distributed wireless system. Finally, the multiple
sensor data obtained from the environment have to be prepared
for comparison and/or fusion that requires scaling, adjustment
of physical units etc.

Fig. 1. Impact of distribution and mobility on control

In this paper we present a sensor model that is suited for the
mobile scenarios above. Particularly, we introduce the notion
of a smart sensor that encapsulates the complex failure modes
of a physical sensor and provides a uniform interface that
can be exploited by the subsequent control algorithms. This
interface offers a well-defined fault semantics and a standard
access to sensor data. Using this interface the designer of the
distributed control does not have to care about the low-level
sensor specific issues and the design of the control algorithm is
decoupled from specific sensor parameters. This is a prerequi-
site for discovering and using sensor information dynamically
when a mobile entity is moving around. The paper is organized
as follows. The subsequent section introduces related work
and further motivates the architecture of MOSAIC that is
presented in Sec. IV. Here we focus on the fault tolerance
mechanisms and illustrate the benefits of the approach for
distributed sensing applications in Sec. V.

II. RELATED WORK

So far, two fairly isolated communities are involved in
the issue of dependable sensor perception. The fault-tolerance
community in the first line deals with failures of the computing
and the communication system, i.e. the digital components.
The respective redundancy techniques rely on replication, cod-
ing and repetition, i.e. space, information and time redundancy,
respectively. The main point is that the information, once
in the system, is considered to be correct and should be
maintained immutable or transformed correctly in the presence
of faults. One of the well-studied problems is what was
called interactive consistency (also called source congruence
or Byzantine agreement), meaning that all non-faulty processes
are guaranteed to have identical sets of sensor readings [1],
[2]. Thus, the sensors were working correctly but the processes
may fail. The control engineering community on the other
side assumes that all system components of the controller
are working correctly, but that the faults affect the controlled
object (usually called the plant). This includes sensor and

actuator faults. A certain degree of uncertainty in sensor read-
ings, actuator insufficiencies and environmental disturbances
are handled by robust design of the control system. However, if
these impairments go beyond a certain threshold, they have to
be recognized as faults and the control laws have to be changed
or the faulty components have to be detected and removed
from the system. Respective techniques like Fault Detection
and Isolation (FDI) rely on knowledge about the overall
system captured in a model that is checked against the actual
system behaviour [3], [4]. Thus, this model is the prevalent
form of redundancy in these systems. Some authors therefore
distinguish between physical redundancy which subsumes e.g.
time, space and code redundancy and analytic redundancy
which is based on a model of the system behaviour that is
checked against the actual behaviour. It should be noted that
these forms of redundancy originate from distinct information
and fault models. The approach handles failures from a fixed
and known set of sensors. The control algorithm is adapted
in an anticipated and pre-calculated way in response of a
failure. Thus, the faults and the respective tolerance measures
are tightly related and measures are precisely adjusted to the
anticipated faults.

In control systems as mentioned above, all these individual
failure modes are identified and implicitly considered in the
fault-tolerant control algorithm. However, when striving for
a distributed, collaborative sensor system in which the set
of sensors is not known a priori and the number of sensors
may vary dynamically, this approach is not feasible. What
is needed, is a more unified behaviour of a sensor in case
of a fault. The crucial point is to derive a failure semantics
that describes the observable behaviour of a component in
case of an internal failure [5] at the components interface.
The failure semantics provides a higher-level fault model for
a component that hides a more complex behaviour inside,
thus it strongly supports the development of fault-tolerant
applications. As an example, a hierarchy of fault abstractions
in the temporal and in the value domain has been established
in the distributed computing community [6], [5], [7], [8].
System designers developing distributed algorithms base their
programs on the assumed fault model and only have to deal
with the respective defined behaviour. It is by far easier to base
e.g. distributed agreement on a fail silent crash semantics than
on arbitrary timing and value faults. The problem is to make
realistic assumptions about the component failure modes and
the mechanisms of the underlying hardware/software to ensure
the fault semantics at the interface of a component whatever
failure happens inside. Enforcing a well-defined component
behaviour in case of a fault can be seen as a fault-containment
strategy that supports the separation of concerns.

The most important difference between distributed comput-
ing in general and sensor-driven computations when including
a real-world interface is the nature of failures and the required
redundancy. A sensor delivers continuous valued data and
the sensor reading is inherently affected by a measurement
error. This can best be compared to a clock that never exactly
complies with the real time (whatever this is!). Therefore,

a clock value is considered correct if it is within specified
bounds rather than complying with a single value. This has
been early recognized by Marzullo [9], who introduced a
fault-tolerant sensor scheme inspired by previous work on
distributed clock synchronization. Marzullo distinguishes be-
tween a physical sensor (or concrete sensor his terminology)
and an abstract sensor that includes a physical sensor and
represents a programming model with a more convenient
behaviour compared to the raw sensor output, e.g. it delivers an
application related unit, it can be accessed whenever needed,
it may deliver a continuum of values, etc. The fault-tolerance
mechanism is based on replicating the abstract sensor and
performing fault-tolerant averaging. Although our approach
was inspired by Marzullo’s work, we identified a number
of differences and necessary extensions that reflect the many
uncertainties of a distributed multi-modal sensor system that
requires a higher level of adaptivity and failure awareness than
provided in previous concepts.

Fault handling for fixed, static systems identifies a number
of fault abstractions that encapsulate a known set of fault
types. For instance, the fail silence crash fault semantics
maps all faults on a single state that indicates the current
fault status of the node. The designer anticipates all possible
fault modes and ensures a continuous supervision. In case
of a detected fault, the monitor unit stops any output or
communication. Precondition of a fail-silent system is the
detection of the assumed fault types [10]. Clearly, the spectrum
of fault types that are captured by the detection mechanism
determine the quality of the fail silence assumption. On small
size sensor nodes this is usually limited by the processor
performance that does not provide the power for complex
analytic detection schemes. Additionally, the binary decision
of the fail-silent approach is not adequate for continuous
valued data that rather needs a more fine grained classification
of the sensor data. To realize a more adaptive processing
some authors categorize individual faults in meta models.
E.g. Sharma et al. [11] define short that indicates a time-
limited discontinuous change, noise that contains a stochastic
component and constant that represents a time-dependent bias.
In [12], [13], [14] the authors do not classify the faults but
derive a validity value for each measurement. The validity
value represents the probability of a fault occurrence during the
measurement phase. In contrast to the fail-silent approach this
additional information shifts the decision about an integration
or rejection of a measurement to a higher level, e.g. provided
by a more powerful node that executes a fusion algorithm. The
authors of [15] describe a validity value, that distinguishes 16
levels. Kaiser and Piontek [12] introduce a continuous scale
to define the validity of a measurement.

In our work we strive for providing a uniform interface
to a sensing component that includes an estimation of the
validity of data. This validity value represents the outcome
of various test exploiting a combination of analytical models
on various levels and a flexible way of comparing multiple
related sensors.

III. MODELS FOR SMART SENSORS

We assume a system of network-connected nodes that
include sensor nodes, purely computational nodes, and nodes
with actuators. Nodes with sensors and actuators may be
deployed statically in the environment or they may be part of a
mobile vehicle like an autonomous robot, a smart car or alike.
Rather than raw signals, the sensor now communicates higher-
level information, requiring some transformation process and
protocol execution. For such components, the notion of a smart
sensor was introduced. This term usually refers to components
that integrate physical sensors, a computational component
and a network interface. The ”‘smart”’ indicates that these
components are information sensors and actuators in the sense
that they generate and consume meaningful application related
information rather than raw data representing some physical
unit directly measured by the raw sensor. The model of a
smart sensor is of great importance when building distributed
sensor systems because it frees the designer from dealing with
low level details of the transformation process and provides a
standardized message interface rather than a proprietary, com-
plex and rather specific individual instrumentation interface to
a sensor. There are many terms that describe a continuum of
”‘smartness”’ reaching from just conditioning raw sensor data
to components providing high quality application-level envi-
ronment information. The spectrum reaches from early work
of [16] who coined the term ”‘intelligent sensor”’ and focus on
integration on a single VLSI-chip, over smart sensors [17] that
stress application relevance of sensor information, abstract sen-
sors [9] that strive for an easy to use programming model and
fault-tolerance, smart transducers [18] that highlight network
and configuration issues, to cogent sensors that emphasize the
fact that these sensors deliver high quality trustworthy infor-
mation [19].This includes means to assess this information and
handle sensor faults.

Although some of the presented schemes are close to our
approach, we particularly strive for a programming model
that supports fault-awareness and a hierarchical construction
method for reliable sensors. The first part is achieved by
a careful analysis and classification of sensor faults. From
this we derive an assessment of sensor information quality.
Secondly, we provide a uniform scheme to build very reliable
sensors in a hierarchical way. We follow an approach where
on the communication level, all components are modeled as
sentient objects [20], [21]. Sentient objects constitute a general
programming model and can be seen a general abstraction
of an information sensor [22]. Sentient objects seamlessly
communicate via a publish-subscribe middleware using typed
communication objects called events. Sentient objects receive
regular events (in contrast to raw, physical events), carrying
sensor information via the communication system and generate
regular events as output. Only at the system periphery to
the physical environment, real sensors will sample physical
events that are transformed into regular events. This transfor-
mation process however, is encapsulated in the smart sensor
component. The notion of sentient objects supports building

a hierarchy of more sophisticated sensing components from
multiple simple sensors. E.g. a distance sensor that exploits
multiple modalities and fuses the regular events received from
a smart infrared and an ultrasound distance sensor and a laser
scanner. A sentient object that particularly represents a sensor
will be subsequently called an abstract sensor.

IV. REQUIREMENTS FOR A DISTRIBUTED DEPENDABLE
SENSOR SYSTEM

To meet the level of generality and flexibility required by
large scale distributed and dynamic sensor-actuator systems we
have to consider a number of additional requirements that are
not included in any of the schemes presented above. Firstly, we
cannot assume a fixed set of sensors with known modalities be-
cause a mobile robot may discover and use sensor information
spontaneously. Secondly, because environment information is
disseminated via a wireless network, we have to cope with
larger variations in delay, jitter and omissions compared to
the dedicated links e.g. of the on-board sensors. Finally,
we need to know the quality and trustworthiness of remote
sensor information, because we will have to select the most
appropriate one from the available set. Including bad sensor
information will decrease the overall perception quality. Again,
distributed clock synchronization is a good example because a
pre-selection process usually sorts out outliers before a fault-
tolerant average or midpoint is calculated [23]. However, the
assessment of sensor quality in general is harder compared
to the identification of a bad clock reading because of the
continuous and linear model of (Newtonian) time.

When considering a sensor/actuator network with mobile
and remote components, fault-tolerance has to cope with
highly dynamic environments. We have to deal with the
uncertainty about the available resources, which may change
because of mobility or temporary unavailability. Secondly,
sensor values coming from remote sensors over a network
may be taken at different times or suffer from varying network
latencies. Because sensor data represent time/value entities, the
network latencies have to be bounded or have to be assessable
at least. In an open wireless network, it is very hard to
provide reliable bounds on latencies and jitter dynamically.
Therefore we explore the assessment of these uncertainties
than the enforcement of bounds. Thirdly, replicated sensors
may suffer from the same external disturbance, i.e. they do
not fail independently. Therefore multiple sensor modalities
are desirable, however, this excludes simple averaging and
requires more sophisticated fusion of sensor values. Fourth,
replication of sensors is not feasible in general. For active
sensors like infrared, ultrasound range sensors or laser scan-
ners replication is not feasible, difficult and at least costly.
Therefore, redundancy schemes beyond replication and com-
parison have to be considered. Finally, there is the uncertainty
of the sensor information itself. How trustworthy and accurate
is the information coming from a remote sensor? In this
paper, we will present an architecture for such a system of
smart sensors that combines multiple redundancy schemes and
exploits the dynamic availability of sensors in proximity. We

may summarize and condense the above discussion in the
following requirements for a distributed sensor system. It must
have the ability to cope:

1) with multiple modalities of sensors,
2) with different numbers of sensors,
3) with uncertainties coming from latencies and omissions

of the network,
4) with uncertainties coming from bad sensor readings.

V. MOSAIC

MOSAIC constitutes an architecture for fault-aware abstract
sensors2 coping with heterogeneity of sensors, self assessment,
distribution and mobility.

A. Architecture

A MOSAIC abstract sensors comprises components for sen-
sor data acquisition, signal conditioning and processing, error
detection and data validation and result transmission [24].The
abstract sensor input layer that may receive sensor data from a
physical sensors or via the network interface streams incoming
data sets to a uniform processing chain. In case of dynamically
discovered sensors, the respective event structures are ex-
tracted from an electronic data sheet which is an extension of
the IEEE 1451 TEDS [25]. This enables the preparation of data
sets compatible to the formats of the subsequent processing
chain.

Each processing step generates an individual estimation of
the validity. The results are combined by the fault management
module providing the general measurement validity. This value
is useful for assessing the measurements of multiple sensors
of the same type. However, it is not sufficient to compare the
quality of data from heterogeneous sensors. We are not able
to interpret a validity value without a general reference scale
that reflects characteristics of the tests as coverage and quality.
E.g. a simple test for easy to detect outliers cannot generate
the same level of confidence as a complex check based on a
sophisticated model of the process. To handle this problem,
we propose a fault effect validation that considers the type of
fault and the effort of fault detection and maps the validity on
a uniform confidence scale.

In a first step we analyze the relevant fault types and their
characteristics in sensor networks. A detailed description can
be found in [26]. The fault types like stuck-at-faults, different
stochastic faults, time correlated faults, etc. are ordered in a
fault classification scheme. This scheme provides a systematic
investigation of a sensor, sensor node or processing chain
to identify the possible faults classes. A data set is added
to each fault class covering the relevant parameters. Beside
specific information like noise characteristics or delay dis-
tributions it contains parameters needed for the fault effect
analysis. The fault classification represents the first level fault
abstraction. Individual fault specifications are mapped on a
common scheme to cope with sensor and fault heterogeneity

2In fact MOSAIC was also developed to model abstract actuators. This
aspect however is beyond the scope of this paper.

in distributed applications. As a result of this step the user has
a list of the faults in a uniform representation.

The second step quantifies the effect of the node specific
faults collected in the step before. Two parameters of a fault
determine its relevance: the occurrence probability and the
maximum fault amplitude. E.g. the fault category constant
noise continuously affects a measurement and thus results in
a high occurrence probability. The maximum fault amplitude
depends on the noise characteristics but may be low in general.
In contrast outliers generate large deviations, thus usually they
exhibit a large amplitude but they have a rather low occurrence
probability. Additionally, the correct weighting and processing
of a measurement depends on the assigned detection methods.
We map the capability of a method to realize a certain fault
type by a detection probability.

For an overall validity value we have to consider three
parameters – occurrence probability, maximum fault amplitude
and detection probability – for n fault types. To combine these
values in a single index we propose an adapted Failure Modes
and Effects Analysis (FMEA) method. FMEA is a scheme for
identification, validation and classification of faults in product
development and operations management. FMEA methods
are frequently used in industrial development processes for a
system decomposition, an analysis of the potential faults and
risk assessment.

