

Kernel-based ARchitecture for safetY-critical cONtrol

KARYON
FP7-288195

D2.1 - First report on the KARYON
architecture

Work Package WP2

Due Date M9 Submission Date 2012-07-31

Main Author(s) António Casimiro (FFCUL)

Contributors Rolf Johansson (SP)

Kenneth Östberg (SP)

Renato Librino (4SG)

Jörg Kaiser (OVGU)

Version V1.0 Status Final

Dissemination
Level

PU Nature R

Keywords Functional architecture, system architecture, system model

Part of the Seventh

Framework Programme

Funded by the EC – DG INFSO

KARY N

KARYON ‐ FP7‐288195
D2.1 ‐ First report on the KARYON architecture

© 2012 KARYON Project 2/48

KARY N

Version	history	

Rev Date Author Comments

V0.1 2012-06-13 A. Casimiro (FFCUL) First draft

V0.2 2012-07-15 A. Casimiro (FFCUL), R.
Johansson (SP), K. Östberg
(SP), R. Librino (4SG)

Update with new content in all sections

V0.3 2012-07-16 R. Librino (4SG) Additional input from 4SG added

V0.4 2012-07-20 A. Casimiro (FFCUL) Restructured some sections and
highlighted needed inputs

V0.5 2012-07-24 A. Casimiro (FFCUL) Improved some parts of the text and
completed the global architectural view

V0.6 2012-07-26 A. Casimiro (FFCUL),
R. Johansson (SP)

Added input from SP. Completed
sections 2, 3 and 4.

V0.7 2012-07-30 A. Casimiro (FFCUL) Final version with complete content and
comments addressed

V1.0 2012-07-31 A. Casimiro (FFCUL) Final review and delivery.

KARYON ‐ FP7‐288195
D2.1 ‐ First report on the KARYON architecture

© 2012 KARYON Project 3/48

KARY N

Glossary	of	Acronyms	

ABS Anti-lock Braking System

ADAS Advanced Driver Assist Systems

ASIL Automotive Safety Integrity Level

CAM Co-operative Awareness Messages

COTS Commercial Off-The-Shelf

DB Database

DoW Description of Work

Dx.y Deliverable belonging to work package x, with serial number y

ETSI European Telecommunications Standards Institute

HMI Human Machine Interface

I2V Infrastructure to Vehicle

ISO International Organization for Standardization

ITS Intelligent Transport Systems

KARYON Kernel-based ARchitecture for safetY-critical cONtrol

LDM Local Dynamic Map

LIDAR Light Detection And Ranging

LoS Level of Service

PICS Protocol Implementation Conformance Statement

RADAR Radio Detection And Ranging

RSU Road Side Unit

SIL Safety Integrity Level

TCB Timely computing Base

TPM Trusted Platform Module

TTCB Trusted Timely Computing Base

TVRA Threat, Vulnerability and Risk Analysis

Tx.y Task belonging to work package x, with serial number y

V2I Vwhicle to Infrastructure

V2V Vehicle to Vehicle

V2X Vehicle to Vehicle or to Infrastructure

WP Work Package

WPx Work Package with serial number x

KARYON ‐ FP7‐288195
D2.1 ‐ First report on the KARYON architecture

© 2012 KARYON Project 4/48

KARY N

Executive	Summary	

The main objectives of WP2 are to the definition the KARYON safety architecture, providing
the guiding principles on how to structure a safe system in relation to assumed system and fault
models. This will be done while taking into account that systems can be built from
heterogeneous application components, where some components may provide higher levels of
integrity than others, possibly due to being less complex or providing reduced functionality. The
goal is to define a hybrid system architecture that integrates all these components in a way that
it becomes possible to secure critical safety requirements while achieving higher levels of
functionality. This is the first deliverable within this work package, providing a preliminary
description of the KARYON architecture.

The work build on previous results achieved in WP1 and described in deliverable D1.1, in
particular a set of requirements on the architecture. These requirements are considered and the
deliverable provides an analysis of their implications on the architecture. Additionally, the
notion of architectural hybridization is presented and explained in detail, since it is on the basis
of the architectural work and solutions developed in the project.

The preliminary architecture described in this deliverable provides a high-level view on how a
KARYON system must be structured, laying down the fundamental architectural blocks and
describing their purpose and function, as well as the generic properties that they must enjoy. A
data-oriented perspective of the architecture is also provided, which is useful to identify and to
reason about the relevant interactions between architectural blocks. A discussion on how the
presented architecture is appropriate to address the general requirements identified in WP1 is
also provided.

The contributions of this deliverable are relevant and related to other activities. On the one
hand, the fault and failure modes that are being addressed also in WP2 are intended to
complement the architecture. They are addressed in another deliverable and only considered
here whenever necessary for the presentation. On the other hand, the level of abstraction that is
used to present the architecture is intentionally high, and independent from the implementation.
However, there are implications on how the architectural blocks are implemented, and in this
deliverable we include a discussion on these implications. They will be taken into account in the
activities performed in WP3 and WP4.

KARYON ‐ FP7‐288195
D2.1 ‐ First report on the KARYON architecture

© 2012 KARYON Project 5/48

KARY N

Table	of	Contents	
1. Introduction .. 7

2. Implications of the general requirements on the architecture .. 9

3. Hybrid system models and architectures .. 13
3.1 Hybrid system models ... 13
3.2 Architectural hybridization .. 15

4. Architecture .. 18
4.1 Functional view ... 18
4.1.1 Applying the architectural hybridization paradigm .. 21
4.1.2 Functional description of components ... 22
4.1.3 Levels of Service in the nominal system ... 24

4.2 Information flow view ... 25
4.3 Discussion on requirements fulfilment ... 28

5. Implications on services and mechanisms .. 33

6. Application to concrete functionalities ... 35
6.1 Requirements from Automotive Standards .. 35
6.2 Functionalities ... 37
6.2.1 Co‐operative driving .. 38
6.2.2 Advanced Driver Assist function ... 40
6.2.3 Vehicle dynamics control .. 42
6.2.4 General functional architecture .. 42

6.3 Level of Service .. 43
6.4 Boundary of the system under safety analysis ... 45

7. Conclusions ... 47

References ... 48

List of Figures
Figure 1: Basic control loop. .. 18
Figure 2: Nominal (control) system. .. 19
Figure 3: Nominal system for cooperative functionality. .. 19
Figure 4: KARYON functional architecture. ... 20
Figure 5: Separation of components according to hybrid system model. 21
Figure 6: Safety manager basic behaviour. ... 24
Figure 7: KARYON architecture (data centric view). ... 26
Figure 8: Service data flow. ... 26
Figure 9: Quality data flow. ... 27
Figure 10: Functional architecture on board vehicle for cooperative awareness function. 39
Figure 11: Functional architecture on board vehicle for cooperative automatic driving function.
 ... 39
Figure 12: Functional architecture on board vehicle for autonomous cruise control. 40
Figure 13: Functional architecture on board vehicle for lane departure warning function. 41
Figure 14: Functional architecture on board vehicle for collision avoidance function. 41
Figure 15: General functional architecture for the automotive functionalities. 43
Figure 16: Evolution from LoS 0 to LoS 3 for the automatic driving service. 44
Figure 17: Evolution from LoS 0 to LoS 2 for the warning service. ... 45
Figure 18: Boundary of the service. .. 45

KARYON ‐ FP7‐288195
D2.1 ‐ First report on the KARYON architecture

© 2012 KARYON Project 6/48

KARY N

List of Tables
Table 1: Overview Use Cases based on CAM (source: ETSI). .. 37
Table 2: ITS and co‐operative driving functions relevant to KARYON ... 38
Table 3: Level of service for different operation modes. .. 43

KARYON ‐ FP7‐288195
D2.1 ‐ First report on the KARYON architecture

© 2012 KARYON Project 7/48

KARY N

1. Introduction	
The main objective of WP2, as stated in the KARYON Description of Work, consists in “the
definition of the KARYON safety architecture, providing the guiding principles on how to
structure a safe system in relation to assumed system and fault models”.

KARYON focuses on the predictable and safe coordination of smart vehicles that autonomously
cooperate and interact in an open and inherently uncertain environment. Although it is possible
to exploit the cooperative functionality for the benefit of each vehicle’s behaviour, with implicit
gains to vehicles as a whole and to traffic, it becomes necessary to deal with the possibly
negative impact of the uncertainties affecting communication and ultimately creating safety
problems.

There is a whole body of knowledge on how to achieve safe systems, but in general the existing
solutions and approaches are restrictive regarding the considered operational environments,
excluding the sources of uncertainty or unpredictability right from the start and thus limiting the
contexts in which the resulting systems can be used. Uncertainty can also be dealt with by
making pessimistic worst case assumptions on bounds for the relevant variables. The
consequence in this case is that system resources are over-dimensioned and hence the resulting
systems are less efficient.

In KARYON we explore the concept of architectural hybridization (and corresponding hybrid
system models), to define a generic architecture that accommodates both complex functions that
might be subject to uncertainties, and simple, with well-defined behaviour functions, which are
fundamental to elaborate on safety. The architecture will address the tension between these two
different realms of operation, as needed to have benefits from a very complex cooperative
control system, while ensuring that safety is preserved by means of the well-defined system
component, a local safety kernel. In essence, architectural hybridization explicitly separates
different functions or components of the system into different parts, where each part enjoys a
specific set of properties (for instance, each part having different timeliness properties or
different integrity levels with respect to some assumed failure modes). These heterogeneous
properties will be reflected on the system model, and may be explored in the design of protocols
and system solutions. On the implementation level, when allocating functions to specific
resources, it will be necessary to ensure that the desired and expected properties will be
effectively achieved.

In this deliverable we thus provide a preliminary description of the KARYON architecture,
explaining the concept of architectural hybridization and how it is applied. More specifically,
the deliverable provides functional and data-oriented views of the proposed KARYON
architecture, including a description of the necessary functional components, of their properties
and role within the hybrid architecture, and of the data and control flows that exist in a
KARYON system. Furthermore, in the deliverable we also discuss how the proposed
architecture addresses (and results from) the requirements defined in WP1, thus bridging the
architectural work in WP2 with the work in WP1, and we study the implications of the proposed
architectural solution on the design and implementation work that will be developed in other
work packages, in particular in WP3 and WP4. In order to further test the implications and
relations between the proposed abstract architecture and the more concrete system architectures
that need to be defined when going to lower levels of abstraction, we instantiate the generic
KARYON architecture to specifically considered cooperative functionalities in the automotive
domain. We intend with such exercise to improve our knowledge and gain insights on how to
possibly improve the generic architecture, which will be done in the continuation of the project.

In fact, given the preliminary nature of this deliverable, we expect to further refine the presented
ideas, which will be described in the KARYON architecture deliverable, D2.3, in March 2013.
Nevertheless, this deliverable sets the ground for the work to be carried out in WP3 and

KARYON ‐ FP7‐288195
D2.1 ‐ First report on the KARYON architecture

© 2012 KARYON Project 8/48

KARY N

particularly in WP4, namely the definition of the safety kernel. It also provides input to WP1,
where work on the generalization of requirements and applicability of KARYON solutions to
different application domains will be done. The work presented in this deliverable is also tightly
related to the work on failure modes and semantics, which is being done in Task 2.2 and will be
reported in deliverable D2.2.

KARYON ‐ FP7‐288195
D2.1 ‐ First report on the KARYON architecture

© 2012 KARYON Project 9/48

KARY N

2. Implications	of	the	general	requirements	on	the	
architecture	

One of the results of the work performed in WP1, and reported in deliverable D1.1, was the
definition of a set of general requirements on the architecture. These requirements were
elaborated based on the defined automotive and avionics use cases, as well as on initial
KARYON concepts. In this section we consider these requirements and provide a preliminary
analysis of their implications on the architecture.

R.4.2.10

Each vehicle shall be able to perform several functionalities (services) simultaneously

Rationale: It is assumed that there are several functionalities of the vehicle of interest. This is
the case for all vehicles of today, and also assumed in the vehicles we study in the use cases.
This implies that when defining a KARYON system/architecture it cannot be enough only
assuming to implement one single functionality. Much of the complexity making the solution
general is that it should be able to handle all functionalities at the same time.

Implication: An architecture shall not be tailored for performing just one single functionality.
Mechanisms and architectural patterns shall allow several functionalities to be taken care of
simultaneously.

R.4.2.20

The set of functionalities shall be extendable

Rationale: This requirement is important for any architectural pattern to be exploitable for a
real vehicle developer. We assume that incremental product development must be supported in
such a way that the addition of one functionality should not require a completely new
architecture.

Implication: The architecture pattern shall be so general that when adding one functionality, the
same pattern shall still be valid. This shall hold even if the architecture instance is extended.

R.4.2.30

Each functionality shall be able to involve some sensing, actuating, and communication with
other vehicles and infrastructure

Rationale: This requirement is a direct consequence of the use case criteria that we are looking
at cooperative vehicles. The implication on the architecture is that for the realization of every
functionality, sharing resources with actors outside the vehicles (other vehicles and
infrastructure) shall be possible.

Implication: The architecture pattern shall deal with the inherent redundancy coming from a
combination of local sensors and of communication with remote sensors. Taking advantage of
inherent redundancy is key factor for reaching enough safety with a minimum cost of added
redundancy.

KARYON ‐ FP7‐288195
D2.1 ‐ First report on the KARYON architecture

© 2012 KARYON Project 10/48

KARY N

R.4.2.40

Some resources for sensing, actuating and communication shall be able to be shared among
several functionalities

Rationale: When adding a new functionality to a vehicle, it should be able to take advantage of
the fact that some sensing and/or some actuating from other functionalities can also be used in
the new one. A general KARYON architecture must give the possibility for several
functionalities to share some resources.

Implication: The architecture pattern for realizing functionalities with elements shall be a
many-to-many relation where:

 Each architectural element may be part of several functionalities

 Each functionality may be realized by several architectural elements

R.4.2.50

Each functionality shall always behave safely independently of the level of service

Rationale: If the available level of integrity becomes too low for the actual level of service, a
transition to a lower level of service shall be done immediately (the time to initiate the transition
shall be much shorter than the time for the transition itself).

Implication: The architecture shall be built by a proper combination of

 Components, having high enough integrity

 Redundancy patterns, lowering the requirements on integrity of components

R.4.2.60

Each functionality shall always operate in the highest possible level of service

Rationale: If the available level of integrity becomes high enough for a higher level of service
than the actual one, a transition to a higher level of service shall be done immediately (the time
to initiate the transition shall be much shorter than the time for the transition itself).

Implication: The architecture shall, for all functionalities at the time, enable a dynamic
matching:

 Available level of integrity (from status of components)

 Required level of integrity (according to different levels of service)

R.4.2.70

A KARYON architecture shall be able to express on different levels of abstraction.

Rationale: This is to match a break-down of safety-requirements, and different phases in a
safety standard reference life-cycle. .

Implication: The KARYON architecture is not just one view. It’s important to represent the
architectural pattern on several levels of abstraction. This enables separation of concerns, as
different levels of abstraction have different concerns. The number of levels of abstraction shall
be at least 4, to match the phases of the ISO26262 reference life cycle.

KARYON ‐ FP7‐288195
D2.1 ‐ First report on the KARYON architecture

© 2012 KARYON Project 11/48

KARY N

R.4.2.80

On each level of abstraction, and for each architectural element, the level of integrity shall be
possible to express w.r.t. each applicable failure.

Rationale: This means a capability to express safety requirements having Safety Integrity
Levels (SIL) and being allocable to any failure of any architectural element. This requirement
implies that we need failure models of the architectural elements we use.

Implication: In a top-down methodology, the integrity levels identified in hazard analysis on
the vehicle level shall be inherited to those architectural elements on analysis level w.r.t.
corresponding failures. In a similar way, SIL w.r.t. failures on any level of abstraction shall be
inherited to next level below, if no redundancy is introduced. Furthermore this implies that SIL
be expressed as an attribute of safety constraint referencing a fault/failure model.

R.4.2.90

There shall be a known set of rules regarding how to determine the level of integrity for
avoiding each possible resulting failure when composing architectural elements.

Rationale: This implies rules for SIL inheritance and for SIL decomposition (effects of
redundancy).

Implication: If redundancy is introduced, instead of just inheritance, a lowering of SIL may be
done according to applicable rules (e.g. ASIL decomposition in an automotive context).

R.4.2.100

There shall be a known set of rules regarding how to determine the level of integrity for
avoiding each possible resulting output failure of an architectural element, given the integrity
levels of avoiding the applicable input faults and internal faults.

Rationale: This implies a requirement on models for failure behaviour of all architectural
elements.

Implication: For each architectural element on each level of abstraction, there is a need for a
corresponding fault/error/failure model. These models include failure propagation behaviour.

R.4.2.110

There shall be known rules regarding how the amount of, and the quality of, relevant
information determines the level of integrity for each relevant failure.

Rationale: This requirement asks for transformation rules from the “quality of information”
domain to the “integrity level” domain. The former domain is what can be measured by the
system itself and the latter domain is where the use case requirements are set. In order to
understand when to go up and down in levels of service, such transformation rules have to be
established that are applicable for the architecture and its elements.

Implication: The architecture must encompass the necessary architectural elements to match
available integrity with required integrity, and it shall be possible at runtime to determine
available integrity w.r.t. all relevant failures.

KARYON ‐ FP7‐288195
D2.1 ‐ First report on the KARYON architecture

© 2012 KARYON Project 12/48

KARY N

R.4.2.120

The amount of relevant information shall be measurable.

Rationale: There shall be a way for a KAYON system to dynamically extract what is needed to
determine the available levels of integrity. Provided that the requirement on a transformation
rule to determine the integrity level is fulfilled, then the amount of relevant information should
be measurable by the system itself as an input to that transformation.

Implication: The architecture must encompass the necessary architectural elements to match
available integrity with required integrity, and it shall be possible at runtime to determine
available integrity w.r.t. all relevant failures.

R.4.2.130

The quality of relevant information shall be measurable.

Rationale: There shall be a way for a KAYON system to dynamically extract what is needed to
determine the available levels of integrity. Given the requirement on a transformation rule to
determine the integrity level is fulfilled, then the quality of relevant information should be
measurable by the system itself as an input to that transformation.