FMEA constitutes a classification scheme that provides a
systematic approach to compare systems. It is illustrated in
its adapted form in Tab. I. The three parameters are mapped
independently on an index value from 1 to 10. Following the
FMEA notation An denotes the fault amplitude, On the fault
occurrence probability and Dn the fault detection probability.
The smaller the index value for On, An or Dn the more limited
is the effect of a certain fault. For instance, the occurrence
probability bandwidth reaches from 100.000 ppm to 1 ppm.
For a very unreliable sensor which generates a fault every tenth
measurement or more, we define On = 10. The amplitude of
a fault is normalized by the measurement range of a sensor. If
the fault level reaches the range of the sensor (1), we set the
fault amplitude index value to 10. The detection probability
measures the effectiveness of the testing mechanisms and
assigns a appropriate index value to Dn. The index system
follows the FMEA-classification standard of the automobile
industry union standard (VDA 4.2) [27] but was adapted
related to the higher fault level of distributed sensor actuator
applications.

When the index entries for An, On and Dn are determined,
the three indices must merged to a single number. FMEA
recommends multiplying the index numbers. Hence, for a
perfect system we will reach a result of 1. For a system
with the lowest reliability without any detection possibility
FMEA generates 1000. This number is known as the Risk
Priority Number (RPN). In case of multiple fault types n
the maximum fault specific RPNn defines the system RPN ,
RPN = max(RPNi) = max(Ai ·Oi ·Di) with 1 ≤ i ≤ n.

In our fault-handling concept and in relation to the event
validity we call it system validity. System validity combines

and encapsulates the spectrum of anticipated sensor faults and
the associated fault detection methods.

TABLE I
QUANTIFICATION OF FAULT’S EFFECT BASED ON ITS AMPLITUDE,

OCCURRENCE AND DETECTION PROBABILITY

Index Fault amplitude (A) Occurrence (O) Detection (D)
to range ppm probability

10 ≥1 100.000 ≤ 50 %
9 50.000 >50
8 20.000 75 %
7 ≥0.1 10.000
6 5.000 90 %
5 2.000
4 ≥0.01 1.000
3 100 99 %
2 50
1 ≥0.001 1 99.99 %

A MOSAIC node provides an electronic data sheet con-
taining an description of sensor parameters, message formats,
etc. Here we extend existing description approaches [25], [12].
The relevant fault types n and its parameters An, On and
Dn are made available for other nodes. This normalization of
the validity value allows a node to assess a remote sensor
measurement and include or reject it in the local control
algorithm.

VI. EXAMPLE

We implemented the MOSAIC approach in distributed
robotic applications. External and internal sensors information
is flexibly merged in this application for localization, navi-
gation, environment monitoring and collision avoidance. To
illustrate the benefits of the described fault abstraction, we
present the processing chain of an infrared distance sensor.

TABLE II
FAULT CLASSIFICATION FOR INFRARED SENSORS GP2D12

Fault type Fault Occur. System validity
ampli. prob. without detection

(A) (O) (A ·O · 10)

Outlier �2 10 6 600

Spikes �7 8 8 640

Offset �3 + �4 8 9 720

Offset �3 10 4 400

Tab. II structures the fault types of the sensor type [28] and
their parameters for fault amplitude (Fn)and for occurrence
probability (On). Based on extensive experiments with this
sensor type [29] we identified the following four fault types:

• Outliers are single samples with a significant displace-
ment related to the correct value. Mostly the maximum
amplitude of the sensor is reached (F = 10). Outliers oc-
cur for ≈ 0.5% of all measurements. The corresponding
value for O derived from Tab. I is 6.

• Spikes are more frequently than outliers ≈ 2% but
generate only a limited deviation (F = 8, O = 8).

• Two variants of offsets were observed. Both have dif-
ferent effects. The first one is caused by external strong
light disturbing the physical measurement process. The

deviations of the faulty measurements range from 8 cm
to −18 cm. Additionally, the noise level and spectrum
is change. Hence, we have to consider a combination of
fault types in this case (F = 8, O = 9).

• The fourth fault occurs due to varying battery power of
the sensor nodes. If voltage level of the battery level
decreases a certain level, the Analog-to-Digital Converter
(ADC) does not work correctly. The level of this distur-
bance varies up to 5 cm (F = 10, O = 4).

An indication for the low validity of the raw sensor system
is the derived maximum RPN of 720. Without any further
mechanism to detect and handle faults, the confidence is only
very low and of limited value in a critical application. Tab. III
assigns a number of fault detection methods to each fault
type and adapts the RPN value accordingly. Outliers can be
detected with several methods. In the example we implemented
an interval and a gradient check. Both detection mechanisms
provide a high probability of discarding a faulty measurement.
The interval (or range) check verifies whether the sensor
output is within its bounds specified by the physical sensor
characteristics. The gradient check compares the derivation of
the system with a maximum slope. Due to signal noise, the
gradient method shows a lower detection probability than the
interval check (D = 3). This is not too surprising because
the interval check only detects a rather significant violation
resulting from an outlier, while for the gradient method it is
more difficult to decide whether the slope of a signal is out
of range.

Due to the smaller gradient, spikes are more difficult to
detect than outliers. Consequently, the gradient check does not
reach the same detection probability (RPN = 384). The RPN
value depends on the number of available sensor readings.

For a detecting an offset caused by strong external light
a statistical test was presented in [29]. It requires a series
of measurements and a comparison with a reference sample.
The correct fault classification is delayed depending on the
number of consecutive measurements. Due to this limitation
the detection probability index D is set to 6 as specified
in Tab. I

Based on Tab. III an analysis of different variants of the
system is possible. If a single sensor application integrates only
interval and gradient check, the system cannot correctly detect
any offset fault. The common system validity is given by the
highest value max(min(60, 120), 384, 720, 400) = 720. With
an implementation of the statistical test the RPN goes down
to max(min(60, 120), 384, 504, 400) = 504. The confidence
increases by one third!

By applying the complete fault detection chain, a GP2D12
produces a distance result in which we can put high confi-
dence. Each of the relevant fault type is covered by at least
one detection method.

If multiple redundant sensors are available it is generally
very appealing to move parts of the error detection to
a fusion node that processes the multiple values and,
according to the hierarchical MOSAIC concept, constitutes
a (higher level) reliable abstract sensor. Some faults, e.g.

offsets caused by an incorrect reference voltage can only
be recognized in such a fusion node. For our example
scenario the detection quality depends on the number of
redundant measurements, as visible in Tab. III, for all fault
types. It reaches the highest level for five available data
sets. The maximum system validity can be defined by
max(min(60, 120, 60),min(384, 128),min(504, 216), 120)
= 144 in this case. For four or three available
measurements we obtain an increased RMP of
max(min(60, 120, 120),min(384, 192),min(504, 216), 120)
= 216.

It should be noted that the flexible distribution of error
detection is substantially supported by the MOSAIC con-
cept. Every measurement is encapsulated in a well-defined
event disseminated by a sensor. This event carries attributes,
described in an electronic data sheet, that allow precisely
assessing the confidence in the data provided. An application
can even decide whether to use a more uncertain value
that is available very fast and very frequently or the more
reliable result disseminated by a fusion node. The subject-
based publish/subscribe communication system supports such
flexible choices conveniently.

A second advantage from this flexible distribution of detec-
tion capabilities comes in when considering implementation
issues. In many applications, e.g. wireless sensor networks
or also inside a car, the processing capabilities of networked
sensor components are rather limited. E.g. performing a statis-
tical test on offset fault detection in a reasonable time frame
requires more computational power than it is available from
the embedded controller. MOSAIC enables the distribution of
test in a generic and easy to use way.

TABLE III
SYSTEM VALIDATION FOR GP2D12 SENSOR AND ITS PROCESSING CHAIN

(DARK GRAY ROWS MARKS DETECTION METHODS EXECUTED ON A
EMBEDDED SENSOR NODE, LIGHT GRAY POWERFUL PROCESSING NODES

AND WHITE LINES INDICATES THE FUSION NODE.)

System validity Assigned Detect. System
without detection method prob. validity

(A ·O · 10) (D) (A ·O ·D)

Outlier 600 Interval Check 1 60
600 Gradient check 3 120
600 Comparator (3) 2 120
600 Comparator (4) 2 120
600 Comparator (5) 1 60

Spikes 640 Gradient check 6 384
640 Comparator (3) 3 192
640 Comparator (4) 3 192
640 Comparator (5) 2 128

Offset 720 Statistical test 7 504
720 Comparator (3) 3 216
720 Comparator (4) 3 216
720 Comparator (5) 2 144

Offset 400 Comparator (3) 3 120
400 Comparator (4) 3 120
400 Comparator (5) 2 80

Fig. 2 depicts the implementation of the distributed infrared
sensor processing chain. The diagrams illustrate the effect of

the fault detection and handling in a distributed application
integrating a sensor node, a processing node, and fusion node.
The figures depict the raw sensor measurement, the validity
of an individual measurement event and the overall system
validity. The system validity, represented by the RPN, is a
confirmation about the trustworthiness of the event validity.
E.g. an error may have been detected in a measurement by
a local mechanism. Then the event validity would go down
to a low level, however, the system validity would remain at
the same level. The node receiving this event can infer from
these two values that the low event validity was obtained with
respectively high confidence.

The raw distance measurement signal is affected by the four
fault types listed in Tab. II. The sensor node locally applies
the gradient and interval check. The second diagram shows the
corresponding event validity based on the detection results.
The gradient and interval check generate a binary decision
depicted in the event validity graph. As expected, outlier and
spikes are recognized very well. Offset faults are only detected
if the gradient is sufficiently high. But they are associated with
the wrong fault type. The system validity is constantly on a
low level (RPN = 720).

For the more sophisticated statistical test for offsets, a more
powerful processing node is used. This node receives the
distance events that have been preprocessed, filters incoming
measurements with an event validity below a defined threshold
and calculates the probability of an external light disturbance.
The resulting event validity shows a delayed but correct
detection of the error caused by an environmental condition
violating the sensor specification. The system validity is im-
proved and reaches the lower numerical RPN value of 504.

The last stage of deriving a highly valid distance value is a
node that fuses events from multiple distance sensors. Here,
the system validity is an important criterion for acceptance the
fusion node. It only accepts measurements with a RPN below
a defined threshold. We assume that all five sensors meet this
requirement and pass the first stage of the acceptance test.
In a second step the individual event validities are checked.
All events with a validity below 0.6 are rejected. The other
measurements are considered for comparison. Now the last
filter works on the value itself according to the techniques
of fault-tolerant mean or midpoint, i.e. measurements with
the largest deviations are not considered. As can be seen in
the graph, the system validity changes. This is because some
events are discarded leading to a smaller set of measurements
used in the mean calculation. According to Tab. III the RPN
now reaches a level of 120. Again, the example shows the
multiple stages of event processing which are supported by
the MOSAIC system eventually reaching a high level of
confidence.

VII. CONCLUSIONS

Dealing with the complex failure and error modes of contin-
uous valued sensor data is a substantial challenge in distributed
mobile applications. Exploiting remote sensors installed in
an instrumented environment and provided by the on-board

8-Bit sensor node (Outlier detection, Range check)

Powerful processing node (Statistical test)

Fusion node (Voter, Mean)

0

25

50

75
Distance
meas.

0

0.25

0.5

0.75
Event
Validity

constant, 720
0

200

400

600

800
System
Validity

Outlier

2

Spike

7

Offset with
enhanced

noise level

3 4

Offset with
constant noise

3

ignored measurments

0

25

50

75
Distance
meas.

0

0.25

0.5

0.75
Event
Validity

constant, 504
0

200

400

600

800
System
Validity

0

25

50

75
Distance
meas.

0

0.25

0.5

0.75
Event
Validity

decreased validity due to a
reduced number of measurements

0

200

400

600

800
System
Validity

Fig. 2. Implementation of the multi-level fault detection for an IR distance
sensor using MOSAIC - Diagram (adapted from [26])

sensors of mobile vehicles is very desirable. However, the de-
signer of a local control algorithm, e.g. for trajectory planning
or obstacle avoidance can use very little a priori knowledge
about the sensor system. Prerequisit for using remote sensor
data is that it has to be accompanied by attributes describing
its contents, context and the quality of data. This paper focuses
on the on-line assessment of the sensor data quality and va-
lidity for building dependable distributed sensor applications.
We propose MOSAIC that provides a uniform programming
model and an interface for the designer of such systems. The
internal structure of a MOSAIC smart sensor node comprises
a number of checking components each tailored for a specific
sensor fault class. This allows analysing and mapping the com-
plex sensor malfunctions to a well-defined validity value. The
uniform model encourages a multi-level checking structure.
It also provides an easy to use assessment scheme for the
application designer that can select the most appropriate data
from a set of available sensor sources. This work is part of
larger projects that deals with a dependable infrastructure for
mobile cooperative scenarios. So far, we work with mobile
robots that navigate in an instrumented environment. Main
research directions are machine exploitable descriptions of
sensor and actuator characteristics, the dynamic discovery and
use of remote sensor data, and on dependability with an
emphasis on functional safety. Future work will extend the
possibilities of dynamically discovered sensors in an unknown
environment. Research will include geometric environment
models that will further enable to estimate the usefulness of a
sensor in a 3-D space. We work on the concept of a situated,
directed sensor. This additional information will lead to a truly
spontaneous use of remote sensing information with a minimal
amount of a priori knowledge.

ACKNOWLEDGMENT

This work has partially supported by the EU under the FP7-
ICT programme, through project 288195 “Kernel-based AR-
chitecture for safetY-critical cONtrol” (KARYON) and by the
Ministry of Education and Science (BMBF) within the project
“Virtual and Augmented Reality for Highly Safety and Reli-
able Embedded Systems” (ViERforES - no. 01IM08003C).

REFERENCES

[1] J. Rushby, “Reconfiguration and transient recovery in state-machine
architectures,” in Fault Tolerant Computing Symposium 26. Sendai,
Japan: IEEE Computer Society, 6 1996, pp. 6–15.

[2] C. B. Weinstock and J. Goldberg, “Sift : Software implemented fault-
tolerance,” in Fault Tolerant Computing Symposium 26. Madison,
Wisconsin, USA: IEEE Computer Society, 6 1979.

[3] Frank, P.M., “Fault diagnosis in dynamic systems using analytical and
knowledge-based redundancy,” Automatica, vol. 26, no. 3, pp. 459–474,
1990.

[4] G. Heredia, A. Ollero, A. Bejar, and R. Mahtani, “Sensor and actuator
fault detection in small autonomous helicopters,” Mechatronics, vol. 18,
no. 2, pp. 90–99, 2008.

[5] F. Cristian, “Understanding fault-tolerant distributed systems,” Commun.
ACM, vol. 34, pp. 56–78, 2 1991.

[6] ——, “A rigorous approach to fault-tolerant programming,” Software
Engineering, IEEE Transactions on, no. 1, pp. 23–31, 1985.

[7] B. E. H. Otto Wittner, Carsten J.E. Hoelper, “Failure semantics of mobile
agent systems involved in network fault management,” in Proceedings of
Norsk Informatikk-Konferanse (NIK’99), Trondheim, Norway, 11 1999.