Implication: The architecture must encompass the necessary architectural elements to match
available integrity with required integrity, and it shall be possible at runtime to determine the
available integrity w.r.t. all relevant failures.

KARYON ‐ FP7‐288195
D2.1 ‐ First report on the KARYON architecture

© 2012 KARYON Project 13/48

KARY N

3. Hybrid	system	models	and	architectures	
In KARYON we exploit the concept of architectural hybridization in the definition of the
KARYON architecture, in particular to realize the separation of the overall system in parts that
have different properties. In this way, we are able to identify the components that constitute the
safety kernel, which are in charge of guaranteeing that the intended functionality is provided in
a safe way despite faults and uncertainties.

This section introduces the concept of hybrid system models and the corresponding architectural
hybridization paradigm. To fully and clearly explain this concept, we start with an overview of
the different and fundamental approaches for defining system models. We are essentially
interested in showing the difference between models that assume homogeneous properties for
the whole system, and hybrid models, which assume that system may enjoy different sets of
properties. This is an important difference, with impact on how solutions are designed and on
how the system will perform. We describe specific advantages of using hybrid system models in
comparison to homogeneous ones.

However, simply assuming that a hybrid model is adequate to represent the real system is not
enough. This must be reflected on the architecture and it is necessary to materialize the
assumptions, ensuring that they hold in practice. This is why the architectural hybridization
paradigm is essential, as it defines a set of principles for architecting the system and, in fact,
enabling the construction of realistic hybrid systems. We thus elaborate on this in the following
paragraphs, also providing some examples of such architecturally hybrid systems.

3.1 Hybrid	system	models	

In a general sense, when designing a system or an application, or simply the solution for a given
problem, it is necessary to clearly identify and specify a set of requirements for that system or
problem, and a set of assumptions about the properties of the environment for which the
problem is to be solved. While the set of requirements is what defines the problem, the set of
assumptions has an implicit impact on the possible solutions, determining, for instance, their
complexity. The set of assumptions is in fact a representation of the system in which the
solution will be deployed, and thus constitutes the system model.

The system model provides an abstraction of the real system, allowing for the separation of
concerns between the underlying system properties that the solution designer can take as
granted, and how these properties are provided or enforced. Therefore, when we use the term
system model we refer to an abstract representation of a real system, hiding details related to
hardware, network and software components.

Abstracting is good, but it is important to ensure that the abstraction is accurate with respect to
the reality it represents. There is an issue of assumption coverage [1111] that is relevant when
the actual solution is deployed, that is, assumptions must hold with a high enough probability
given a concrete system and environment. In essence, the right assumptions must be made.
Additionally, the system model should be simple enough to be useful when designing some
solution, but it should also be detailed enough to capture the essential characteristics of the
system and allow better solutions to be defined.

Assumptions can be defined along several dimensions, depending on what is relevant for the
problem at stake. For instance, in the distributed systems literature [8] a distributed system
model includes assumptions about: (i) failures, (ii) synchrony, (iii) network topology and (iv)
message buffering. In KARYON we are essentially interested in modelling failures, which is
crucial to reason about safety. We do this essentially in the scope of Task 2.2, the task
concerned with the definition of failure models and failure semantics. Furthermore, since we

KARYON ‐ FP7‐288195
D2.1 ‐ First report on the KARYON architecture

© 2012 KARYON Project 14/48

KARY N

consider systems that interact with their physical environment, the temporal and timeliness
aspects are also important, and thus it is relevant to devote attention to synchrony assumptions,
defined by a synchrony model. In fact, fault assumptions can be related and may depend on
synchrony assumptions, in the sense that if some synchrony is assumed, then it might be
necessary to also assume timing faults on the fault model. The same can be said regarding
security-related assumptions and the implications of those assumptions on the fault model.

There is a wealth of knowledge on the definition of homogeneous system models, and on their
use in the definition of algorithmic solutions, architectures and systems. For instance, when
considering the synchrony dimension, the two well-know models of synchrony that have been
traditionally used are the synchronous [7] and the asynchronous [6] models. The shortcomings
of these homogeneous models are clear when dealing with problems where it is necessary to
reconcile predictability with uncertainty [15], such as we do in KARYON.

Recalling the KARYON main objective, which is to provide system solutions for predictable
and safe coordination of smart vehicles that autonomously cooperate and interact in an open and
inherently uncertain environment, the need for reconciling predictability with uncertainty is
evident. Let us reason again in terms of the synchrony dimension. Should we consider the
asynchronous system model, we would have no way of addressing timeliness requirements and
providing timeliness guarantees for the behaviour of the developed systems. In essence,
ensuring functional safety would not be possible, given that even simple hazards require some
(temporally) bounded system reaction, something that cannot be handled when considering an
asynchronous model. On the other hand, despite the technology improvements in computing
and communication, we should also not use a synchronous model in an unrestricted manner. For
example, to deal with uncertain wireless communication delays, a synchronous model would
either postulate a very high bound for the message delivery delay, which could be unacceptable
for performance, or else, by postulating a lower bound the risk of violating the assumption could
be too high and unacceptable.

It is possible to move away from the extreme sides of the spectrum of choices (be it about
synchrony, security, integrity, or others), defining intermediate models for whatever considered
dimension. For instance, in the synchrony domain there exist models of partial synchrony, such
as the Partially Synchronous model [5] or the Timed Asynchronous model [4]. In these cases,
synchrony is assumed to vary over time and, in this sense, is not an invariant property.
However, since the property is assumed to be common to the entire system, the synchrony
model is still homogeneous in the space dimension.

In contrast with homogeneous models, a hybrid system model allows possibly several stripes of
the assumption spectrum to be represented, exploiting the space dimension. Then, provided it is
possible to find a mapping of such hybrid models onto (correspondingly hybrid) architectural
models that reflect reality (the networking and computational environment), it will be possible
to exploit the increased expressiveness of the hybrid models to design improved solutions and,
in particular, to address the conflicting goals of predictability and uncertainty.

In essence, hybrid system models represent systems in which different parts have different
properties and can rely on different sets of assumptions (e.g., faults, synchronism). Interestingly,
it is possible that some of these assumptions, applicable to some part of the system, lie in some
intermediate point of the possible spectrum. Therefore, hybrid models allow the best to be taken
from both dimensions: different loci of the system may have different properties, and these
properties may vary over time.

In theoretical and practical terms, hybrid models have a number of advantages when compared
to homogeneous models, as explained in what follows (a detailed discussion can be found in
[16], focusing in particular on synchrony models).

Hybrid systems models are:

KARYON ‐ FP7‐288195
D2.1 ‐ First report on the KARYON architecture

© 2012 KARYON Project 15/48

KARY N

 Expressive models with respect to reality— Real systems are not homogeneous.
Whatever the dimension (synchrony, integrity, etc) they generally have components that
enjoy different properties, because these components use and depend on different
resources (e.g., hardware devices, networks). Homogeneous models simply cannot take
advantage from this, being confined to use worst-case assumptions (e.g., the most
severe failure mode, the weakest synchrony).

 Sound theoretical basis for crystal-clear proofs of correctness— By using a hybrid
model, the heterogeneous properties of the different loci of the system (the space
dimension) are by nature represented, and we are in consequence forced to explicitly
make correctness assertions about each of these loci, and about the interfaces to one
another. In contrast, in homogeneous models (and particularly if they make weak
assumptions) designers are tempted to make implicit assumptions that are not explicit in
the model, which may lead to problems ahead.

 Naturally supported by hybrid architectures— Sisters to hybrid systems models, hybrid
architectures accommodate the existence of actual components or subsystems
possessing different properties than the rest of the system. Hybrid models and
architectures provide feasibility conditions for powerful abstractions which are to a
large extent unimplementable on canonical (homogeneous) models: timely execution
triggers (also known as watchdogs); secure signatures or highly reliable execution
kernels. Hybrid models and architectures may drastically increase the usefulness and
applicability of all these abstractions.

 Enablers of concepts for building totally new algorithms— A powerful yet simple
concept behind the first experiments with hybrid models was: use the weakest possible
model for the generic system; imagine that a “toolbox” of simple but stronger low-level
services is available, locally accessible to processes (e.g., timely execution triggers;
timely executed actions; trusted store); these local services can be distributed via
alternative channels, to obtain further strength (e.g., synchronous channels; trusted
global time; trusted binary agreement); devise algorithms which, by working between
the two space-time realms, the generic and the enhanced subsystem containing the
“toolbox”, achieve new properties (e.g., making an asynchronous process enjoy timely
execution).

Having explained the concept of hybrid system models, and their advantages over homogeneous
models, in the next we address the architectural hybridization principle, as a fundamental
enabler of the concept.

3.2 Architectural	hybridization	

Hybrid modelling of distributed systems is the path to achieving incrementally stronger
behaviour taking the best of two worlds: retaining essentially weak models (of integrity,
synchrony, security, etc), with consequent benefits for correctness (since assumptions are hardly
violated); allowing strong models to be considered, which are essential to fulfil predictability
and safety needs.

Architectural hybridization was proposed as a new paradigm to architect modular systems,
based on a few simple principles:

 Systems may have realms with different non-functional properties, such as
synchronism, faulty behavior, quality-of-service, etc.

 The properties of each realm are obtained by construction of the subsystem(s) therein.

KARYON ‐ FP7‐288195
D2.1 ‐ First report on the KARYON architecture

© 2012 KARYON Project 16/48

KARY N

 These subsystems have well-defined encapsulation and interfaces through which the
former properties manifest themselves.

As to the construction, architectural hybridization is an enabler of the construction of realistic
hybrid systems. In fact, it is quite straightforward to build architecturally-hybrid systems, and
we provide some examples below.

The first example is of a system with a watchdog subsystem. The watchdog is used to reset or
restart the overall system when something wrong happens in the main part of the system,
typically when the main system becomes slow or inactive. The watchdog is essentially a counter
device, which has a register that is programmed with some value, and a counter register that is
continuously incremented. When the value in the counter register equals the value in the
programmable register, the watchdog activates the reset signal. The main system has to
periodically reset the programmable register to a higher value, to avoid system resets. When the
main system becomes slow or stops, this will be implicitly detected because the programmable
register will not be reset on time. In this example, it is easy to see that the system has two
different parts, and is thus architecturally hybrid: the main system, which is assumed to fail or to
behave untimely, and the watchdog, which is assumed to behave correctly and timely. These are
reasonable assumptions, because the watchdog is essentially independent from the main system
and it is a much simple subsystem. This ensures that faults affecting the main system will not
propagate to the watchdog, and due to its simplicity the probability of the watchdog failing on
its own is much lower than the probability of failure of the main system. Interestingly, the
resulting global system exhibits better properties than the main system alone: it will either
behave in a timely way or it will restart. In any case, untimely behaviours have been ruled out
and this may be a useful property in many situations, when a fail-stop behaviour is admissible.

A second example is of a system with a Timely Computing Base (TCB) [14]. In such a system
there is a generic part, called payload part, which corresponds to the baseline system where
application processes execute to provide the intended application functionality. Then there is a
control part, called the TCB, which like the watchdog is a separate part, but which provides
richer supporting services to the payload part, like timing failure detection and timely execution
of critical functions. It must be noted that the services provided by the TCB are distributed
services, which implies that hybridization is extended to the network architecture. Clearly, the
TCB part must be implemented in such a way that it enjoys better properties (reliability and
timeliness) than the payload part. Some construction principles like interposition (ensuring that
accessing to critical resources cannot be made bypassing the control part) and shielding (the
control part is protected from faults affecting timeliness) must be respected to make sure that the
services can be provided with the expected properties. One implementation of a TCB was done
using Real-Time Linux and two switched Ethernet networks [1], where one of the networks was
used exclusively for the TCB, whose services were implemented as real-time tasks. In this
system, the payload part was the normal Linux part, using the other network. Another example
implementation of a TCB, in which a completely separate hardware platform was used for the
TCB subsystem, is described in [10].

One final example is a system with a Trusted Timely Computing Base (TTCB), in which
hybridization is used not only to achieve a timely subsystem, but also a trusted subsystem,
capable of providing security-related services like trusted random number generation and
trusted block agreement [3]. Although the TTCB described in [3] was also implemented in
Real-time Linux with specific changes in the kernel to enforce security properties, other COTS
trusted hardware, such as the Trusted Platform Module (TPM) [12], can be used to obtain
tamperproofness. In fact, a TPM can be seen as a special subsystem with better (security)
properties which, when used in a generic (unsecure) system, ends up forming an architecturally
hybrid system.

As to the usefulness of architectural hybridization, and considering the previous examples, it is
clear that the overall system will be improved by making it able to use the services of a better

KARYON ‐ FP7‐288195
D2.1 ‐ First report on the KARYON architecture

© 2012 KARYON Project 17/48

KARY N

component or a better subsystem. For instance, in the case of the TCB it is possible to perform
timely actions despite the asynchrony of the payload system, or to detect and react in a timely
way to possible delays occurring in the payload part. On the other hand, with a TTCB it is
possible to drastically augment resilience to intrusions, making it possible to solve fundamental
problems such as consensus in the presence of uncertain attacks and vulnerabilities [9]. Note
that in homogeneous systems, where the same fault, synchrony or security model applies to the
entire system, the only way to achieve the intended (e.g., synchrony, security) properties is by
enforcing these properties in the entire system, which is typically an overkiller. With
architectural hybridization, only the restricted part of the system that has the better properties
needs to be constructed with the aim of achieving those properties, which is much easier. And
still, the provided services will make it easier to solve many problems that would otherwise not
be solvable.

In KARYON we intend to apply architectural hybridization to exploit the better properties of a
restricted part of the system in the achievement of the desired safe behaviour. In the next section
we provide a preliminary description of the KARYON generic architecture, in which it will be
clear how this hybridization is applied. As to the construction, or instantiation and
implementation of a specific exemplifying architecture, we do not provide specific details in this
preliminary deliverable, leaving that to the final architecture deliverable and to other KARYON
work packages.

KARYON ‐ FP7‐288195
D2.1 ‐ First report on the KARYON architecture

© 2012 KARYON Project 18/48

KARY N

4. Architecture	
In this section we provide a preliminary description of the generic KARYON architecture,
which is divided in two parts. The first one is intended to provide a functional view, introducing
the considered functional components and explaining their role in the architecture. The second
provides an information flow view, introducing the main data abstractions that we need to
consider and explaining the data flows between the functional components.

Our objective at this stage of the project is to include in the architecture the fundamental
building blocks that will be the basis of any KARYON system. This is in accordance with the
work plan, in which it is expected that this initial architecture proposition serves for the work
that needs to be done in the remaining work packages, and that, as a result of the interactions
between work packages, there will be refinements on the KARYON architecture, to be reported
in the final architecture deliverable. Furthermore, the need to propose a sufficiently generic
architecture also stems from the requirements listed in Section 2.

It is expected that, based on this general architecture, further work will be done in other work
packages to solve specific problems implied by this architecture. Therefore, in the final part of
this section we identify some of these specific problems.

4.1 Functional	view	

The architecture that we will be describing in this section was defined while having in mind the
requirements identified in WP1, and taking into account the fundamental idea of applying
architectural hybridization. We present the architecture as we understand it now, after a few
iterations to accommodate diverse views and contributions. However, we try to provide some
structuring ideas and abstractions which we hope will facilitate the understanding of the
proposed architectural view.

Figure 1: Basic control loop.

Figure 1 provides a high-level abstraction of a basic control system, which involves sensing,
processing and actuation. This view abstracts the existing software and hardware components,
as well as the communication channels connecting the components. In this view, there is an
implicit feedback that develops through the environment. That is, through actuation it will be
possible to change the behaviour of the controlled entity (which in KARYON is a vehicle), and
this change will be perceived through the observation of physical variables that develop through
the environment, like the ground relative speed or the distance to some physical object. It is
well-known that it is easier to ensure a safe control according to the elaborated safety rules, in
which some controlled variables are kept within desired bounds, when the system and the
environment are well know and all dynamics can be predictably characterized. From a
modelling perspective, this translates into considering synchronous models, well-defined failure
modes, known event patterns, etc. And the solutions for safe control in such conditions are well
known in the literature, implying a detailed system analysis at design time (i.e., statically), to
prove (a priori) that the necessary safety conditions are met. Given that in KARYON we need
and we want to deal with some level of uncertainty, this abstract architectural view must
necessarily be enriched.

Sensors Computing Actuators

KARYON ‐ FP7‐288195
D2.1 ‐ First report on the KARYON architecture

© 2012 KARYON Project 19/48

KARY N

Firstly, let us slightly enrich the abstraction to make it explicit the fact that in a system there
may exist, in fact, several sensors, computing elements and actuators. Let us also depict only the
components, leaving the interactions for a later stage of analysis. We will call this basic system
composed of sensing (Sense), computing (Compute) and actuation (Actuate) components, the
nominal control system, as shown in Figure 2. The nominal system is the target system that we
want to enrich, allowing it to provide improved functionality (with higher levels of service).

Figure 2: Nominal (control) system.

We consider that with the represented components it is only possible to provide local
functionality, because none of the components supports the interaction with other nominal
systems, which would be necessary to provide cooperative functionality. Therefore, in order to
explicitly represent the need to communicate with other nominal systems, which is needed in
KARYON, we add communication components to the nominal system model.

The new model is shown in Figure 4 and it now includes all the component types that we need.
Sensing and actuation components implement the interface between the system and the
environment. Sensing components consume information from the environment and produce
information to the system. Actuation components, on the other hand, consume information from
the system and produce information to the environment. Computing and communication
components are just different in the sense that they consume and produce information from and
to the system. Interestingly, this allows components to be modelled as objects providing both
consuming (sensing) and producing (actuation) interfaces, and allows information to be
modelled as events that flow from object to object. The Generic Events ARchitecture (GEAR)
[2] provides the framework for reasoning in terms of sentient objects, which communicate
through generic events and may be composed to create more complex sentient objects.

The communication components provide networking functionality, that is, they provide the
means to connect a nominal system to other nominal systems. As described in GEAR, this
communication is performed through operational networks, and is orthogonal to the
sensing/actuation interfaces of the objects.

Figure 3: Nominal system for cooperative functionality.