[8] V. Hadzilacos and S. Toueg, “A modular approach to the specifica-
tion and implementation of fault-tolerant broadcasts,” Department of
Computer Science, Cornell University, Ithaca NY., Tech. Rep. Technical
Report TR94-1425, 5 1994.

[9] K. Marzullo, “Tolerating Failures of Continuous-Valued Sensors,” ACM
Transactions on Computer Systems (TOCS), vol. 8, no. 4, pp. 284–304,
11 1990.

[10] A. Avizienis, J. Laprie, and B. Randell, “Fundamental concepts of
dependability,” University of Newcastle upon Tyne, Tech. Rep., 2001.

[11] A. Sharma, L. Golubchik, and R. Govindan, “On the prevalence of
sensor faults in real-world deployments,” in Sensor, Mesh and Ad Hoc
Communications and Networks, 2007. SECON’07. 4th Annual IEEE
Communications Society Conference on. IEEE, 2007, pp. 213–222.

[12] J. Kaiser and H. Piontek, “CODES: Supporting the development process
in a publish/subscribe system,” in Proceedings of the fourth Workshop on
Intelligent Solutions in Embedded Systems WISES 06, Vienna, 6 2006,
pp. 1–12, iSBN: 3-902463-06-6.

[13] S. Sukumar, H. Bozdogan, D. Page, A. Koschan, and M. Abidi, “Sensor
selection using information complexity for multi-sensor mobile robot
localization,” in Robotics and Automation, 2007 IEEE International
Conference on. IEEE, pp. 4158–4163.

[14] W. Elmenreich, S. Pitzek, and M. Schlager, “Modeling Distributed
Embedded Applications on an Interface File System,” in Proceedings
of the Seventh IEEE International Symposium on Object-Oriented Real-
Time Distributed Computing (ISORC’04), Vienna, Austria, 2004, pp.
175–182.

[15] H. Kopetz, M. Holzmann, and W. Elmenreich, “A universal smart
transducer interface: TTP/A,” in Third IEEE International Symposium
on Object-Oriented Real-Time Distributed Computing. Newport Beach,
California: Published by the IEEE Computer Society, 3 2000, p. 16.

[16] W. Ko and C. Fung, “Vlsi and intelligent transducers,” Sensors and
actuators, vol. 2, pp. 239–250, 1982.

[17] A. Moini, “Vision chips or seeing silicon,” Report of Department of
Electronic Engineering, University of Adelaide, Australia, Tech. Rep.,
3 1997.

[18] H. Kopetz, M. Holzmann, and W. Elmenreich, “A universal smart
transducer interface: Ttp/a,” International Journal of Computer System
Science & Engineering, no. 2, pp. 71–77, 3 2001.

[19] R. M. Newman and E. I. Gaura, “System issues in arrays of autonomous
intelligent sensors,” Technical Proceedings of the NSTI Nanotechnology
Conference and Trade Show, vol. 1, 2004.

[20] A. Fitzpatrick, G. Biegel, S. Clarke, and V. Cahill, “Towards a sentient
object model,” in Workshop on Engineering Context-Aware Object
Oriented Systems and Environments (ECOOSE). Citeseer, 2002.

[21] A. Casimiro, J. Kaiser, and P. Verissimo, “Generic-events architecture:
Integrating real-world aspects in event-based systems,” Lecture Notes in
Computer Science (Architecting Dependable Systems IV), vol. Volume
4615, pp. 287–315, 2007.

[22] J. Kaiser, M. Schulze, S. Zug, C. Cardeira, and F. Carreira, “Sentient
objects for designing and controlling service robots,” in Proccedings of
IFAC’08, vol. 17th International Federation of Automatic Control World
Congress, Seoul, Korea, 7 2008, pp. 8315–8320.

[23] D. Mills, “Network time protocol (ntp),” Network, 1985.
[24] S. Zug, M. Schulze, A. Dietrich, and J. Kaiser, “Programming abstrac-

tions and middleware for building control systems as networks of smart
sensors and actuators,” in Proceedings of Emerging Technologies in
Factory Automation (ETFA ’10), Bilbao, Spain, 9 2010.

[25] IEEE Standards Association, IEEE Standard for a Smart
Transducer Interface for Sensors and Actuators (IEEE 1451.2),
1997. [Online]. Available: http://ieeexplore.ieee.org/xpl/standards.jsp?
findtitle=1451&letter=1451

[26] S. Zug, A. Dietrich, and J. Kaiser, Fault-Handling in Networked Sensor
Systems. St. Franklin, AUS: Concept Press Ltd., 2012.

[27] Verband der Automobilindustrie e.V., Qualitätsmanagement in der Au-
tomobilindustrie - Sicherung der Qualität vor Serieneinsatz, 1996.

[28] Sharp Cooperation, GP2D120 Data Sheet, online, url = http://sharp-
world.com/products/device/lineup/data/pdf/datasheet/gp2y0a21yk e.pdf,
2007.

[29] A. Dietrich, S. Zug, and J. Kaiser, “Detecting External Measurement
Disturbances Based on Statistical Analysis for Smart Sensors,” in Pro-
cedings of the IEEE International Symposium on Industrial Electronics
(ISIE), 7 2010, pp. 2067–2072.

KARYON ‐ FP7‐288195
D3.1 – First Report on Supporting Technologies (Annex)

© 2012 KARYON Project 161/188

KARY N

A.3 Reliable	Assessment	of	Global	State			

A.3.1 Self‐Stabilizing	Byzantine	Resilient	Topology	Discovery	and	Message	
Delivery		

“Self-Stabilizing Byzantine Resilient Topology Discovery and Message Delivery”. S. Dolev,
O. Liba, E. M. Schiller, CoRR abs/1208.5620, August 2012. http://arxiv.org/abs/1208.5620

KARYON ‐ FP7‐288195
D3.1 – First Report on Supporting Technologies (Annex)

© 2012 KARYON Project 162/188

KARY N

This page is intentionally left blank.

ar
X

iv
:1

20
8.

56
20

v1
 [

cs
.D

C
]

28
 A

ug
 2

01
2

Self-Stabilizing Byzantine Resilient
Topology Discovery and Message Delivery

(Technical Report)

Shlomi Dolev ∗ Omri Liba ∗ Elad M. Schiller †

Abstract

Traditional Byzantine resilient algorithms use 2f+1 vertex disjoint paths to ensure message delivery
in the presence of up to f Byzantine nodes. The question of how these paths are identified is related to
the fundamental problem of topology discovery.

Distributed algorithms for topology discovery cope with a never ending task, dealing with frequent
changes in the network topology and unpredictable transient faults. Therefore, algorithms for topology
discovery should be self-stabilizing to ensure convergence of the topology information following any
such unpredictable sequence of events. We present the first such algorithm that can cope with Byzantine
nodes. Starting in an arbitrary global state, and in the presence of f Byzantine nodes, each node is
eventually aware of all the other non-Byzantine nodes and their connecting communication links.

Using the topology information, nodes can, for example, route messages across the network and
deliver messages from one end user to another. We present the first deterministic, cryptographic-
assumptions-free, self-stabilizing, Byzantine-resilient algorithms for network topology discovery and
end-to-end message delivery. We also consider the task of r-neighborhood discovery for the case in
which r and the degree of nodes are bounded by constants. The use of r-neighborhood discovery facili-
tates polynomial time, communication and space solutions for the above tasks.

The obtained algorithms can be used to authenticate parties, in particular during the establishment
of private secrets, thus forming public key schemes that are resistant to man-in-the-middle attacks of the
compromised Byzantine nodes. A polynomial and efficient end-to-end algorithm that is based on the
established private secrets can be employed in between periodical re-establishments of the secrets.

1 Introduction

Self-stabilizing Byzantine resilient topology discovery is a fundamental distributed task that enables com-
munication among parties in the network even if some of the components are compromised by an adversary.
Such topology discovery is becoming extremely important nowadays where countries main infrastructures,
such as the electrical smart-grid, water supply networks and intelligent transportation systems are subject

∗Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel. Email: {dolev,
liba}@cs.bgu.ac.il. Partially supported by Deutsche Telekom, Rita Altura Trust Chair in Computer Sciences, Lynne and
William Frankel Center for Computer Sciences, Israel Science Foundation (grant number 428/11) and Cabarnit Cyber Security
MAGNET Consortium.

†Department of Computer Science and Engineering, Chalmers University of Technology, Goeteborg, Sweden. Email:
elad@chalmers.se. Partially supported by the EC, through project FP7-STREP-288195, KARYON (Kernel-based ARchitec-
ture for safetY-critical cONtrol) and the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement
No. 257007.

1

to cyber-attacks. Self-stabilizing Byzantine resilient algorithms naturally cope with mobile attacks [e.g.,
16]. Whenever the set of compromised components is fixed (or dynamic, but small) during a period that
suffice for convergence of the algorithm the system starts demonstrating useful behavior following the con-
vergence. For example, consider the case in which nodes of the smart-grid are constantly compromised by
an adversary while local recovery techniques, such as local node reset and/or refresh, ensure the recovery of
a compromised node after a bounded time. Once the current compromised set does not imply a partition of
the communication graph, the distributed control of the smart grid automatically recovers. Self-stabilizing
Byzantine resilient algorithms for topology discovery and message delivery are important for systems that
have to cope with unanticipated transient violations of the assumptions that the algorithms are based upon,
such as unanticipated violation of the upper number of compromised nodes and unanticipated transmission
interferences that is beyond the error correction code capabilities.

The dynamic and difficult-to-predict nature of electrical smart-grid and intelligent transportation systems
give rise to many fault-tolerance issues and require efficient solutions. Such networks are subject to transient
faults due to hardware/software temporal malfunctions or short-lived violations of the assumed settings for
the location and state of their nodes. Fault-tolerant systems that are self-stabilizing [5] can recover after
the occurrence of transient faults, which can drive the system to an arbitrary system state. The system
designers consider all configurations as possible configurations from which the system is started. The self-
stabilization design criteria liberate the system designer from dealing with specific fault scenarios, risking
neglecting some scenarios, and having to address each fault scenario separately.

We also consider Byzantine faults that address the possibility of a node to be compromised by an adver-
sary and/or to run a corrupted program, rather than merely assuming that they start in an arbitrary local state.
Byzantine components may behave arbitrarily (selfishly, or even maliciously) as message senders and/or as
relaying nodes. For example, Byzantine nodes may block messages, selective omit messages, redirect the
route of messages, playback messages, or modify messages. Any system behavior is possible, when all (or
one third or more of) the nodes are Byzantine nodes. Thus, the number of Byzantine nodes, f , is usually
restricted to be less than one third of the nodes [5, 13].

The task of r-neighborhood network discovery allows each node to know the set of nodes that are at
most r hops away from it in the communication network. Moreover, the task provides information about the
communication links attached to these nodes. The task topology discovery considers knowledge regarding
the node’s entire connected component. The r-neighborhood network discovery and network topology
discovery tasks are identical when r is the diameter of the communication graph.

This work presents the first deterministic self-stabilizing algorithms for r-neighborhood discovery in the
presence of Byzantine nodes. We assume that every r-neighborhood cannot be partitioned by the Byzantine
nodes. In particular, we assume the existence of at least 2f + 1 vertex disjoint paths in the r-neighborhood,
between any two non-Byzantine nodes, where at most f Byzantine nodes are present in the r-neighborhood,
rather than in the entire network. 1 Note that by the self-stabilizing nature of our algorithms, recovery is
guaranteed after a temporal violation of the above assumption. When r is defined to be the diameter of the
communication graph, our assumptions are equivalent to the standard assumption for Byzantine agreement
in general (rather than only complete) communication graphs. In particular the standard assumption is that
2f + 1 vertex disjoint paths exist and are known (see e.g., [13]) while we present distributed algorithms to
find these paths starting in an arbitrary state.
Related work. Self-stabilizing algorithms for finding vertex disjoint paths for at most two paths between

1Section 4 considers cases in which r and the node degree, Δ, are constants. For these case, we have O(n) disjoint r-
neighborhoods. Each of these (disjoint) r-neighborhoods may have up to f Byzantine nodes, and yet the above assumptions,
about at least 2f + 1 vertex disjoint paths in the r-neighborhood, hold.

2

any pair of nodes, and for all vertex disjoint paths in anonymous mesh networks appear in [1] and in [11],
respectively. We propose self-stabilizing Byzantine resilient procedures for finding f + 1 vertex disjoint
paths in 2f + 1-connected graphs. In [9], the authors study the problem of spanning tree construction in
the presence of Byzantine nodes. Nesterenko and Tixeuil [15] presented a deterministic non-stabilizing
algorithm for topology discovery in the presence of Byzantine nodes. The authors do not consider the
automatic recovery implied by the self-stabilization property. [[Awerbuch and Sipser [3] consider algorithms
that were designed for synchronous static network and give topology update as an example. They show
how to use such algorithms in asynchronous dynamic networks. Unfortunately, their scheme starts from a
consistent state and cannot cope with transient faults or Byzantine.]]
Byzantine gossip [2, 4, 6, 10, 12, 14] and Byzantine Broadcast [8, 17] consider the dissemination of

information in the presence of Byzantine nodes rather than self-stabilizing topology discovery. Non-self-
stabilizing Byzantine resilient gossip in the presence of one selfish node is considered in [2, 12]. In [6], the
authors study oblivious deterministic gossip algorithms for multi-channel radio networks with a malicious
adversary. They assume that the adversary can disrupt one channel per round, preventing communication on
that channel. In [4], the authors consider probabilistic gossip mechanisms for reducing the redundant trans-
missions of flooding algorithms. They present several protocols that exploit local connectivity to adaptively
correct propagation failures and protect against Byzantine attacks. Probabilistic gossip mechanisms in the
context of recommendations and social networks are considered in [10]. In [14] the authors consider rules
for avoiding a combinatorial explosion in (non-self-stabilizing) gossip protocol. Note that deterministic and
self-stabilizing solutions are not presented in [2, 4, 6, 10, 12, 14].

Drabkin et al. [8] consider non-self-stabilizing broadcast protocols that overcome Byzantine failures
by using digital signatures, message signature gossiping, and failure detectors. Our deterministic self-
stabilizing algorithm merely use the topological properties of the communication graph to ensure that mes-
sages dropped or modified by Byzantine nodes will be detected, and retransmitted in a way that guarantees
correct delivery to the application layer. A non-self-stabilizing broadcasting algorithm is considered in [17].
The authors assume the restricted case in which links and nodes of a communication network are subject to
Byzantine failures, and that faults are distributed randomly and independently.
Our contribution. We present two cryptographic-assumptions-free yet secure algorithms that are deter-
ministic, self-stabilizing and Byzantine resilient.

We start by showing the existence of deterministic, self-stabilizing, Byzantine resilient algorithms for
network topology discovery and end-to-end message delivery. [[The algorithms convergence time is in
O(n). They take in to account every possible path and requiring bounded (yet exponential) memory and
bounded (yet exponential) communication costs.]] Therefore, we also consider the task of r-neighborhood
discovery, where r is a constant. We assume that if the r-neighborhood of a node has f Byzantine
nodes, there are 2f + 1 vertex independent paths between the node and any non-Byzantine node in its
r-neighborhood. The obtained r-neighborhood discovery requires polynomial memory and communica-
tion costs and supports deterministic, self-stabilizing, Byzantine resilient algorithm for end-to-end message
delivery across the network. [[Unlike topology update, the proposed end-to-end message delivery algo-
rithm establishes message exchange synchronization between end-users that is based on message reception
acknowledgments.]]
Document structure. Settings and requirements appear in Section 2. The self-stabilizing Byzantine
resilient distributed algorithm for topology discovery is presented in Section 3. The end-to-end communi-
cation algorithm appears in Section 4. Extensions and concluding remarks appear in Section 5. Detailed
proofs appear in the Appendix and in [7].