It is important to say that the set of components that constitute the nominal system can be used
in the provision of multiple functionalities. Adding a new functionality can thus be done by
reusing some of the existing components and, possibly, adding just a few new ones.

When considering the need to support cooperative functionalities, and when adding
communication components to the nominal system, we are implicitly adding uncertainty, which

Nominal System

Sense Compute Actuate

Nominal System
Sense Compute ActuateCommunicate

KARYON ‐ FP7‐288195
D2.1 ‐ First report on the KARYON architecture

© 2012 KARYON Project 20/48

KARY N

cannot be handled at design time. In fact, since communication will be essentially wireless, this
implies that it will be hard and inappropriate to assume fixed upper bounds for communication
latency and predictability in general. Again from a modelling perspective, we are moving away
from purely synchronous models and strong failure modes, which would allow us to use the
well-known techniques for building real-time safety-critical systems. But this is what we
proposed to do in KARYON, that is, be able to add complexity, richer components able to
support improved functionality, while dealing with the increased uncertainty that this will bring
to the system.

Besides supporting several functionalities, the objective is also to support the provision of
different levels of service for each functionality. This means that the nominal system abstracted
in Figure 3 moves even further away from a static system that is operating always within known
bounds and providing a well-defined and fixed service. This also means that proving safety for
the full range of admitted behaviours, conditions and faults becomes more difficult to do.

Recalling what we said in Section 3, we face the problem of reconciling uncertainty with the
needed predictability. Assuming that we have a homogeneous nominal system enjoying
synchronous behaviour is clearly not appropriate, because the assumed bounds would have to be
too high. But we need some guaranteed behaviour in order to satisfy the safety needs. We need
to add the needed predictability to the nominal system and the ability to adapt the nominal
system in run time. This brings us to the proposed KARYON system architecture, as shown in
Figure 4.

Figure 4: KARYON functional architecture.

In addition to the nominal system we add a Safety Manager component and associated Design
Time Safety Information and Run Time Safety Information components. They constitute what we
have been generically referring to as the safety kernel. We also highlight the separation between
these components and the nominal system by means of the Hybridization line. This makes clear
the need to assume that components in the different parts of the system enjoy different
properties, and reflects the use of a hybrid system model and the application of the architectural
hybridization paradigm. The following sections explain this architecture in more detail,
addressing the underlying hybrid modelling approach, the functional description of the
components, and the overall system behaviour in order to adjust the level of service of each
functionality to match the available conditions and meet the safety objectives.

Nominal System

Adjust Mode of Operation

Safety Manager Run Time Safety
Information

Design Time
Safety Information

Sense Compute Actuate

“Hybridization line” Adjust
Level of Service
(or reconfigure)

Extract
Quality of
information/
component
health

Communicate

KARYON ‐ FP7‐288195
D2.1 ‐ First report on the KARYON architecture

© 2012 KARYON Project 21/48

KARY N

4.1.1 Applying	the	architectural	hybridization	paradigm	

The hybridization line separates the system in two parts, denoting the application of the
architectural hybridization paradigm. This allows making explicit the fact that different
properties are assumed for each of the parts above and below the line.

Above the line, we have the nominal system that provides the intended functionality (or several
ones), and has a diversity of components that may be combined and configured in different
ways to provide a variety of levels of service for each functionality. It is not possible to prove at
design time that the functionality will be safe for an arbitrary level of service independently of
the anticipated conditions and faults. That is, some functionality provided with a certain level of
service might not be safe if the conditions degrade, namely when there are failures affecting
some components and leading to degraded data quality. However, it must be possible to
statically prove that given some conditions the functionality will be safe in a certain level of
service. Therefore, for the functionality to always be safe it is necessary to make sure that the
level of service will be adjusted in run time to meet the observed conditions.

Above the hybridization line it is possible to explicitly accept weaker fault and synchrony
models, which can be satisfied with less expensive resources, also allowing the use of a wider
range of technologies (e.g., wireless networks, soft real-time schedulers) that are compatible
with those weaker assumptions. The system will be dynamic and adapt in response to faults and
to the available integrity level.

Below the line the system will be static. All the functional components must be statically proven
to provide safe functionality independently of the anticipated faults. This means that these
components, which constitute the safety kernel, will always operate correctly with respect to the
assumed system and fault model for this part of the system.

However, it must be noted that it is also necessary to statically prove that the system will
provide safe function for at least one level of service for each functionality. Therefore, the set of
nominal system components that are necessary to provide this (lowest) level of service are, from
a system modelling perspective, below the hybridization line, as shown in Figure 5.

Figure 5: Separation of components according to hybrid system model.

Nominal System (arbitrary level of service)

Safety Manager Run Time Safety
Information

Design Time
Safety Information

Sense Compute Actuate

“Hybridization line”

Communicate

Nominal System (lowest level of service)
Sense Compute ActuateCommunicate

Adjust Mode of Operation

KARYON ‐ FP7‐288195
D2.1 ‐ First report on the KARYON architecture

© 2012 KARYON Project 22/48

KARY N

The reader should be aware that in this figure we just aim at clarifying the distinction between
what needs to be statically proven safe (below the line) or not. It does not mean that we must
have strictly different components above and below the line. In fact, a single component might
enjoy different properties (that is, be itself hybrid and on both sides of the line) depending on
how it is configured at a certain moment and hence on the level of service it is expected that it
provide.

This figure shows that we have one mode of operation, provided by the components below the
hybridization line, which can be statically proven safe just as if we didn’t consider the
introduction of uncertainty and additional improved levels of service. If this was the only mode
of operation the safety manager would not be needed, because this nominal system (when
operating in this mode) is proved to provide safe functionality with respect to the considered
hazards. But when adding functional components (above the hybridization line) or modes of
operation for the existing components, the safety manager becomes fundamental to manage the
mode of operation, allowing the system to switch between levels of service depending on the
observed run time safety information. Clearly, it must be statically proven that the operation of
the safety manager and its associated components will be safe, that is, the safety manager will
issue safe management decisions. And there will be a set of components above the hybridization
line that exhibits the reliability and synchrony properties that guarantee a functionality which is
in compliance with the safety rules enforced by the safety manager.

4.1.2 Functional	description	of	components	

In contrast with the baseline model of a control system, shown in Figure 2 or in Figure 3, in
Figure 4 it becomes clear that there is an additional control loop, in which the nominal system is
being controlled by the safety kernel, more specifically by the safety manager component. In the
execution of this control loop it is necessary to use design time and run time safety information.

4.1.2.1 Run Time Safety Information

According to the considered hybrid system model, we allow for some faulty behaviour of
nominal system components. This uncertainty can be both in the time and in the value domain,
being reflected on the validity of data that flows from one system component to the other. It
results from the weaker synchrony and fault models that we can assume for these components.
For instance, a sensor that may fail in several different ways will produce sensor data with
varying validity levels, depending on the concrete faults that may have occurred and their direct
impact on the sensor data values. And a communication link experiencing interferences may
omit or delay the delivery of some messages, which will degrade the validity of data and the
accuracy of the local view of the environment.

A crucial aspect of the proposed architecture is that instead of requiring the enforcement of
some data validity or integrity levels, it just requires awareness about the validity of the data
flowing in the system. From a more practical perspective (which will be discussed further
ahead), we exchange the need for mechanisms to secure some predictable behaviour, by
mechanisms to monitor the behaviour, detect faults, derive the validity of data and, in essence,
be able to reason about safety. The set of collected information is represented in the architecture
by the Run Time Safety Information component, which also abstracts the concrete mechanisms
that must be put in place to do this information collection.

It should be noted that it is possible to collect different kinds of information that may serve to
derive the validity of data or directly reason about safety. In fact, it may be possible that some of
this data directly reports on the health of components, explicitly providing indications about the
occurrence of faults affecting the component behaviour. For instance, it may be possible to
know that some component crashed, simply stopping producing information. One open
question, which is being addressed in the project, is whether it is easier or better to reason in

KARYON ‐ FP7‐288195
D2.1 ‐ First report on the KARYON architecture

© 2012 KARYON Project 23/48

KARY N

terms of this failure condition than to derive some validity for the data produced by the
component (which in this case is not being produced).

Finally, we also note that knowledge about the context, meaning the physical surrounding
environment, is usually important to reason about safety when considering vehicles that move
and interact with this physical environment. This means that not only the validity of data is
important for safety, but data itself may be important (if this data describes the physical
context). We also do not restrict, at this stage, the possibility of including this context
information as part of the run time safety information. However, since this data is in principle to
be made available to the service itself, changes in the context can be reflected on how the
function is performed rather than on the level of service. The best approach is still an open
question.

4.1.2.2 Design Time Safety Information

The design time safety information consists of sets of safety rules establishing the conditions for
functional safety assurance in each level of service. A certain functionality will only be safe in a
given level of service (above the lower one), if the associated set of safety rules are satisfied at
run time. This necessarily depends on the validity of data, and implicitly on the integrity of
components, on faults and possibly on the physical context. Therefore, in order to evaluate
safety it is necessary to have both the set of safety rules and the collected run time safety
information.

Note that when a function is provided in the lowest level of service it is not necessary to verify
if safety rules are met, because this has been done at design time.