3

2 Preliminaries

We consider settings of a standard asynchronous system [cf. 5]. The system consists of a set, N = {pi}
of communicating entities, chosen from a set P , which we call nodes. The upper bound on the number of
nodes in the system is n = |P |. Each node has a unique identifier. Sometime we refer to a set, P \ N , of
nonexisting nodes that a false indication on their existence can be recorded in the system. A node pi can
directly communicate with its neighbors, Ni ⊆ N . The system can be represented by a network of directly
communicating nodes, G = (N,E), named the communication graph, where E = {(pi, pj) ∈ N × N :
pj ∈ Ni}. We denote Nk’s set of indices by indices(Nk) = {m : pm ∈ Nk} and Nk’s set of edges by
edges(Nj) = {pj} ×Nj .

The r-neighborhood of a node pi ∈ N is the connected component that includes pi and all nodes that
can be reached from pi by a path of length r or less. The r-neighborhood version of the algorithm for
network topology discovery considers communication graphs in which the number of neighbors of a node
pi is bounded by a constant Δ. Hence, when both the neighborhood radius, r, and the node degree Δ are
constants the number of nodes in the r-neighborhood is also bounded by a constant, namely by [[O(Δr+1).]]

We model the communication channel, queuei,j , from node pi to node pj ∈ Ni as a FIFO queuing list
of the messages that pi has sent to pj and pj is about to receive. When pi sends message m, the operation
send inserts a copy of m to every queuei,j , such that pj ∈ Ni. We assume that the number of messages in
transit, i.e., stored in queuei,j , is at most capacity. Once m arrives, pj executes receive and m is dequeued.

We assume that pi is completely aware of Ni, as in [15]. In particular, we assume that the identity of
the sending node is known to the receiving one. In the context of the studied problem, we say that node
pi ∈ N is correct if it reports on its genuine neighborhood, Ni. A Byzantine node, pb ∈ N , is a node
that can send arbitrarily corrupted messages. Byzantine nodes can introduce new messages and modify
or omit messages that pass through them. This way they can, e.g., disinform correct nodes about their
neighborhoods, or about the neighborhood of other correct nodes, or the path through which messages
travel, to name a very few specific misleading actions that Byzantine nodes may exhibit. We denote by
C and B the set of correct, and respectively, Byzantine nodes. We assume that |B| = f , the identity of
the nodes in B is unknown to the nodes in C . Nevertheless, B is fixed throughout the considered execution
segment. These execution segments are long enough for convergence and then for obtaining sufficient useful
work. We assume that between any pair of correct nodes there are at least 2f + 1 vertex disjoints paths. We
denote by Gc = (C,E ∩ C × C) the correct graph induced by the set of correct nodes.

Self-stabilizing algorithms never terminate (see [5]). The non-termination property can be easily identi-
fied in the code of a self-stabilizing algorithm: the code is usually a do forever loop that contains commu-
nication operations with the neighbors. An iteration is said to be complete if it starts in the loop’s first line
and ends at the last (regardless of whether it enters branches).

Every node, pi, executes a program that is a sequence of (atomic) steps. For ease of description, we
assume the interleaving model where steps are executed atomically, a single step at any given time. An
input event can either be the receipt of a message or a periodic timer going off triggering pi to send.
Note that the system is totally asynchronous and the (non-fixed) node processing rates are irrelevant to the
correctness proof.

The state si of a node pi consists of the value of all the variables of the node (including the set of all
incoming communication channels, {queuej,i|pj ∈ Ni}). The execution of a step in the algorithm can
change the state of a node. The term (system) configuration is used for a tuple of the form (s1, s2, · · · , sn),
where each si is the state of node pi (including messages in transit for pi). We define an execution E =
c[0], a[0], c[1], a[1], . . . as an alternating sequence of system configurations c[x] and steps a[x], such that each

4

configuration c[x+1] (except the initial configuration c[0]) is obtained from the preceding configuration c[x]
by the execution of the step a[x]. We often associate the notation of a step with its executing node pi using
a subscript, e.g., ai. An execution R (run) is fair if every correct node, pi ∈ C , executes a step infinitely
often in R. Time (e.g. needed for convergence) is measured by the number of asynchronous rounds, where
the first asynchronous round is the minimal prefix of the execution in which every node takes at least one
step. The second asynchronous round is the first asynchronous round in the suffix of the run that follows the
first asynchronous round, and so on. The message complexity (e.g. needed for convergence) is the number
of messages measured in the specific case of synchronous execution.

We define the system’s task by a set of executions called legal executions (LE) in which the task’s
requirements hold. A configuration c is a safe configuration for an algorithm and the task of LE provided
that any execution that starts in c is a legal execution (belongs to LE). An algorithm is self-stabilizing with
relation to the task LE when every infinite execution of the algorithm reaches a safe configuration with
relation to the algorithm and the task.

3 Topology Discovery

The topology discovery is based on accumulating messages from vertex disjoint paths. Each message con-
tains an ordered list of nodes it passed so far, starting in a source node, and a neighborhood, which is the set
of nodes, claimed to be directly connected to the source.

Each node pi periodically sends a message to each neighbor. The message sent contains the local
topology, a source i and an empty path. The arrival of a message m to pi triggers an insert of m to
informedTopologyi and a consistency test of the content of informedTopologyi. The consistency test
results in storing local topologies for which there are enough independent evidence in a result array. The
result array is initialized just prior to the consistency test. The consistency test of pi iterates over each node
pk such that, pk appears in at least one of the messages stored in informedTopologyi. For each such node
pk, node pi checks whether there are at least f + 1 messages from the same source node that have mutually
vertex disjoint paths and report on the same neighborhood. The neighborhood of each such pk, that has at
least f + 1 vertex disjoint paths with identical neighborhood, is accumulated in Result[k]. Moreover, the
total number of paths [[that]] relayed this neighborhood is kept in Count[k].

We note that there may still be nodes pfake ∈ P \(C∪B), for which there is an entry Result[fake]. For
example, informedTopology may contain f messages, all originated from different Byzantine nodes, and
a message m′ that appears in the initial configuration and supports the (false) neighborhood the Byzantine
messages refer to. These f + 1 messages can contain mutually vertex disjoint paths, and thus during the
consistency test, a result will be found for Result[fake]. We show that during the next computations, the
message m′ will be identified and ignored.

The Result set should include two reports for each (undirected) edge; the two nodes that are attached to
the edge, each send a report. Hence, Result includes a set of directed (report) edges. The term contradicting
edge is needed when examining the Result set consistency.
Definition 1 (Contradicting edges) Given two nodes, pi, pj ∈ P , we say that the edge (pi, pj) is contra-
dicting with the set Neighborhoodj ⊆ edges(Nj), if (pi, pj) �∈ Neighborhoodj .

Following the consistency test, pi examines the Result array for contradictions. Node pi checks the
path of each message m ∈ informedTopologyi with source pr, neighborhood neighborhoodr and Pathr.
If every edge (ps, pj) on the path appears in Result[s] and Result[j], then we move to the next message.
Otherwise, we found a fake supporter, and therefore we reduce Count[r] by one. In case the resulting
Count[r] is smaller than f + 1, we nullify the r’th entry of the Result array. Once all messages were

5

processed, the Result array consisting of the (confirmed) local topologies is the output. At the end pi
forwards the arriving message m to each neighbor that does not appear in the path of m. The message sent
by pi includes the node from which m arrived as part of the path m.

The pseudocode appears in Algorithm 1. In every iteration of the infinite loop, pi starts to compute
its preliminary topology view by calling ComputeResults in line 2. Then, every node pk in the queue
InformedTopology, node pi goes over the messages in the queue from head to bottom. While iterat-
ing the queue, for every message m with source pk, neighborhood Nk and visited path Pathk, pi inserts
Pathk to opinion[Nk], see line 18. After inserting, pi checks if there is a neighborhood Neigk for which
opinion[Neigk] contains at least [[f + 1]] vertex disjoint paths, see line 19. When such a neighborhood
is found, it is stored in the Result array (line 19). In line 20, pi stores the number of vertex disjoint paths
relayed messages that contained the selected neighborhood for pk. After computing an initial view of the
topology, in line 3, pi removes non-existing nodes from the computed topology. For every message m in
InformedTopology, node pi aims at validating its visited path. In line 24, pi checks if there exists a node
pk whose neighborhood contradicts the visited path of m. If such a node exists, pi decreases the associated
entry in the Count array (line 25). This decrease may cause Count[r] to be smaller than f + 1, in this case
pi considers pk to be fake and deletes the local topology of pk from Result[r] (line 26).

Upon receiving a message m, node pi inserts the message to the queue, in case it does not already exist,
and just moves it to the top of the queue in case it does. The node pi now needs to relay the message pi
got to all neighbors that are not on the message visited path (line 9). When sending, pi also attaches the
identifier of the node, from which the message was received, to the visited path of the message.
Algorithm’s correctness proof. We now prove that within a linear amount of asynchronous rounds,
the system stabilizes and every output is legal. The proof considers an arbitrary starting configuration with
arbitrary messages in transit that could be actually in the communication channel or already stored in pj’s
message queue and will be forwarded in the next steps of pj . Each message in transit that traverse correct
nodes can be forwarded within less than O(|C|) asynchronous rounds. Note that any message that traverses
Byzantine nodes and arrives to a correct node that has at least one Byzantine node in its paths. The reason
is that the correct neighbor to the last Byzantine in the path lists the Byzantine node when forwarding the
message. Thus, f is at most the number of messages that encode vertex disjoint paths from a certain source
that are initiated or corrupted by a Byzantine node. Since there are at least f + 1 vertex disjoint paths with
no Byzantine nodes from any source pk to any node pi and since pk repeatedly sends messages to all nodes
on all possible paths, pi receives at least f + 1 messages from pk with vertex disjoint paths.

The usage of the FIFO queue and the repeated send operations of pk ensure that the most recent f + 1
messages with vertex disjoint paths in InformedTopology queue are uncorrupted messages. Namely,
misleading messages that were present in the initial configuration will be pushed to appear below the new
f + 1 uncorrupted messages. Thus, each node pi eventually has the local topology of each correct node
(stored in the Resulti array). The opposite is however not correct as local topologies of non-existing nodes
may still appear in the result array. For example, InformedTopologyi may include in the first configuration
f + 1 messages with vertex disjoint paths for a non-existing node.

Since after ComputeResults we know the correct neighborhood of each correct node pk, we may try to
ensure the validity of all messages. For every message that encodes a non-existing source node, there must
be a node p� on the message path, such that p� is correct and p�’s neighbor is non-existing, this is true since
pi itself is correct. Thus, we may identify these messages and ignore them. Furthermore, no valid messages
are ignored because of this validity check.

We also note that, since we assume that the nodes of the system are a subset of P . The size of the queue
InformedTopology is bounded. Next, we bound the amount of memory of a node. The details of the
correctness and convergence proofs appear in the Appendix and in [7].

6

Algorithm 1: Topology discovery, code for node pi
Input: Neighborhoodi: The ids of the nodes with which node pi can communicate directly;
Output: ConfirmedTopology ⊂ P × P : Discovered topology, which is represent by a directed edge set;
Variable InformedTopology : Queue, see Figure 1: topological messages, 〈node, neighborhood, path〉;
Function: NodeDisjointPaths(S): Test S = {〈node, neighborhood, path〉} to encode at least f + 1 vertex disjoint paths;
Function: PathContradictsNeighborhood(k,Neighborhoodk, path): Test that there is no node pj ∈ N for which there is an edge

(pk, pj) in the message’s visited path, path ⊆ P ×N , such that (pk, pj) is contradicting with Neighborhoodk;
1 while true do
2 Result← ComputeResults()
3 let Result← RemoveContradictions(Result)
4 RemoveGarbage(Result)
5 ConfirmedTopology ← ConfirmedTopology ∪ (

⋃
pk∈P Result[k])

6 foreach pk ∈ Ni do send(i, Neighborhoodi, ∅) to pk

7 Upon Receive (〈�,Neighborhood�, V isitedPath�〉) from pj ;
begin

8 Insert(p�, Neighborhood�, V isitedPath� ∪ {j})
9 foreach pk ∈ Ni do if k �∈ V isitedPath� then send(p�, Neighborhood�, V isitedPath� ∪ {j}) to pk

10 Procedure: Insert(k,Neighborhoodk, V isitedPathk);
begin

11 if ∃m = 〈�,Neighborhood�, V isitedPath�〉 ∈ InformedTopology : (�, Neighborhood�, V isitedPath�) =
(k,Neighborhoodk, V isitedPathk) then InformedTopology.MoveToHead(m)

12 else if pk ∈ N ∧Neighborhoodk ⊆ indices(N) ∧ V isitedPathk ⊆ indices(N) then
InformedTopology.Insert(〈k,Neighborhoodk, V isitedPathk〉)

13 Function: ComputeResults();
begin

14 foreach pk ∈ P : 〈k,Neighborhoodk, V isitedPathk〉 ∈ InformedTopology do
15 let (F irstDisjointPathsFound,Message, opinion[])← (false, InformedTopology.Iterator(), [∅])
16 whileMessage.hasNext() do
17 〈�, Neighborhood�, V isitedPath�〉 ←Message.Next()
18 if � = k then opinion[Neighborhood�].Insert(〈�,Neighborhood�, V isitedPath�〉)
19 if F irstDisjointPathsFound = false ∧NodeDisjointPaths(opinion[Neighborhood�]) then

(Result[k], F irstDisjointPathsFound)← (Neighborhood�, true)

20 Count[k]← opinion[Result[k.SizeOf()]]

21 return Result

22 Function: RemoveContradictions(Result);
begin

23 foreach 〈r,Neighborhoodr , V isitedPathr〉 ∈ InformedTopology do
24 if ∃pk ∈ P : PathContradictsNeighborhood(pk , Result[k], V isitedPathr) = true then
25 if Neighborhoodr = Result[r] then Count[r]← Count[r]− 1
26 if Count[r] ≤ f then Result[r]← ∅

27 return Result

28 Procedure: RemoveGarbage(Result);
begin

29 foreach pk ∈ N do
30 foreachm = 〈k,Neighborhoodk, V isitedPathk〉 ∈ InformedTopology :

{k} ∪Neighborhoodk ∪ V isitedPathk �⊆ P ∨ InformedTopology.IsAfter(m, opinion[k][Result[k]]) do
InformedTopology.Remove(m)

Lemma 1 (Bounded memory) Let pi ∈ C be a correct node. At any time, there are at most n·22n messages
in InformedTopologyanyi, where n = |P | and O(|P | log(|P |)) is the message size.

r-neighborhood discovery. Algorithm 1 demonstrates the existence of a deterministic self-stabilizing
Byzantine resilient algorithm for topology discovery. Lemma 1 shows that the memory costs are high when
the entire system topology is to be discovered. We note that one may consider the task of r-neighborhood

7

• Insert(m): Insert item m to the head of the queue.
•Remove(Messagem): Remove item m from the queue.
• Iterator(): Returns an pointer for iterating over the queue’s elements by the order in which they reside in the queue.
•HasNext(): Tests whether the Iterator is at the end of the queue.
•Next() Returns the next element to iterate over.
• SizeOf() Returns the number of elements in the calling set.
•MoveToHead(m): Move item m to the head of the queue.
• IsAfter(m,S): Test that item m is after the items m′ ∈ S, where S is a set of items in the queue.

Figure 1: Queue: general purpose data structure for queuing items, and its operation list.

discovery. Recall that in the r-neighborhood discovery task, it is assumed that every r-neighborhood cannot
be partitioned by Byzantine nodes. Therefore, it is sufficient to constrain the maximal path length in line 9.
The correctness proof of the algorithm for the r-neighborhood discovery follows similar arguments to the
correctness proof of Algorithm 1.

4 End-to-End Delivery

We use the discovered network topology to design a self-stabilizing Byzantine resilient algorithm for the
transport layer protocol. Namely, using the repeatedly collected topology information for implementing end-
to-end communication between (not necessarily neighboring) nodes. In this context, we face the challenge
of finding f +1 correct vertex disjoint paths and the need to propose efficient solutions for different system
settings.

The value of ConfirmedTopology is a set of directed edges (pi, pj). An undirected edge is approved
if both (pi, pj) and (pj , pi) appear in ConfirmedTopology. An edge is said to be suspected, whenever
only one edge (in one direction) appears in ConfirmedTopology. The sender has to choose 2f + 1 vertex
independent paths to the receiver. If there exists at least one such set of paths then the sender can safely use
them to communicate with the receiver (similar to Algorithm 1). However, the collected topology may not
include even one such set of 2f + 1 vertex independent paths. The reason is that f of the paths that should
appear in the collected topology may be controlled by Byzantine nodes. Namely, the information about at
least one edge in each such path may not arrive to the sender.

We propose three procedures for overcoming this difficulty in different system setting. The first proce-
dure assumes f is a constant. Thus, the sender may apply the following procedure for selecting a set of vertex
disjoint paths Paths, that contains f +1 correct paths. For each possible choice of f nodes p1, p2, . . . pf in
the system, the sender computes a new graph G′ which is the result of removing p1, p2, . . . pf , from Gout,
the graph defined by the collected topology. The sender now computes a set P of vertex disjoint paths,
where |P| = f + 1, if such a set exists. For each such set P, the sender relays the current message on all
paths in P . First we show that this procedure only sends message through a polynomial number of paths.
There are O(nf) possibilities for choosing f nodes from the system. Thus, O(nf) sets of paths are com-
puted, and since f is a constant, this number is polynomial. Moreover, each such set contains at most f + 1
paths, because pi only computes a set P of size f + 1. Thus, in total, the sender sends the message on at
most a polynomial number of paths. We now show that this procedure ensures that the message is sent on a
sufficient amount of correct paths i.e., f + 1. Consider the permutation in which the set of f chosen nodes
actually contains the set of Byzantine nodes in the system. Thus G′ contains only correct nodes. Further-
more, at least f+1 paths that were present in Gout are still present in G′, since we removed f nodes. Hence,
in G′, there are at least f+1 correct vertex disjoint paths. As stated, the sender chooses a set of paths of size
f + 1. Each of these paths is correct, and therefore the sender sends the message on at least f + 1 correct

8

vertex disjoint paths as needed.
The second procedure assumes that r and Δ are both constants. The sender sends the message over all

possible paths to the receiver. This is feasible only when considering r-neighborhoods, rather than the entire
connected component, where the neighborhood radius, r, and the node degree Δ are constants. Next, we
present a polynomial solution for the case in which f , r and Δ are not constants, assuming that Byzantine
nodes are not directly connected.

The third procedure assumes that Byzantine nodes cannot be immediate neighbors and that all neighbors
of a given Byzantine node refer to the Byzantine with the same identifier. Our polynomial cost solution
considers the (extended) graph, Gext, that includes all the edges in confirmedTopology and suspicious
edges, see Definition 2.
Definition 2 (Suspicious edges) Given three nodes, pi, pj , pk ∈ P , we say that node pi considers the undi-
rected edge (pk, pj) suspicious, if the edge appears as a directed edge in ConfirmedTopologyi for only
one direction, e.g., (pj , pk).
The extended graph, Gext, may contain fake edges that Byzantine nodes reports on their existence. Never-
theless, Gext includes all the correct paths of the communication graph, G. Therefore, the 2f + 1 vertex
disjoint paths that exists in G also exists in Gext. These 2f +1 paths facilitate our polynomial cost solution.

The sender uses the chosen paths to repeatedly forward the message m that should arrive to the receiver.
The sender uses a label to identify the messages. Roughly speaking, the receiver deliver a message received
at least c ·n+1 consecutive times from f +1 vertex independent paths (according to the path carried in the
message). Once the receiver delivers a message to the network layer, the receiver starts to repeatedly send
acknowledgments with the label of the delivered message over 2f + 1 vertex disjoint paths. In addition, the
receiver also restarts its counters and the log of received messages upon a message delivery to the network
layer. Similarly the sender count acknowledgments to the current label used, when the sender receives at
least c · n+ 1 acknowledgments on a set of f + 1 vertex disjoint paths, the sender fetches the next message
from the network layer, changes the label and starts to send the new message. We note that starting from
an arbitrary configuration, the sender eventually fetches a message from the network layer. This is obvious
since if the sender is sending the same message forever, then the receiver counters on f + 1 paths must
exceed c ·n+1. From this point the receiver sends acknowledgments with the correct label forever ensuring
that the sender fetches the next message.

The pseudocode of the algorithm appears in Algorithm 2. In every iteration of the infinite loop, pi
fetches a message (line 3). Following the fetch, pi prepares the label for the next message (line 4). Once
the label is ready, pi starts sending the message over 2f + 1 vertex disjoint messages which pi calculates
in the procedure ByzantineFaultToleranceSend(Message). When pi gets enough acknowledgments
regarding the current message (see line 5), pi stops sending the current message and fetches another message.

Upon receiving a message m, node pi checks in line 7 whether pi is the destination of the message. If
not, pi forwards the message to the next node on the intended path of the message, not forgetting to update
the visited path. If however pi is the destination of the message, pi checks the type of the message in
line 10. If the type of the message is Data then (in line 11) pi inserts the message payload and label to the
part of the data structure associated with the message source, i.e., the sender, and the message visited path.
In line 27, node pi checks whether 2f +1 vertex disjoint paths relayed the message at least capacity ·n+1
times, where capacity is an upper bound on the number of messages in transit over a communication link.
If so, pi delivers the message to the above layer (line 20), clears the entire data structure and finally sends
acknowledgments on 2f + 1 vertex disjoint paths until a new message is confirmed. Moreover, in line 21
we signal that we are ready to receive a new message. If the type of the message is ACK, we act almost as
when the message is of type Data. When the condition in line 18 holds, we signal that the message was

9

confirmed at the receiver by setting Approved to be true, in line 18.

Correctness proof. Let us consider three labels, 0, 1, and 2 that are used by the sender in a round robin
fashion. Whenever at least c · n + 1 identical messages arrive at the receiver with the same label on each
of f + 1 vertex independent paths, the receiver delivers them, nullify the counters, empty queues and send
acknowledges with the label of the delivered message over 2f + 1 vertex-disjoint paths (cf. line 13). The
sender clears counters and queues whenever the sender changes label.

First we prove that the sender fetches infinitely often, by assuming it is not and proving that eventually
the receiver sends acknowledgments with the label used by the sender. Hence, the sender must fetch (see
Lemma 13). Then in between the second and the fourth fetch of any four successive fetches, where without
the loss of generality, the first fetch is with label 0, the second with 1, the third with label 2 and the fourth
with 0 the receiver clears its counter and the last fetched message in this sequence that is with label 0 is later
delivered.

Following the fetch of each of the first three messages and before the next one, the sender must count
c · n + 1 acknowledgments with the current label that the sender uses to send, namely with 0, 1 and 2.
Since the sender reset the counters when changing the sending label to 1, the receiver must send at least
one acknowledgment with label 1 and then with label 2, following the corresponding fetches. Thus, the
receiver must clear its counters at least once following the second fetch and before the fourth fetch and then
start sending acknowledgments with label 2. After clearing the counters by the receiver and starting sending
acknowledgments with label 2 a message with label 0 that is next to be sent, must be delivered and no other
message can be counted as arriving at least c · n + 1 times through f + 1 vertex-disjoint paths. Detailed
proof appears in the Appendix and in [7].

Note that the code of Algorithm 2 considers only one possible pair of source and destination. A many-
source to many-destination version of this algorithm can simply use a separate instantiation of this algorithm
for each pair of source and destination.

5 Extensions and Conclusions

As extension, we suggest to combine the algorithms for r-neighborhood network discovery and the end-to-
end capabilities in order to allow the use of end-to-end message delivery within the r-neighborhoods. These
two algorithms can be used by the nodes, under reasonable node density assumptions, for discovering their
r-neighborhoods and then extending the scope of their end-to-end capabilities beyond their r-neighborhood,
as we sketch next. We instruct further remote nodes to relay topology information, and in this way collect
information on remote neighborhoods. One can consider an algorithm for studying specific remote neigh-
borhood that are defined, for example, by their geographic region, assuming the usage of GPS inputs; a
specific direction and distance from the topology exploring node defines the exploration goal. The algo-
rithm nominates 2f + 1 nodes in the specific direction to return further information towards the desired
direction. The sender uses end-to-end communication to the current 2f + 1 nodes in the front of the current
exploration, asking them for their r-neighborhood, chooses a new set of 2f + 1 nodes for forming a new
front. It then instructs each of the current nodes in the current front to communicate with each node in the
chosen new front, to nominate the new front nodes to form the exploration front.

To ensure stabilization, this interactive process of remote information collection should never stop.
Whenever the current collection process investigates beyond the closest r-neighborhood, we concurrently
start a new collection process in a pipeline fashion. The output is the result of the last finalized collection
process. Thus, having a correct output after the first time a complete topology investigation is finalized.

10

In this work we presented two deterministic, self-stabilizing Byzantine-resilience algorithms for topol-
ogy discovery and end-to-end message delivery. We have also considered an algorithm for discovering
r-neighborhood in polynomial time, communication and space. Lastly, we mentioned a possible extension
for exploring and communicating with remote r-neighborhoods using polynomial resources as well.

The obtained end-to-end capabilities can be used for communicating the public keys of parties and
establish private keys, in spite of f corrupted nodes that may try to conduct man-in-the-middle attacks, an
attack that the classical Public key infrastructure (PKI) does not cope with. Once private keys are established
encrypted messages can be forwarded over any specific f + 1 node independent paths, one of which must
be Byzantine free. The Byzantine free path will forward the encrypted message to the receiver while all
corrupted messages will be discarded. Since our system should be self-stabilizing, the common private
secret should be re-established periodically.

References

[1] F. M. Al-Azemi and M. H. Karaata. Brief announcement: A stabilizing algorithm for finding two
edge-disjoint paths in arbitrary graphs. In X. Défago, F. Petit, and V. Villain, editors, SSS, volume
6976 of Lecture Notes in Computer Science, pages 433–434. Springer, 2011.

[2] L. Alvisi, J. Doumen, R. Guerraoui, B. Koldehofe, H. C. Li, R. van Renesse, and G. Trédan. How
robust are gossip-based communication protocols? Operating Systems Review, 41(5):14–18, 2007.

[3] B. Awerbuch and M. Sipser. Dynamic networks are as fast as static networks (preliminary version). In
FOCS, pages 206–220. IEEE Computer Society, 1988.

[4] M. Burmester, T. V. Le, and A. Yasinsac. Adaptive gossip protocols: Managing security and redun-
dancy in dense ad hoc networks. Ad Hoc Networks, 5(3):313–323, 2007.

[5] S. Dolev. Self-Stabilization. MIT Press, 2000.

[6] S. Dolev, S. Gilbert, R. Guerraoui, and C. C. Newport. Gossiping in a multi-channel radio network. In
A. Pelc, editor, DISC, volume 4731 of Lecture Notes in Computer Science, pages 208–222. Springer,
2007.

[7] S. Dolev, O. Liba, and E. M. Schiller. Self-stabilizing byzantine resilient topology discovery and
message delivery. Technical Report 2012:01, Chalmers University of Technology, 2012. ISSN 1652-
926X.

[8] V. Drabkin, R. Friedman, and M. Segal. Efficient byzantine broadcast in wireless ad-hoc networks. In
DSN, pages 160–169. IEEE Computer Society, 2005.

[9] S. Dubois, T. Masuzawa, and S. Tixeuil. Maximum metric spanning tree made byzantine tolerant. In
D. Peleg, editor, DISC, volume 6950 of Lecture Notes in Computer Science, pages 150–164. Springer,
2011.

[10] Y. Fernandess and D. Malkhi. On spreading recommendations via social gossip. In F. Meyer auf der
Heide and N. Shavit, editors, SPAA, pages 91–97. ACM, 2008.

[11] R. Hadid and M. H. Karaata. An adaptive stabilizing algorithm for finding all disjoint paths in anony-
mous mesh networks. Computer Communications, 32(5):858–866, 2009.

11

[12] H. C. Li, A. Clement, E. L. Wong, J. Napper, I. Roy, L. Alvisi, and M. Dahlin. Bar gossip. In OSDI,
pages 191–204. USENIX Association, 2006.

[13] N. Lynch. Distributed Computing. Morgan Kaufmann Publishers, 1996.

[14] Y. Minsky and F. B. Schneider. Tolerating malicious gossip. Distributed Computing, 16(1):49–68,
2003.

[15] M. Nesterenko and S. Tixeuil. Discovering network topology in the presence of byzantine faults. IEEE
Trans. Parallel Distrib. Syst., 20(12):1777–1789, 2009.

[16] R. Ostrovsky and M. Yung. How to withstand mobile virus attacks (extended abstract). In L. Logrippo,
editor, PODC, pages 51–59. ACM, 1991.

[17] M. Paquette and A. Pelc. Fast broadcasting with byzantine faults. Int. J. Found. Comput. Sci.,
17(6):1423–1440, 2006.