For each level of service there is an associated set of safety rules. It must be proven at design
time that if the safety rules are met, then the function will be safe in this level of service. The
same has to be done for all levels of service and all sets of safety rules. However, it is not
necessary to prove that these conditions will be met at run time. In fact, this is what
distinguishes arbitrary levels of service from the lowest level of service. For the latter it is
necessary to prove that (1) the function will be safe if safety rules are met and (2) safety rules
will be met at run time. The corollary is that the function will be safe in the lowest level of
service.

At run time, what needs to be done is to compare the current state of the system (conveyed by
the run time safety information) with the safety rules for the current level of service. This is
included in the tasks of the safety manager component.

4.1.2.3 Safety Manager

The role of the safety manager is to control the mode of operation of the nominal system
components and hence adjust the level of service of each function. In order to do that, the safety
manager needs to know the actual state of the nominal system, which is provided by the run
time safety information. Then, given this state and given the safety rules provided as design
time safety information, it decides whether the current level of service can be kept, or if the
conditions determine a change of the level of service (either to a lower or to a higher one). This
basic behaviour is illustrated in Figure 6.

The safety manager is permanently evaluating rules and determining possible adjustments of the
level of service for some functionality. At this level of abstraction we are not specifying how
this permanent evaluation is performed, but we anticipate that it will have to be done
periodically, and with a known period. The latter is fundamental to prove that the safety
manager will behave safely (as much as required).

KARYON ‐ FP7‐288195
D2.1 ‐ First report on the KARYON architecture

© 2012 KARYON Project 24/48

KARY N

Figure 6: Safety manager basic behaviour.

The set of safety rules (for some functionality) that is used to evaluate safety is determined by
the current level of service. If some rule is not satisfied given the available run time information,
it becomes necessary to change the operation mode of nominal components, to force a switch to
a lower level of service. Level of service changes are done on step at a time. That is, it suffices
to determine that some safety rule is not met to trigger a change – it is not necessary to
determine if there is some even lower level of service that would be more adequate to ensure
safety. Given that the safety manager executes in a timely manner, it will be possible to know,
in design time, how much time it may take to switch from the highest level of service to the
lowest one, in which the functionality will assuredly be safe. Therefore, the safety rules that
allow some high level of service to be provided, are derived (at design time) taking into account
this upper bound on the time to switch again to a safe level of service.

It is possible that safety rules evaluate positively (actually this should be the normal situation),
meaning that currently observed data validity, component integrity and context are good enough
to keep providing the functionality with at least the current level of service. However, it might
be possible that run time conditions actually allow providing a higher level of service for the
functionality, not just keeping the current one. Therefore, if the evaluation of safety rules is
positive, it is necessary to evaluate a new set of safety rules, for the next (higher) level of
service. If they evaluate positively, then it is possible to switch to a higher level of service.
Otherwise, nothing needs to be done.

The specific solutions to trigger reconfigurations or simple adjustments of the nominal system
components are not fixed at this architectural level. We anticipate, however, that there will be
pre-defined configurations and pre-defined reconfiguration plans, including the definition of all
steps needed to execute these reconfigurations. A reconfiguration engine may be able to
implement these plans, by command of the safety manager.

4.1.3 Levels	of	Service	in	the	nominal	system	

Each functionality of the nominal system can be provided with several levels of service. The
highest possible level of service should always be provided, which is determined by the
integrity of data and system components that is available in run time. As mentioned in the
previous section, the safety manager is able to determine if it is possible to switch to a higher
level of service, allowing the highest possible level of service to be eventually reached. The
architecture does not restrict the number of possible levels of service. This number will depend
on the specific functionality and on other issues. For instance, it may simply result from a
design decision, but it may also result from the hazard analysis and the identified risks to safety,
which may require some specific levels of service to be considered in order to mitigate these
hazards.

Typically, switching to a lower level of service is necessary when the integrity of data is not
sufficient to raise the necessary certainty that the function can be safe while providing the

Safety Manager

Run Time
safety

information

Design Time
safety

information Adjust
LoS

LoS
Safety rule

filter
Evaluate
Current

LoS

• Quality
• Integrity
• Context

Switch to
higher LoS

Keep
current

LoS

Switch to
lower LoS

LoS

Safe

Unsafe

Evaluate
LoS + 1

KARYON ‐ FP7‐288195
D2.1 ‐ First report on the KARYON architecture

© 2012 KARYON Project 25/48

KARY N

current level of service. For instance, if a sensor is not being able to accurately measure the
distance to some vehicle in front of it (which might be detected by the sensor itself, by some
external failure detection mechanisms, because there was a sudden variation of the value, or
because an inconsistency is detected between the value reported by the sensor and the same
value reported by another sensor or, say, the front vehicle’s rear sensor), this will reflect on the
validity of the sensor data, and ultimately on the ability of keeping the same level of service for
a functionality to which this value is important. To preserve the required safety integrity level, it
will be necessary to switch to a lower level of service, in which the available data validity will
be sufficient to prevent any hazardous situation to develop.

We consider that there is a lowest level of service, and that in this lowest level of service the
function is ensured to always be safe. This means that in this level of service, no hazardous
situation can occur which would affect the required safety integrity level. This is possible
because in such lower level of service there are lower resource requirements, fewer
dependencies on nominal components and, in general, a reduced exposure to the possible
hazards. In essence, the potential effect of hazards is discarded.

4.2 Information	flow	view	

The description provided so far was essentially focused on the components and their functions,
explaining why they need to be located above or below the hybridization line. Now we pay
more attention to the interactions between the components, providing a data-oriented
perspective of the KARYON architecture.

Central to this view is the notion that we have two fundamentally different kinds of data. On the
one hand, there is application or service related data, which is necessary for the provisioning of
the intended cooperative functionality. Considering the basic model of a control system
presented in Figure 2, this is the data that flows from the environment through the sensors,
computing components and actuators, back to the environment. In the absence of relevant risks,
this basic control model would be enough and there would be no need to consider any other
kind of data. However, we also need to consider safety related data, which is necessary for
ensuring functional safety. In our case, since we consider several possible levels of service for
each functionality, in order to ensure acceptable risks for each level of service we must
continuously evaluate if the integrity of the components is the needed one. This integrity is
reflected on the quality of service related data, and therefore we reason about safety using this
quality information.

These two different kinds of data are shown in Figure 7 as “Service data” and “Quality data”,
and are included in the Run Time Information Database, which is just an abstraction to
represent all run time produced data. Static information, on the other hand, is abstracted by the
Design Time Safety Information Database, which specifically contains the safety rules derived
in design time.

In addition to the information databases, in the figure we represent the components of the
nominal control system and the safety manager. This data centric view is necessarily very
abstract, in accordance with the functional view presented earlier. We do not consider concrete
functionalities, nor concrete nominal system component, so it does not make sense to define
specific flows between these components. What is relevant is that all the information (service
and quality data) produced by sensing, communication and computing components constitutes
run time information that may be required by other components, and should be made available
to them. There may be several possible approaches to implement the communication between
each component and to make run time information available, but the common denominator
between all of them is that they should allow components to share information to all other
interested components. Therefore, the idea that there is an abstract common information

KARYON ‐ FP7‐288195
D2.1 ‐ First report on the KARYON architecture

© 2012 KARYON Project 26/48

KARY N

repository, perfectly serves to represent this requirement. In the figure we represent all the data
flows, irrespectively of their nature. In what follows, we provide more detailed views and
explanations of each data flow.

Figure 7: KARYON architecture (data centric view).

The flow of service data is just like the flow of data in a typical control system. This is clearly
visible in Figure 8, in which only the service data flow and the relevant components are
represented.

Figure 8: Service data flow.

Data is gathered by sensing components from the environment and by communication
components from operational networks. These components then provide the collected
information to computing components (through the Run Time Information Database), which
process this information and produce new service data that may be either consumed by other

Safety Manager

Design Time –
Safety
Information
DB (static)Run Time

Information DB

Service
data

Quality
data

Safety
rules

Sense

Actuate

Compute

Communicate

Safety
information

Run Time
Information DB

Service
data

Sense

Actuate

Compute

Communicate

KARYON ‐ FP7‐288195
D2.1 ‐ First report on the KARYON architecture

© 2012 KARYON Project 27/48

KARY N

computing components, by communication or by actuation components. Communication
components send this information through operational networks, while actuation components
use the information to actuate on the environment, thus closing the control loop.

The flow of quality data is different, although there may be some overlaps with the service data
flow. In fact, it is possible that information on data quality is transmitted along with the
corresponding service data, in which case the overlap is obvious. For example, a distance value
produced by a distance sensor could have some attached quality value and both values could be
made available simultaneously. But this cannot be generalized.

Differently from service data, which originates from the environment or from a network, quality
information is generated by some computing element, be this element part of a nominal
component (e.g., an intelligent sensor, a data fusion computing component) or be it a computing
component on its own. Therefore, in general it is necessary to consider that quality data can
originate and flow from sensing, computing and communication components. This is illustrated
in Figure 9, which shows the specific quality data flow through the relevant components.

Figure 9: Quality data flow.

In the figure it is possible to observe that computing components can also consume quality
information, for instance to derive the resulting quality for some produced service data. The
main purpose of producing and gathering quality information is to make it available to the
safety manager, as also represented.