12

Algorithm 2: Self-stabilizing Byzantine resilient end-to-end delivery, code for node pi.
Interface: FetchMessage(): Get a new message from the upper layer. We denote by InputMessageQueue the unbounded queue of

all messages that are to be delivered to the destination;
Interface: DeliverMessage(Source,Message): Deliver an arriving message to the higher layer. We denote by

OutputMessageQueue the unbounded queue of all messages that are to be delivered to the higher layer. We assume that it
always contains at least the last message inserted to it;

Input: ConfirmedTopology: The discovered topology, which is represent by a set of directed edges included in P × P , see
Algorithm 1;

Data Structure: Transport layer messages: 〈Source,Destination, V isitedPath, IntentedPath, ARQLabel, Type,Payload〉,
where Source is the sending node, Destination is the target node, V isitedPath is the actual relay path,
IntentedPath is the planned relay path, ARQLabel is the sequence number of the stop-and-wait ARQ protocol, and
Type ∈ {Data, ACK} message type, where DATA and ACK are constant;

Field: Payload: the message data;
VariableMessage: the current message being sent;
Variable ReceivedMessages[j][Path] : queue of pj’s messages that were relayed over path Path (see Figure 1);
Variable Confirmations[j][Path] : queue of pj’s message acknowledgments that were relayed over path Path (see Figure 1);
Variable label: the current sequence number of the stop-and-wait ARQ protocol;
Variable Approved: A Boolean variable indicating whether Message was accepted at the destination;
Function: NodeDisjointPaths(S): Test S, a set of paths, to encode at least f + 1 vertex disjoint paths;
Function: F loodedPath(MessageQueue,m) : Test whether m is encoded by the first capacity · n+ 1 messages in

MessageQueue, where capacity is an upper bound on the number of messages in transit over a communication link.;
Function: SuspiciousEdges() : Get the set of suspicious edges;
Function: getDisjointPaths(Topology,Source,Destination) : Get a set of f + 1 vertex disjoint paths between source and

destination in the graph induced by Topology.;
Function: ClearQueue(Source) : Delete all data in ReceivedMessages[Source][∗];
Function: ClearAckQueue(Destination) : Delete all data in Confirmations[Destination][∗];

1 while true do
2 ClearAckQueue(Message.Destination)
3 Message← FetchMessage()
4 label← label+ 1 modulo 3
5 while Approved = false do ByzantineFaultToleranceSend(Message)

6 Upon Receive (msg) From pj ;
begin

7 ifmsg.Destination �= i then
8 msg.V isitedPath← msg.V isitedPath ∪ {j}
9 send(msg)

10 else ifmsg.Type = Data then
11 ReceivedMessages[msg.Source][msg.V isitedPath].insert(〈msg.Payload,msg.ARQLabel〉)
12 if ∃m ∈ ReceivedMessages[msg.Source][∗] : Paths = {Path :

F loodedPath(ReceivedMessages[msg.Source][Path],m)} ∧ NodeDisjointPaths(Paths) ∧
msg.source = m.source then

13 Confirm(msg.Source,m.ARQLabel,m.Payload)
14 NewMesssage = true

15 else ifmsg.Type = ACK then
16 if label = msg.ARQLabel then

Confirmations[msg.Source][msg.V isitedPath].insert(〈msg.Payload,msg.ARQLabel〉)

17 let Paths← {Path : F loodedPath(Confirmations[msg.Source][Path], 〈msg.Payload,msg.ARQLabel〉)}
18 if NodeDisjointPaths(Paths) then Approved = true

19 Function: Confirm(Source,ARQLabel, Payload);
begin

20 if CurrentLabel �= ARQLabel thenDeliverMessage(Source,Payload)
21 (CurrLbl,NewMessage)← (ARQLbl, false)
22 ClearQueue(Source)
23 while NewMessage = false do ByzantineFaultToleranceSend(〈Source,ARQLabel, ACK,Payload〉)

24 Function: ByzantineFaultToleranceSend(Destination,ARQLabel, Type,Payload);
begin

25 let Paths← getDisjointPaths(ConfirmedTopology ∪ SuspiciousEdges(), i,Destination)
26 foreach Path ∈ Paths do27 send(〈i, Destination, ∅, Path,ARQLabel, Type,28 Payload〉) to first(Path)

13

A Correctness of Algorithm 1

Lemma 1 (Boundedmemory) Let pi ∈ C be a correct node. At any time, there are at most n ·22n messages
in InformedTopologyanyi, where n = |P | and O(|P | log(|P |)) is the message size.
Proof. The queue InformedTopologyanyi, is made up of messages in the form
〈node, neighborhood, visitedpath〉. All nodes that appear in the message, i.e., in the first, second
or third entry of the tuple are in N . The first entry, i.e. the node name is one of n possibilities. The second
and third entries are subsets of N . Thus each of them has 2n possibilities. In total there can be at most
2n · 2n · n messages in every InformedTopologyanyi. �

Definition 3 specifies the requirements of the network topology discovery task. Definition 4 considers
correct paths and Definition 5 considers uncorrupted graph topology messages.
Definition 3 (Legal output) Given correct node pi ∈ C , we say that pi’s output is legal, if it encodes
graph Goutput = (Vout, Eout): (1) C ⊆ Vout ⊆ C ∪ B ⊆ N , and (2) (E ∩ (C × C)) ⊆ Eout ⊆
(E ∩ (C × C)) ∪ (B × (C ∪B)) ⊆ N ×N .
Definition 4 (Correct path) We say path ⊆ N is a correct one if all its nodes are correct, i.e., path ⊆ C .
Definition 5 (Valid message) In Algorithm 1, we refer to a message m =
〈k,Neighborhoodk , V isitedPathk〉 as a valid message when: (1) pk ∈ C and V isitedPathk encodes a
correct path in the communication graph, G, that starts in pk, and (2) Neighborhoodk = indices(Nk).

Lemma 2 shows that eventually correct paths do not relay non valid messages. Namely, invalid messages
can only exist as the result of: (1) Byzantine interventions that corrupt messages, or (2) transient faults,
which occur only prior to the arbitrary starting configuration considered. 2

Lemma 2 (Eventually valid messages) Let R be a fair execution of Algorithm 1 that starts in an arbitrary
configuration. WithinO(|C∪B|) asynchronous rounds, the system reaches a configuration after which only
valid messages are relayed on correct paths.
Proof. Let c ∈ R be the starting configuration. Suppose that c includes an invalid message, m =
〈�,Neighborhood�, V isitedPath�〉, in transit between correct nodes. The lemma is obviously correct
for the case that m is relayed by Byzantine nodes during the first O(|C ∪ B|) asynchronous rounds of R.
Therefore, we consider only the correct paths, path, over which m is relayed during the first O(|C ∪ B|)
asynchronous rounds of R. We show that, within O(|C ∪B|) asynchronous rounds, no correct node in path

relays m.
Let pj, pi ∈ path be correct neighbors on the correct path. Suppose that in c, message m

is in transit from pj to pi. Upon the arrival of message m to pi (line 7), pi sends mi =
〈�,Neighborhood�, V isitedPath� ∪ {j}〉 to any neighbor pk ∈ path on the path for which pk ∈ Ni ∧ k �∈
V isitedPath�, see line 9.

Node pi adds pj’s identifier to m’s visited path V isitedPath�, see line 9. The same argument holds
for any correct neighbors, p′j , p′j ∈ path when pj sends message m′j to the next node in path, node p′i.

2This is a common way to argue about self-stabilization, we consider executions that start in an arbitrary configuration that
follows the last transient fault, recalling that if additional transient faults occur a new arbitrary configuration is reached from which
automatic convergence starts.

14

Therefore, within |path\V isitedPath�| asynchronous rounds, it holds that N ′i ∩(path\V isitedPath�) =
{p′j , p

′
i}.

Note that p′i makes sure that V isitedPath′� does not encode loops, i.e., pk �∈ V isitedPath′�, see line 9.
Therefore, node p′i does not relay message m′ to pk. �

Definition 6 considers queues that their recent valid messages encode at least f +1 vertex disjoint paths.
Moreover, the invalid ones encode at most f such paths.
Definition 6 (Valid queue) Let pi, pk ∈ C be two correct nodes. We say that pi’s queue,
InformedTopologyi, is valid (with respect to pk) whenever there is a prefix, V alidInformationi,k,
of messages mk in the queue InformedTopologyi, such that: (1) there is a subset, V alid =
{m� = 〈k,Neighborhoodk , V isitedPath�〉 : m� is valid} ⊆ V alidInformationi,k, for which the
set {V isitedPath�} encodes at least f + 1 vertex disjoint paths, and (2) the set, Invalid = {m� =
〈k,Neighborhoodk , V isitedPath�〉 : m� is invalid} ⊆ V alidInformationi,k, for which the set
{V isitedPath�} encodes at most f vertex disjoint paths.

Claim 3 shows that, within O(|C|) asynchronous rounds, correct paths propagate valid messages.

Claim 3 Let path ⊆ C be a correct path from pi to pk. Suppose that mi = 〈i,Ni, ∅〉 is a (valid) message
that pi sends, see line 6. WithinO(|path|) asynchronous rounds, messagemi is relayed on path, and arrives
at pk asm′i = 〈i,Ni, path〉. Namely, path ism′i’s visited path.

Proof. Let c ∈ R be the first configuration that follows the start of mi’s propagation in path. I.e., c is
the configuration that immediately follows the step in which node pi sends mi by executing line 6. Let
pr, pj ∈ path be two correct neighbors on the path. Without the loss of generality, suppose that node pi
sends message mi directly to node pr, i.e., in c, node pr is just about to receive mi. The proof arguments
hold also when assuming that pj sends message mj = 〈i,Ni, {r}〉 to the next node in path. Thus, generality
is not lost.

We show that, within one asynchronous round, pr sends mr to pj . Upon the arrival of message mi

to pr (line 7), node pr sends the message mr to any neighbor, such as pj , for which pj ∈ Nr ∧ r �∈
V isitedPathi = ∅, see line 9. Since the same argument holds when pj sends mj to the next node in path,
we have that within |path| asynchronous rounds, m′i is delivered to node pk.

�

Lemma 4 shows that queues get to become valid.
Lemma 4 (Eventually valid queues) Let R be a fair execution of Algorithm 1 that starts in an arbitrary
configuration and pi, pk ∈ C be any pair of correct nodes. The system reaches a configuration in which the
queue, InformedTopologyi, is valid (with respect to pk), within O(|C ∪B|) asynchronous rounds.
Proof. Let c ∈ R be a configuration achieved in Lemma 2 within O(|C ∪ B|) asynchronous rounds. We
show that within O(|C ∪ B|) asynchronous rounds after c, the system reaches a configuration in which
InformedTopologyi, is valid (with respect to pk), see Definition 6.

In configuration c, all messages in transit on correct paths are valid, see Lemma 2. Thus, the only
messages entering InformedTopologyi are either valid or have passed through Byzantine nodes. Denote
mbarrier to be the top message the queue InformedTopologyi. Moreover, V alidInformationi,k includes
all the messages in InformedTopologyi, that are between the queue’s head and mbarrier.

We show that condition (1) of Definition 6 holds. There are 2f +1 vertex disjoint paths between pi and
pk. At most f nodes are Byzantine and thus, there are at least f + 1 vertex disjoint paths between pi and
pk that are correct. By Claim 3 within O(|C|) asynchronous rounds, a valid message, mk, is received on all

15

f +1 (correct) vertex disjoint paths. Message mk is inserted to InformedTopologyi after configuration c.
Therefore, mk is in front of mbarrier. Hence, the set V alid = {m� = 〈�,Neighborhood�, V isitedPath�〉 :
m� is valid} ⊆ V alidInformationi,k contains at least f+1 valid messages whose respective visited paths,
V isitedPath�, are vertex disjoint.

We show that condition (2) of Definition 6 holds. Any invalid messages, mk, that is sent after configu-
ration c, must go through a Byzantine node, see Lemma 2.

Claim 5 Suppose that message m is relayed through a Byzantine node after configuration c, then in any
following configuration, whilem is still in transit, there is a Byzantine node in the visited path.

Proof. Observe the first correct node pk after the last Byzantine node b on m’s path. pk is correct, thus it
inserts b to the visited path. b is the last on the path and so the visited path must contain it until end of transit
or passing through a different Byzantine. �

Each such Byzantine node is recorded in the message path, see Claim 5. Since there are at most f
Byzantine nodes, there could be at most f such messages with vertex disjoint paths. This completes the
proof condition (2) and the lemma. �

Lemma 7 shows that correct information gets confirmed, and requires Definition 7.
Definition 7 (Message confirmation) We say that message mi = 〈k,Neighborhoodk , V isitedPathki〉 is
confirmed (by node pi) when Neighborhoodk ⊆ ConfirmedTopologyi.
Lemma 6 (Eventually confirmed messages) Let R be a fair execution of Algorithm 1 that starts in
an arbitrary configuration and pi, pk ∈ C be any pair of correct nodes. Within O(|C ∪ B|)
asynchronous rounds, the system reaches a configuration after which the fact that message mi =
〈k,Neighborhoodk , V isitedPathki〉 is confirmed, implies that Neighborhoodk = indices(N�).
Proof. Let c ∈ R be the first configuration in which InformedTopologyi is a valid queue and node pi
completes a full iteration of the do forever loop that starts in line 1. By Lemma 4, the system reaches c

within O(|C ∪B|) asynchronous rounds.
We how that in configuration c, the array Resulti satisfies that Resulti[k] = indices(N�). We go

through the computation of Result in lines 2 to 4.
• ComputeResults(), line 2. Let Resi[k] = indices(N ′�) be ComputeResults()’s re-

turn value with respect to node pk. We show that Resi[k] = indices(N�). Moreover, we show
that the neighborhood that will be found will be that which is represented in V alid = {m� =
〈k,Neighborhoodk , V isitedPath�〉 : m� is valid} ⊆ V alidInformationi,k.

We recall that the set {V isitedPath�} encodes at least f + 1 disjoint paths. Also in the prefix
V alidInformationi,k one can not find f + 1 invalid messages with vertex disjoint messages; See Def-
inition 6.

The function must choose the message containing the neighborhood Neighborhoodk . Otherwise, we
have chosen a different neighborhood for k, say Neighborhood′k �= Neighborhoodk = indices(Nk). That
is, at the time of checking line 19 with neighborhood Neighborhood� = Neighborhood′k , there were at
least f + 1 vertex disjoint paths in opinion[Neighborhood�]. This is in contradiction to condition (2) of
Definition 6. Moreover in line 20, it holds Count[k] > f + 1, since at least all the correct paths were
counted.

• RemoveContradictions(), line 3. Let Resi = ComputeResults() and
ResRemoveContradictionsi = RemoveContradictions(Resi) (line 3). We show that
ResRemoveContradictionsi[r] = indices(Nr). The function RemoveContradictions() modifies

16

Resi[r] only in line 26 by nullifying it whenever Count[r] ≤ f . We demonstrate that, for any correct path
V isitedPathk , there exists no p� for which PathContradictsNeighborhood(p�, Resi[�], V isitedPathk)
= true, which is the condition in line 24.

We explain that there is no node p� and a contradicting edge (pj, p�) with the set Resi[�]. By the
assumption that V isitedPathk is correct and that node p� ∈ V isitedPathk , we have that p� ∈ C is correct.
Thus Resi[�] = indices(N�), see previous item of this claim on ComputeResults(). V isitedPathk is
correct, and therefore (pj, p�) must be in V isitedPathk .

• RemoveGarbage(), line 4. This procedure does not modify Resi =
RemoveContradictions(ComputeResults()). We have shown that Resulti[k] = indices(Nk). Thus,
only the correct neighborhood is confirmed for every correct node pk. �

Lemma 7 shows that eventually there are no fake nodes.
Lemma 7 (Eventually no fake nodes) Let R be a fair execution of Algorithm 1 that starts in an arbitrary
configuration, pj ∈ N be any node, and p� ∈ P \(C∪B) be a node that is not included in the communication
graph,G. WithinO(|C∪B|) asynchronous rounds, the system reaches a configuration after which (pj , p�) �∈
ConfirmedTopologyi
Proof. Let c ∈ R be the configuration reached within O(|C ∪ B|) asynchronous rounds according to
Lemma 6. For any correct node, pi ∈ C , we show that in c, the execution of RemoveContradictions()
results in Counti[�] ≤ f and nullifies Resulti[�].

We start by showing that for every path p that relays a message which encodes the set Resulti[�], and
does not contain Byzantine nodes, a contradiction is found in RemoveContradictions(). Namely, the if
conditions of line 24 holds.

Note that, p may not be a correct path even though it contains no Byzantine nodes. For example p may
contain nodes pz that are not even in the communication graph, i.e., pz ∈ P \ (C ∪B).

Let pr ∈ C ∪B be the first correct node on path p. Such a node exists, because pi is correct and on the
path p. Since pr is correct, after the execution of ComputeResults(), we have that pr’s neighborhood, Nr,
is encoded in Resulti[r], see Lemma 6.

Denote the last edge in the path (pr, ps), where ps ∈ P \ (C ∪ B). Note that node ps is not a node in
the system and since Resulti[r] encodes Nr’s neighborhood, we have that ps �∈ Resulti[r]. Thus, the edge
(pr, ps) is contradicting with the set Resulti[r]. Namely, by the condition in line 24, we have that line 25
must decrease Count[�].

We note that immediately before the function RemoveContradictions() returns, the integer Count[�]
may count only incorrect paths, which contain at least one Byzantine node. Since there are at most f
Byzantine nodes, Count[�] ≤ f as needed. �

Theorem 8 demonstrates the self-stabilization properties.
Theorem 8 (Self-stabilization) Let R be a fair execution of Algorithm 1 that starts in an arbitrary config-
uration and pi ∈ C be a correct node. Within O(|C ∪ B|) asynchronous rounds, the system reaches a safe
configuration after which pi’s output is always legal, see Definition 3.
Proof. The systems reaches configuration c ∈ R of Lemma 6 within O(|C ∪ B|) asynchronous
rounds. We show that c is a safe configuration by showing that the output is legal, we must show
that ConfirmedTopologyi encodes a graph Goutput = (Vout, Eout), such that: (1) C ⊆ Vout, (2)
(E∩ (C×C)) ⊆ Eout, (3) Vout ⊆ C ∪B ⊆ N , and (4) Eout ⊆ (E∩ (C×C))∪ (B× (C∪B)) ⊆ P ×N .

For every correct node pk ∈ C , we have that Nk is confirmed in c, see Lemma 6. Thus, pk ∈ Vout and
condition (1) holds.

17

Let (pj, pk) be an edge in the communication graph between two correct nodes, we show (pj , pk) ∈
Eout. Since pj is correct, it is inserted to ConfirmedTopologyi, see Lemma 6. Thus, (pj , pk) ∈
edges(Nj) ∧ edges(Nj) ⊆ ConfirmedTopologyi in c, thus condition (2) holds as well.

There is no p� ∈ P \ (C ∪ B) and node pj ∈ N , such that (p�pj) ∈ ConfirmedTopologyi, see
Lemma 7. Thus, Vout ⊆ C∪B ⊆ N and Eout ⊆ (E∩ (C×C))∪ (B× (C∪B)) ⊆ P ×N . I.e., conditions
(3) and (4) hold in c. �

B Correctness of Algorithm 2

Lemma 9 shows that senders and receivers can eventually find at least 2f + 1 vertex-disjoint paths between
them. Note that at least f + 1 of them are correct.

Lemma 9 Let R be a fair execution of Algorithm 2 that starts in an arbitrary configuration and ps, pr ∈ C

a pair of correct nodes (sender and receiver). Within O(|C ∪ B|) asynchronous rounds the system reaches
a configuration in which the set ConfirmedTopology ∪ SuspiciousEdges encodes a set of 2f +1 vertex
disjoint paths from ps to pr and at least f + 1 of them are correct.

Proof. Let c be a safe configuration with respect to Algorithm 1. Let Paths =
getDisjointPaths(ConfirmedTopology ∪ SuspiciousEdges(), i,Destination) be a set of disjoint
paths in c, as in line 25, where i ∈ {s, r}. We first show that | Paths |≥ 2f + 1 before showing that
at least f + 1 of them are correct.

We consider the graph G′ = (N,EG′), which is computed from ConfirmedTopology and the suspi-
cious edges in c. We demonstrate that G′ contains the real communication graph, G. Let e = (pj, pk) ∈ EG′ .
When pj and pk are both correct, e ∈ G′ since c is safe. When pj is correct and pk is Byzantine, we must
consider the cases in which pk reports, and does not report, e as part of its local neighborhood. Namely,
either e ∈ ConfirmedTopology, or e ∈ SuspiciousEdges(), because pk does not report about e, but pi
does. Since G ⊆ G′, G′ must contain 2f + 1 vertex disjoint paths between any ps and pr, because G does.
Thus | Paths |≥ 2f + 1.

Moreover, the same arguments implies that there may be at most f incorrect paths, which contain at
least one Byzantine node. Hence, there are at least f + 1 correct nodes in Paths. �

Definitions 8, 9 and 10 are needed for lemmas 11, 12 and 13.

Definition 8 (Confirmation) Given configuration c, we say that message m is confirmed (by the receiver)
whenm ∈ OutputMessageQueue.

Definition 9 (Approve) Given fair execution, R, of Algorithm 2, we say that message m = 〈Source,
Destination, V isitedPath, IntentedPath, ARQLabel, DATA, Payload〉 is being approved (by the
sender pSource) during the first atomic step, asender, in which the sender executes line 18, where Source =
sender ARQLabel = msgsender.ARQLabel and Payload = msgsender.Payload, see line 17. Denote
by capproved the configuration that immediately follows asender. Given configuration c that appears after
capproved in R, we say that message m is approved (by the sender) in configuration c.

Definition 10 (Clear-sender-receiver) Given configuration c, we say that the sender is clear (with respect
to the receiver), if the queue Confirmations[receiver] = ∅ in c. Moreover, the receiver is clear (with
respect to the sender) , if the queue ReceivedMessages[sender] = ∅ in c.

18

Claim 10 shows that a message that is relayed on a correct path is received at the destination within
O(|C ∪B|) asynchronous rounds. Moreover, the destination receives the message with correct visiting set.

Claim 10 Let R be a fair execution of Algorithm 2 that starts in a safe configuration, c, with respect to
Algorithm 1. Let psource, pdest ∈ C be pair of correct nodes. Let csend be the configuration immediately
following a step in which psource sends message Msg on a correct path Path = psource, p1, p2, . . . pdest
from source, psource, to destination, pdest. Within O(|C ∪ B|) asynchronous rounds, pdest receives Msg

with a visiting set containing all nodes on Path except pdest.

Proof. Upon the arrival of message m to pk (line 6), node pi asserts that he is not the destination, pdest,
(line 7). Immediately after, pi sends the message m to the next neighbor, pi+1, see line 9. Since the same
argument holds when pj sends m to the next node in path, we have that within |Path| asynchronous rounds,
m is delivered to node pdest. �

Claim 11 says that when the sender repeatedly sends message Msg, for a duration of at least O(|C∪B|)
asynchronous rounds, the receiver eventually confirms message Msg.

Claim 11 Let R be a fair execution of Algorithm 2 that starts in a safe configuration, c, with respect to
Algorithm 1. Let ps, pr ∈ C be a pair of correct sending and receiving nodes. Suppose that, for a duration
of at least O(capacity · |C ∪ B|) asynchronous rounds, ps’s steps include only the execution of the func-
tion ByzantineFaultToleranceSend(Msg) in the loop of line 5. Within that period, the system reaches
configuration creceive in which pr confirmsMsg.

Proof. Denote csend as the configuration immediately following the first step in which ps sends message
Msg in R, see line 28. Within O(capacity · |C ∪ B|) asynchronous rounds, the first frame containing
Msg arrives at pr, see Claim 10. Moreover, after another O(capacity · |C ∪ B|) asynchronous rounds,
every correct path relays message Msg at least O(capacity · |C ∪ B|) times. This is correct since every
asynchronous round, ps sends a new frame containing Msg on each of the 2f + 1 vertex disjoint paths.
Moreover, by Claim 10, the last frame sent on all 2f + 1 paths arrives after another O(capacity · |C ∪B|).

Assume, in the way of proof by contradiction, that Msg is not confirmed by pr. This implies that
the queues, ReceivedMessages[ps][∗], in pr containing messages sent from ps were not cleared at least
since csend, see line 22. Thus, pr contains capacity · n + 1 indications of Msg on f + 1 vertex disjoint
paths. Denote clast as the configuration immediately after the arrival of the (capacity · n + 1)-th frame of
the f + 1’th path to relay capacity · n + 1 frames containing Msg. Immediately after clast, ps must go
through line 12, because the conditions in line 12 hold. Thus, a contradiction and Msg is confirmed within
O(capacity · |C ∪B|) asynchronous rounds. �

Claim 12 says that when the receiver is sending acknowledgments about a message, that message even-
tually becomes approved. We note that Claim 12 considers acknowledgments sent from the receiver to the
sender, rather than messages sent from the sender to the receiver, as in Claim 11.

Claim 12 Let R be a fair execution of Algorithm 2 that starts in a safe configuration, c, with respect to
Algorithm 1. Let ps, pr ∈ C be a pair of correct sending and receiving nodes. Suppose that, for a duration
of at least O(capacity · |C ∪B|) asynchronous rounds, pr’s steps include only the execution of the function
ByzantineFaultToleranceSend(Ack) in the loop of line 23. That is, pr is sending acknowledgments on
messageMsg. Within that period, the system reaches configuration creceive in which ps approvesMsg, see
Definition 9.

19

Proof. Denote csend as the configuration immediately following the first step in which pr sends acknowledg-
ment Ack in R, see line 23. Within O(capacity · |C ∪B|) asynchronous rounds, the first frame containing
Ack arrives at ps, see Claim 10. Moreover, after another O(capacity · |C ∪ B|) asynchronous rounds,
every correct path relays message Ack at least O(capacity · |C ∪ B|) times. This is correct since every
asynchronous round, pr sends a new frame containing Ack on each of the 2f + 1 vertex disjoint paths.
Moreover, by Claim 10, the last frame sent on all 2f + 1 paths arrives after another O(capacity · |C ∪B|).

The queues, Confirmations[pr][∗] are cleared only when a message sent to pr is approved, see line 2.
Since, pr is acknowledging the current message, Msg, by sending Ack, the only message that can be ap-
proved is Msg. This is true since each path, Path, may contain at most capacity ·|C∪B| acknowledgments
for other messages in the path queues.

Assume, in the way of proof by contradiction, that Msg is not approved by ps. By the arguments above,
ps’s queues, Confirmationss[pr][∗], which contains pr’s acknowledgments that ps received, were not
cleared at least since csend, see line 2. Thus, ps contains capacity ·n+1 indications of Ack on f +1 vertex
disjoint paths. Denote clast as the configuration immediately after the arrival of the (capacity · n + 1)-th
frame of the f + 1’th path to relay capacity · n + 1 frames containing Ack. Immediately after clast, ps
must go through line 18, because the conditions in line 18 hold. Thus, a contradiction and Msg is approved
within O(capacity · |C ∪B|) asynchronous rounds. �

Lemma 13 shows that the senders repeatedly fetch messages.

Lemma 13 Let R be a fair execution of Algorithm 2 that starts in a safe configuration, c, with respect to
Algorithm 1. Let ps, pr ∈ C be pair of correct sending and receiving nodes. Moreover, c� is the configuration
that immediately follows the �-th time in R in which ps fetches a message from the input queue. For every �,
the system reaches c� within O(� · |C ∪B|) asynchronous rounds.

Proof. By the code of Algorithm 2, on every iteration of the do forever loop (lines 2 to 5), a message is
fetched in line 3. This do forever loop includes another loop in line 5. We prove the lemma by showing that
the loop of line 5 is completed within O(|C ∪B|) asynchronous rounds.

The proof considers the case in which the sender, ps, does not wait in line 5 for a long time before
considering the case in which ps does wait. We show that for the latter case, the receiver, pr, confirms ps’s
current message. After confirming the message, the receiver, pr, begins sending acknowledgments to the
sender, ps. The proof shows that after the acknowledgments are sent, ps approves the message and fetches
a new one. We show this by considering the case in which pr repeatedly sends acknowledgments for a
sufficient amount of time, and a case in which it does not.

Suppose that ps does not wait in line 5 more than O(capacity · |C ∪ B|) asynchronous rounds. In this
case, ps starts the infinite loop again within O(capacity · |C ∪ B|) asynchronous rounds, and fetch a new
message, see line 3. Thus, for the case in which ps does not wait in line 5 more than O(capacity · |C ∪B|)
asynchronous rounds, the lemma is correct.

Suppose that ps is executing line 5 and waits for acknowledgments on message Msg for more than
O(capacity · |C ∪B|) asynchronous rounds. Thus, ps floods 2f +1 vertex-disjoint paths with the message
Msg, see Claim 9. Eventually, the receiver, pr, receives message Msg for O(capacity · |C ∪ B|) times
on f + 1 vertex-disjoint paths and confirms Msg, see Claim 11. After confirming it, the receiver sends
acknowledgments on 2f + 1 vertex-disjoint paths until confirming a new message Msgnew. This is true
because the condition in line 23 holds only when a new message is confirmed, see line 14.

Let us consider the case in which, during O(capacity · |C∪B|) asynchronous rounds, message Msgnew
does not arrive to the receiver. By Claim 12, eventually the sender receives the acknowledgments for

20

capacity · n + 1 times on f + 1 vertex disjoint paths. Claim 12 also says that the sender considers the
message accepted by the receiver. In line 18, the sender assigns Approved = true. Thus, the condition in
line 5 holds and the sender fetches the next message, see line 3. Hence, the system reaches configuration
cfetch that immediately follows a step in which the sender, ps, fetches the next message. Thus, for the case in
which, during O(capacity · |C∪B|) asynchronous rounds, message Msgnew does not arrive to the receiver,
the lemma is correct.

We continue by considering the case in which, during O(capacity · |C ∪ B|) asynchronous rounds,
message Msgnew does arrive to the receiver. Let cconf be the configuration that immediately follows the
step in which pr confirms Msg. Since the receiver confirms Msg, we have that pr is clear (with respect to
the sender) in configuration cconf , see Definition 10 and line 22.

If Msgnew was sent by the sender, it must have been fetched after c, and cfetch is reached when message
Msgnew is fetched. It may be the case however, that Msgnew was not sent by the sender. Message Msgnew
was confirmed by 2f + 1 vertex disjoint paths. Since there are at most f Byzantines, at least one of these
paths, Path, must be correct. Moreover, in cconf , the receiver is clear, thus the capacity · n + 1 that pr
counts in ReceivedMessages[ps][∗] have all been received after configuration cconf . Note that the sender
sends at least one of these messages, because at most capacity ·n messages could be in the edges of Path at
any given configuration. Thus the sender sends Msgnew, which ps fetches immediately before cfetch. I.e.,
the system reaches cfetch. �

Theorem 8 says that, starting from that fourth (or even the third) message that the sender fetches, the
receiver confirms the sender’s messages. The proof of Theorem 8 is based on Lemma 14, which says that,
in every sequence of four messages that the sender is fetching, the receiver confirms the fourth (or even the
third) message.