It should be noted that some computing components may be devised to perform specific
monitoring activities, like detecting crash and timing failures, which are important for
evaluating the integrity of the run time system. This integrity-related information should be
treated in some way, so that it is reflected in the quality of service data. In fact, this is a very
important issue that has to be addressed in the context of the considered fault and failure
models, which is the focus of work task 2.2. One of the KARYON objectives is precisely to
define the relevant fault and failure models for sensors and the other system components, and
understand how these faults and failures affect the service data quality. This is work in progress,
whose preliminary results will be presented in Deliverable D2.2.

Another important issue concerning the quality data is that it should be trustworthy. In other
words, it is useless for the safety manager to use information about the integrity of the system
that might not be correct, or might be too imprecise. At design time, the confidence on this
quality data must be established, and it must be assured by the implementation. Therefore, this
is an issue that stems from the architectural work to the implementation work.

Safety Manager

Design Time –
Safety
Information
DB (static)

Run Time
Information DB

Quality
data

Safety
rulesSense

Compute

Communicate

Safety
information

KARYON ‐ FP7‐288195
D2.1 ‐ First report on the KARYON architecture

© 2012 KARYON Project 28/48

KARY N

One final observation is that there is no output from the safety manager. This is due to the fact
that the safety manager output cannot be considered service data, nor quality data. Another flow
of control information must exist, which is directed from the safety manager to the relevant
components that need to be reconfigured or readjusted. This flow is represented generically in
Figure 4, because the concrete mechanisms and solutions to realize adjustments of the level of
service pertain to a lower level of abstraction. This issue, which is also related to interfacing
components in the two parts of the system, below and above the hybridization line, will be
addressed in particular in work task 4.2.

4.3 Discussion	on	requirements	fulfilment	

In Section 2 the general requirements on the architecture are listed and elaborated to a certain
extent. In this section follows a discussion on how the suggested architectural pattern fulfils
these requirements.

R.4.2.10

Each vehicle shall be able to perform several functionalities (services) simultaneously

Rationale: It is assumed that there are several functionalities of the vehicle of interest. This is
the case for all vehicles of today, and also assumed in the vehicles we study in the use cases.
This implies that when defining a KARYON system/architecture it cannot be enough only
assuming to implement one single functionality. Much of the complexity making the solution
general is that it should be able to handle all functionalities at the same time.

Implication: An architecture shall not be tailored for performing just one single functionality.
Mechanisms and architectural patterns shall allow several functionalities to be taken care of
simultaneously.

Discussion: The elements “below the hybridization line” are not dependent on a specific
functionality. Thus the requirement may be fulfilled.

R.4.2.20

The set of functionalities shall be extendable

Rationale: This requirement is important for any architectural pattern to be exploitable for a
real vehicle developer. We assume that incremental product development must be supported in
such a way that the addition of one functionality should not require a completely new
architecture.

Implication: The architecture pattern shall be so general that when adding one functionality, the
same pattern shall still be valid. This shall hold even if the architecture instance is extended.

Discussion: In the suggested pattern, the amount of functionalities realized “above the
hybridization line” is arbitrary. Thus the requirement may be fulfilled.

R.4.2.30

Each functionality shall be able to involve some sensing, actuating, and communication with
other vehicles and infrastructure

Rationale: This requirement is a direct consequence of the use case criteria that we are looking
at cooperative vehicles. The implication on the architecture is that for the realization of every

KARYON ‐ FP7‐288195
D2.1 ‐ First report on the KARYON architecture

© 2012 KARYON Project 29/48

KARY N

functionality, sharing resources with actors outside the vehicles (other vehicles and
infrastructure) shall be possible.

Implication: The architecture pattern shall deal with the inherent redundancy coming from a
combination of local sensors and of communication with remote sensors. Taking advantage of
inherent redundancy is key factor for reaching enough safety with a minimum cost of added
redundancy.

Discussion: In the suggested pattern, all of sensing, actuating, and communication with other
vehicles and infrastructure are possible and thus the requirement may be fulfilled.

R.4.2.40

Some resources for sensing, actuating and communication shall be able to be shared among
several functionalities

Rationale: When adding a new functionality to a vehicle, it should be able to take advantage of
the fact that some sensing and/or some actuating from other functionalities can also be used in
the new one. A general KARYON architecture must give the possibility for several
functionalities to share some resources.

Implication: The architecture pattern for realizing functionalities with elements shall be a
many-to-many relation where:

 Each architectural element may be part of several functionalities

 Each functionality may be realized by several architectural elements

Discussion: In the suggested pattern, all of sensing, actuating, and communication with other
vehicles and infrastructure are possible to implement as elements shared by several
functionalities. This have to be further detailed, but so far the requirement may be fulfilled.

R.4.2.50

Each functionality shall always behave safely independently of the level of service

Rationale: If the available level of integrity becomes too low for the actual level of service, a
transition to a lower level of service shall be done immediately (the time to initiate the transition
shall be much shorter than the time for the transition itself).

Implication: The architecture shall be built by a proper combination of

 Components, having high enough integrity

 Redundancy patterns, lowering the requirements on integrity of components

Discussion: One implication on the suggested pattern is that everything “below the
hybridization line” has to be implemented according to highest level of safety integrity. This
part of the architecture has to be statically proven at design time to behave safely for all levels
of service for all functionalities. Given that this can be shown, everything in the architecture
“above the hybridization line” may take advantage of the possibilities of combining components
having high enough integrity with redundancy patterns, lowering the requirements on integrity
of components. Thus the requirement may be fulfilled.

KARYON ‐ FP7‐288195
D2.1 ‐ First report on the KARYON architecture

© 2012 KARYON Project 30/48

KARY N

R.4.2.60

Each functionality shall always operate in the highest possible level of service

Rationale: If the available level of integrity becomes high enough for a higher level of service
than the actual one, a transition to a higher level of service shall be done immediately (the time
to initiate the transition shall be much shorter than the time for the transition itself).

Implication: The architecture shall, for all functionalities at the time, enable a dynamic
matching:

 Available level of integrity (from status of components)

 Required level of integrity (according to different levels of service)

Discussion: Given that the safety manager may observe the provided levels of safety integrity
of all architectural elements and match this information with the required levels for the different
levels of service, this requirement may be fulfilled.

R.4.2.70

A KARYON architecture shall be able to express on different levels of abstraction.

Rationale: This is to match a break-down of safety-requirements, and different phases in a
safety standard reference life-cycle. .

Implication: The KARYON architecture is not just one view. It’s important to represent the
architectural pattern on several levels of abstraction. This enables separation of concerns, as
different levels of abstraction have different concerns. The number of levels of abstraction shall
be at least 4, to match the phases of the ISO26262 reference life cycle.

Discussion: The proposed architectural pattern may be described on several levels of
abstraction, but the details, especially on the lower levels of details, have to be further
elaborated.

R.4.2.80

On each level of abstraction, and for each architectural element, the level of integrity shall be
possible to express w.r.t. each applicable failure.

Rationale: This means a capability to express safety requirements having Safety Integrity
Levels (SIL) and being allocable to any failure of any architectural element. This requirement
implies that we need failure models of the architectural elements we use.

Implication: In a top-down methodology, the integrity levels identified in hazard analysis on
the vehicle level shall be inherited to those architectural elements on analysis level w.r.t.
corresponding failures. In a similar way SIL w.r.t. failures on any level of abstraction shall be
inherited to next level below, if no redundancy is introduced. Furthermore this implies that SIL
be expressed as an attribute of safety constraint referencing a fault/failure model.

Discussion: For the architectural elements “below the hybridization line”, it is assumed that any
safety requirement allocated here may imply the highest level of safety integrity to be proven at
design time. For all the elements “above the hybridization line”, any safety requirement
expressed on any level of abstraction, has to be according to an appropriate fault/failure model.
It is assumed that work tasks 2.2 and 4.1 can identify this. If that holds, this requirement will be
fulfilled.

KARYON ‐ FP7‐288195
D2.1 ‐ First report on the KARYON architecture

© 2012 KARYON Project 31/48

KARY N

R.4.2.90

There shall be a known set of rules regarding how to determine the level of integrity for
avoiding each possible resulting failure when composing architectural elements.

Rationale: This implies rules for SIL inheritance and for SIL decomposition (effects of
redundancy).

Implication: If redundancy is introduced, instead of just inheritance, a lowering of SIL may be
done according to applicable rules (e.g. ASIL decomposition in an automotive context).

Discussion: In the proposed architectural pattern these rules are assumed to be identified at
design time for every architecture instance and stored in the conceptual block called “Design
Time Safety Information”. The rules to be identified shall be consistent with the rules in the
applicable safety standard regarding lowering required safety integrity level when introducing
redundancy. Such rules are to be further investigated in other work tasks, especially in work
task 4.1.

R.4.2.100

There shall be a known set of rules regarding how to determine the level of integrity for
avoiding each possible resulting output failure of an architectural element, given the integrity
levels of avoiding the applicable input faults and internal faults.

Rationale: This implies a requirement on models for failure behaviour of all architectural
elements.

Implication: For each architectural element on each level of abstraction, there is a need for a
corresponding fault/error/failure model. These models include failure propagation behaviour.