Lemma 14 Let R be a fair execution of Algorithm 2 that starts in a safe configuration, cstart, with respect
to Algorithm 1. Let ch be a configuration that immediately follows the h-th step in which the sender fetches
the h-th input queue message, mh. Within O(|C ∪B|) asynchronous rounds, the receiver confirms message
m4.

Proof.

Claim 15 In c2, the sender is clear (with respect to the receiver), see Definition 10.

Proof. By definition, c2 immediately follows atomic step a2, in which, after clearing the confirmation queue
in line 2, the sender fetches message m2 and sends it. �

Claim 16 Between the configurations c3 and c4, there is a configuration creceiver−clear in which the receiver
is clear (with respect to the sender).

Proof. Suppose, without the loss of generality, that immediately after csender−clear, the sender is waiting
for a message with label 1. By lemma 13, the sender eventually fetches the next message. The sender
can only fetch a new message once Approved is true, see line 5. Moreover, Approved is only set to true

once the queue Confirmations[receiver][∗] contains 2f + 1 flooded paths, see line 18. Thus, the sender
counts 2f+1 vertex disjoint paths that relayed acknowledgments with label 1. Moreover, the sender is clear
in csender−clear. Hence, configuration csender−clear contains no message in Confirmations[receiver][∗].
Starting from csender−clear, the sender receives capacity ·n+1 acknowledgments on 2f +1 vertex disjoint
paths for the current message with label 1. Note that at least one of these 2f + 1 paths, Path, is correct,

21

because there are f Byzantine. Since |Path| ≤ n and each edge on Path may contain at most capacity
messages, we have that at least one of the acknowledgments that includes Path as its visiting path, is sent
by the receiver between csender−clear and configuration creceiver−send ∈ R. We show that creceiver−send =
creceiver−clear.

This means that after csender−clear, the sender clears the confirmations queue,
Confirmations[receiver][∗], and fetches the next message, assigning it the label 2, see lines 2
through line 5. By similar arguments, we know that the receiver sends at least one acknowledgment with
label 2.

To conclude, there is a configuration c ∈ R in which the receiver is sending acknowledgments with
label 1, and then a configuration c′ in which the receiver sends acknowledgments with label 2. Moreover,
between two consecutive executions of line 23, the receiver has to go through line 22. Thus, the receiver
cleared it’s message queues, Confirmations[sender][∗], immediately before configuration creceiver−clear
and creceiver−send = creceiver−clear. �

Let us consider configuration creceiver−clear from the end of proof of Claim 16.
The next message to be sent after creceiver−clear, is m4, the message fetched in c4, with label 0. Between

creceiver−clear and c4, all messages sent by the sender have the label 2. By arguments stated above, the
message, m, that is the next message to be confirmed after creceiver−clear, must have been sent by the sender
at least once since creceiver−clear. The sender, sends only messages with label 0 and 2. Moreover, the last
message to be confirmed had a label 2. Thus, CurrentLabel = 2, see line 21. Any sent message with
label 2 is not inserted to the confirmations queue, Confirmations[sender][∗] between creceiver−clear and
the configuration that immediately follows the next sender’s fetch, see line 20. Thus, by line 4, the next
message to be confirmed is a message with label 0, which must be m4. �

Theorem 8 (Self-stabilization) Let R be a fair execution of Algorithm 2 that starts in an arbitrary configu-
ration. Within O(|C ∪B|) asynchronous rounds, the system reaches a safe configuration c after which: (1)
the receiver confirms message m in step amr ∈ R, and (2) for every step amr , there is a corresponding step,
ams ∈ R, that occurs before amr and in which the sender sends m.
Proof. Let c be the configuration that Claim 16 denote as c4, which the system reaches within O(|C ∪B|)
asynchronous rounds, see Lemma 13. Let mi be the i-th message fetched.

Suppose that i ≥ 4. Lemma 14 considers the four consecutive messages mi−3, . . . mi and says that the
receiver confirms message mi. Thus, condition (1) holds.

Condition (2) follows from arguments similar to the ones used in the proof of Lemma 11. Namely,
for the case of i ≥ 5, message mi−1 is confirmed, see lemma 14. Immediately after the receiver con-
firms mi−1, it clears the queue ReceivedMessages[sender][∗], see lines 20 to 22. Thus, there exists
a configuration creceiver−clear in which the receiver is clear (with respect to the sender) before ci, see
Definition 10. Moreover, a message is confirmed only if the queue ReceivedMessages[sender][∗] con-
tains 2f + 1 flooded paths, see line 12. These flooded paths implies that in configuration ci, the queue
ReceivedMessages[sender][∗] contains capacity · n+1 indications of mi on 2f + 1 node disjoint paths.
Thus, mi is confirmed only after a period that follows creceiver−clear and includes its reception at least
capacity · n+ 1 times on each of the 2f + 1 vertex disjoint paths.

Recall that we assume that there are at most f Byzantine nodes in the system. At least one path, Path,
of the above 2f + 1 paths is correct. Moreover, |Path| ≤ n and each edge on Path may contain at most
capacity messages. Thus, at least one of the capacity · n+1 message that were relayed on the correct path
Path was sent by the sender. This completes the correctness proof. �

22

KARYON ‐ FP7‐288195
D3.1 – First Report on Supporting Technologies (Annex)

© 2012 KARYON Project 185/188

KARY N

A.3.2 Capture	effect	based	communication	primitives	

“Capture effect based communication primitives”. O. Landsiedel, F. Ferrari, and M.
Zimmerling, In SenSys’12: Proceedings of the 7th ACM Conference on Embedded Networked
Sensor Systems, Toronto, Canada, November 2012.
ftp://ftp.tik.ee.ethz.ch/pub/people/marcoz/LFZ2012.pdf

KARYON ‐ FP7‐288195
D3.1 – First Report on Supporting Technologies (Annex)

© 2012 KARYON Project 186/188

KARY N

This page is intentionally left blank.

Poster Abstract: Capture Effect Based Communication Primitives

Closing the Loop in Wireless Cyber-Physical Systems

Olaf Landsiedel
1
, Federico Ferrari

2
, Marco Zimmerling

2

olafl@chalmers.se, ferrari@tik.ee.ethz.ch, zimmerling@tik.ee.ethz.ch
1Computer Science and Engineering, Chalmers University of Technology, Sweden

2Computer Engineering and Networks Laboratory, ETH Zurich, Switzerland

1 Motivation and Principle
Wireless control systems consist of sensing and actuat-

ing devices that are commonly driven by a central controller.
Wireless communication protocols for Cyber-Physical Sys-
tems (CPS) match this design by employing a ”sense → col-
lect → process → disseminate → actuate” flow [6], where
typically different protocols are employed for collecting sen-
sor data and disseminating actuation signals.

In this paper, we depart from this traditional design and
introduce CaptureCom. By relying on capture effects and
in-network processing, it omits the need for a central con-
troller and for distinct collection and dissemination phases.
In CaptureCom, each node transmits its current data (e.g.,
temperature reading). Upon receiving, nodes integrate (e.g.,
aggregate) the received data with previously received data
and concurrently forward the result. Due to capture effects,
neighboring nodes correctly receive one of the concurrently
sent packets with high probability. Repeating this process,
the network converges to a stable state where all nodes have
received the same data (consensus). The impact of our ap-
proach is threefold:

1. CaptureCom closes the loop in CPS: data are processed
within the network. Upon completion, all nodes have
received with high probability the same data as the base
for actuation. Thus, it departs from the widespread ar-
chitecture of collecting information at a central con-
troller for processing and then disseminating the results.

2. CaptureCom exploits spatial diversity in low-power
wireless networks: Consecutive, concurrent transmis-
sions spread out across the network allow for data dis-
tribution at very low delays and high energy efficiency.

3. Relying solely on concurrent forwarding and capture
effects for communication, CaptureCom simplifies the
networking stack by obviating the need for link estima-
tion, neighbor discovery, and routing protocols.

2 CaptureCom: Background and Design
Background and related work. CaptureCom relies on the
capture effect, which is a well known phenomenon in wire-
less communication [4]: If two or more packets are transmit-
ted concurrently, the stronger one is received, assuming it is

Copyright is held by the author/owner(s).
SenSys’12, November 6–9, 2012, Toronto, ON, Canada.
ACM 978-1-4503-1169-4/11/12

sufficiently stronger than the contending signals; that is, the
signal-to-noise ratio (SNR) is higher than a certain threshold.
For instance, the capture effect has been used for fast flood-
ing in sensor networks: nodes concurrently forward received
packets to quickly propagate them in the network [5].

Different from CaptureCom, Glossy [3] and LWB [2] rely
also on constructively interfering baseband signals. While
this allows packets to be received independently of the
SNR threshold, it requires that all simultaneously transmitted
packets are the same. Thus, Glossy and LWB cannot exploit
spatial diversity and in-network aggregation as CaptureCom.

Basic design and sample execution. To introduce the
basic design of CaptureCom and demonstrate its benefits,
we use a sample application that aims at determining the
maximum sensor reading among all nodes in the network
(e.g., occupancy or temperature) and disseminating this max-
imum to all nodes. We note that aggregation is optional in
CaptureCom and that its design is independent of the par-
ticular aggregation scheme. In the end, all nodes are aware
of the maximum temperature reading in the network and can
trigger actuation. To illustrate CaptureCom, we assume a
network of three nodes (see Fig. 1(a)). Initially, each node is
only aware of its own sensor reading (see Fig. 1(b)). A coor-
dination node, node A in our example, triggers the commu-
nication round by broadcasting its local temperature reading.

The payload of packets consists of two parts: a bit field,
indicating from which node data have already been inte-
grated, and a payload field (see Fig. 1(b)). In this example,
the payload is the maximum temperature reading a node has
received so far, including its own sensor reading. Upon re-
ceiving, a node merges its local bit field with the received one
via a bitwise OR and determines the maximum of the local
and the received data (see Fig. 1(c)). After a constant delay,
which is sufficient for both processing and I/O operations, re-
ceiving nodes transmit the resulting data. These nodes trans-
mit concurrently, enabling neighboring nodes to receive the
stronger of multiple, concurrently transmitted packets due to
the capture effect. In this way, CaptureCom triggers a chain
reaction, where each relay increases the number of partici-
pating nodes, eventually covering the complete network with
very high probability. To avoid starvation, a node transmits
when the local and received bitfields differ, that is, the node
learned something new (see Fig. 1(c)).

��

��

��
(a) Sample net-
work. Three
nodes forming
a full mesh.

�� �� �� �	�
�� �� ��

�� �� �� ���

�� �� �� �
����

���

���

(b) Initial setting.
Each node adds its
local reading and
marks its bitfield.

���

���

�� �� �� ���

�� �� �� ���

�� �� �� ���
��������

�� �� �� ���

�� �� �� ���

�� �� �� ���

��������

�� �� �� ���

�� �� �� ���

�� �� �� ���
��������

�� �� �� ���

�� �� �� ���

�� �� �� ���

��������

��

��

��

(c) Operation of CaptureCom. Node A initiates a round by transmitting its sensor reading.
Receivers combine this with their own data and transmit the result after a constant delay (to
enable the capture effect). In this example, nodes transmit if the received packet contained
new information. At relay 2, we assume that node A receives the packet sent by node B.

Figure 1. Basic idea of CaptureCom. By exploiting the capture effect, CaptureCom performs data collection, aggrega-
tion, and dissemination within the network. As a result, it closes the control loop in wireless cyber-physical systems.

0 10 20 30 40 50 60 70 80
Relay Count

0

20

40

60

80

100

120

140

N
o
d
e
 I
D

0

10

20

30

40

50

60

70

80

90

100

C
o
m

p
le

ti
o
n
 [

%
]

(a) CaptureCom converges after about 60 re-
lays. All nodes have received the reading
from all others and computed the maximum.

0 10 20 30 40 50 60 70 80
Relay Count

0

20

40

60

80

100

C
o
m

p
le

ti
o
n
 [

%
]

(b) Completion per node over time. Infor-
mation spreads epidemically in the network.

0 10 20 30 40 50 60 70 80
Relay Count

0

10

20

30

40

50

60

70

80

90

C
o
u
n
t

[#
]

RX

TX

(c) Successful receptions (RX) and trans-
missions (TX) per relay. Upon completion
at relay count 60, both are slowly fading out.

Figure 2. In-network aggregation of a maximum temperature reading (preliminary results for one representative run).

In our example in Fig. 1(c), we reach completion after
four relays. At this point, the temperature readings from all
three nodes have been integrated because the corresponding
flags in the bitfield are set. Thus, all nodes are aware of the
maximum sensor reading. Note that we achieve this without
any prior transmission schedules or slot assignments. We
merely rely on the capture effect to enable nodes to success-
fully receive data during concurrent forwarding.

3 Preliminary Evaluation
In this section, we discuss preliminary evaluation results

with our prototype implementation of CaptureCom. The ex-
periments are performed on Indriya [1], a testbed of 139
nodes deployed on three floors in an office building.

Fig. 2 shows that CaptureCom computes the maximum
temperature reading in a network of 139 nodes within about
60 relays at high reliability, achieving an average delay and
radio on-time of about 125 ms per round and node. When
requesting a temperature reading, say, once per minute, this
would result in an average radio duty cycle of about 0.2%.

4 Summary and Future Work
We argue in this paper that CaptureCom closes the con-

trol loop in wireless CPS: it provides efficient collection,
processing (in our example aggregation), and dissemination
within the network, making it suitable for widespread control
applications. Our initial evaluation shows that CaptureCom
efficiently exploits spacial diversity. It converges within
125 ms at high reliability, leading to low communication de-

lays and high energy efficiency. Motivated by these promis-
ing initial results, we are currently investigating the theoreti-
cal and experimental foundations of CaptureCom as a novel
primitive for wireless CPS.
Acknowledgments

This work was supported by Nano-Tera, NCCR-MICS
under SNSF grant number 5005-67322, and partially by the
EC, through project FP7-STREP-288195, KARYON.
5 References
[1] M. Doddavenkatappa, M. C. Chan, and A. Ananda. In-

driya: A low-cost, 3D wireless sensor network testbed.
In ICST TridentCom, 2011.

[2] F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele.
Low-power wireless bus. In ACM SenSys, 2012.

[3] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh. Ef-
ficient network flooding and time synchronization with
Glossy. In ACM/IEEE IPSN, 2011.

[4] K. Leentvaar and J. Flint. The capture effect in FM re-
ceivers. IEEE Trans. Commun., 24(5), 1976.

[5] J. Lu and K. Whitehouse. Flash flooding: Exploiting
the capture effect for rapid flooding in wireless sensor
networks. In IEEE INFOCOM, 2009.

[6] M. Pajic, S. Sundaram, J. L. Ny, G. J. Pappas, and
R. Mangharam. Closing the loop: A simple dis-
tributed method for control over wireless networks. In
ACM/IEEE IPSN, 2012.