Discussion: In the proposed architectural pattern these rules are assumed to be identified at
design time for every architectural element of the actual architecture instance and stored in the
conceptual block called “Design Time Safety Information”. Such rules about fault/failure
models including rules for error propagation are to be further investigated in other work tasks,
especially 2.2, but also 4.1.

R.4.2.110

There shall be known rules regarding how the amount of, and the quality of, relevant
information determines the level of integrity for each relevant failure.

Rationale: This requirement asks for transformation rules from the “quality of information”
domain to the “integrity level” domain. The previous domain is what can be measured by the
system itself and the latter domain is where the use case requirements are set. In order to
understand when to go up and down in levels of service, such transformation rules have to be
established that are applicable for the architecture and its elements.

Implication: The architecture must encompass the necessary architectural elements to match
available integrity with required integrity, and it shall be possible at runtime to determine
available integrity w.r.t. all relevant failures.

Discussion: In the proposed architectural pattern the safety manager realizes the match of
available integrity with required integrity. The necessary rules are assumed to be identified at
design time for every architectural element of the actual architecture instance and stored in the
conceptual block called “Design Time Safety Information”. Such rules about transformation
from fault/failure models to safety integrity levels are to be further investigated in other work
tasks, especially 2.2, but also 4.1.

KARYON ‐ FP7‐288195
D2.1 ‐ First report on the KARYON architecture

© 2012 KARYON Project 32/48

KARY N

R.4.2.120

The amount of relevant information shall be measurable.

Rationale: There shall be a way for a KAYON system to dynamically extract what is needed to
determine the available levels of integrity. Given the requirement on a transformation rule to
determine the integrity level is fulfilled, then the amount of relevant information should be
measurable by the system itself as an input to that transformation.

Implication: The architecture must encompass the necessary architectural elements to match
available integrity with required integrity, and it shall be possible at runtime to determine
available integrity w.r.t. all relevant failures.

Discussion: In the proposed architectural pattern it is assumed that “run time safety
information” including measures on amount of relevant information can be extracted from the
“architectural elements above the hybridization line” to the dedicated conceptual block below.
How this may be done is to be further investigated in other work tasks, especially 4.2.

R.4.2.130

The quality of relevant information shall be measurable.

Rationale: There shall be a way for a KAYON system to dynamically extract what is needed to
determine the available levels of integrity. Provided that the requirement on a transformation
rule to determine the integrity level is fulfilled, then the quality of relevant information should
be measurable by the system itself as an input to that transformation.

Implication: The architecture must encompass the necessary architectural elements to match
available integrity with required integrity, and it shall be possible at runtime to determine the
available integrity w.r.t. all relevant failures.

Discussion: In the proposed architectural pattern it is assumed that “run time safety
information” including measures on quality of relevant information can be extracted from the
“architectural elements above the hybridization line” to the dedicated conceptual block below.
How this may be done is to be further investigated in other work tasks, especially 4.2.

KARYON ‐ FP7‐288195
D2.1 ‐ First report on the KARYON architecture

© 2012 KARYON Project 33/48

KARY N

5. Implications	on	services	and	mechanisms	
In this section we identify and we provide a brief discussion of a set of issues that are implied
by the KARYON architecture described in Section 4. These issues will be addressed as part of
the forthcoming activities in the project, namely in the scope of WP3 and WP4. The work being
done in work task T2.2, on failure modes and semantics, is also relevant to address some of the
listed issues.

Characterization of quality information

Given that we assume that part of the system can be affected by faults (described by considered
failure modes), which will be reflected on the quality of data, one issue is that it is necessary to
find adequate forms for characterizing and representing the “quality” of data.

This data is provided by sensors and by communication components, and represents the state of
physical variables, like distance, speed, temperature, heading, etc. Therefore, when using a data
value representing some of these physical variables, there is an error between this data value the
real physical value. The error is affected both by faults and is changing over time, and this is
why it is necessary to continually update the value, to prevent the error to become too large.
Under controlled conditions it is possible to make sure that errors are bounded, and design
solutions that will be correct, and will be functionally safe, for the assumed maximum error. In
KARYON we want to keep track of the validity of data, which in some sense corresponds to be
able to characterize this error at run time. This will require being able to integrate the assumed
fault models, so that the occurrence of faults can be detected and can be reflected on the validity
of data. Furthermore, it will be necessary to find a generic way to represent this validity through
some quality metrics, which might be easily used along with some algebra to reflect changes in
this quality along the processing flow within the system.

It is also important to note that since the quality of data depends on the passage of time, it is
important to preserve information regarding the time at which some quality information might
have been derived.

Finally, the existence of the Run Time Information Database abstraction might be useful to deal
with this data quality issue: this database may provide the means for the separation of concerns
between data producers and data consumers, where producers are expected to ensure some
desired quality of the information stored in this database, and consumers expect this quality to
be ensured.

Mapping between quality and integrity

While the aim is to be able to being able to derive the validity of sensor data, and assign some
quality value, reasoning about safety has to be done by considering desired safety integrity
levels with respect to the considered hazards. There is an issue of matching the available quality
to the needed integrity, which needs to be addressed in the project. In fact, this is also
highlighted by general requirements R.4.2.100 and R.4.2.110, and this will be investigated in
work tasks 2.2 and 4.1.

Level of service management

Considering that all issues related to the characterization of the quality of information and its
transformation into the integrity domain can be done, then the safety manager will be able to
evaluate if the available integrity is sufficient to keep some specific level of service. If not, the
level of service must be changed. One issue is how to perform this change.

The change is controlled by the safety manager, and may be viewed as a reconfiguration
procedure, in which new configuration parameters must be set for the relevant components. This
implies that components may have to behave according to a set of parameters that determine a
mode of operation. It may also be possible to envisage other kinds of reconfiguration, implying

KARYON ‐ FP7‐288195
D2.1 ‐ First report on the KARYON architecture

© 2012 KARYON Project 34/48

KARY N

activation or deactivation of components, or implying rebinding of component connections, but
this should be abstracted in the same way through the change of system parameters.

Adaptation timeliness

One important aspect, though, concerns the timeliness of the reconfiguration actions.

The timeliness constraints are fundamental as they dictate the maximum amount of time that
will take to complete a mode change. If one adds the maximum amount of time that it takes to
collect integrity information (that is, the collection period) and check if safety rules are being
satisfied, the resulting sum will provide a bound on the maximum amount of time that it will
take to accomplish some needed adaptation. This amount of time will have to be taken into
consideration when defining the safety rules.

It is necessary that the devised solutions will satisfy the required timeliness constraints. This
should in principle be feasible given that this is commanded by the safety manager, which is a
predictable (and timely) component. In any case, the issue calls for careful attention in the
definition and implementation of interfaces, to make sure that these timeliness constraints are
secured.

Actuation safety

As mentioned in the project proposal, the safety kernel part of the system “safeguards the
control commands and checks them against the derived set of safety rules”. In abstract, this is
necessary when nothing is assumed about what control commands can be consumed by
actuation components, or in other words, when nothing can be assumed about the quality of data
used for actuation. In this situation, even if the integrity of actuation components is evaluated to
be sufficient with respect to safety rules, the resulting actuation could impair the safety of the
provided functionality. In fact, it follows from the proposed architectural pattern that the data
flow goes directly from computing components to actuation ones (through the Run Time
Information Database), and hence this data can be affected by faults that are only detected later,
when the data has been used in actuation.

Therefore, it is necessary to either establish (and enforce) some quality/integrity level for the
data that is used in actuation, which depends on the fault models that are assumed for the
components producing this information, or else it is necessary to make sure that an interposition
principle is followed in the implementation, so that the relevant data flowing to actuation
components has to go through the safety kernel part of the system for prior validation.

KARYON ‐ FP7‐288195
D2.1 ‐ First report on the KARYON architecture

© 2012 KARYON Project 35/48

KARY N

6. Application	to	concrete	functionalities	
In this section we jump into a lower level of abstraction, performing a simple but important
exercise: we consider specific functionalities in the automotive domain, and we describe
possible architectural solutions, which hopefully can be seen as an instantiation of the generic
architecture described in the previous sections. This exercise is important to reveal possible
fragilities of the generic architecture (e.g. functional blocks or interactions that might not be
adequate when we try to instantiate them), which will take us back to the drawing board in order
to refine the architecture, to achieve the final version that will be provided in deliverable D2.3.

The automotive functionalities considered in KARYON are aimed, in particular, at road safety
and traffic efficiency. These objectives are pursued by means of co-operative driving
applications, in which traffic information is transmitted by the infrastructure and/or by other
vehicles, and by means of Advanced Driver Assist Systems (ADAS), based on-board sensors
that control the vehicle dynamics.

The set of requirements for these applications have been provided in D1.2, and are just briefly
summarized here. We note that these requirements have been derived from the more significant
standards relevant to KARYON and pointed by ETSI, which has been committed by the
European Commission to prepare the standards for the European intelligent transport system.
These requirements are therefore the basis of the KARYON automotive functionalities, which,
in the following paragraphs, are described. For each functionality a functional architecture has
been defined using the general structure of a nominal system, previously shown in Figure 2.

Starting from this structure and from the additional functions introduced to meet the
requirements addressing complementary aspects, and also taking into account the results of the
preliminary hazard analysis reported in D1.1, a general functional architecture for the above
automotive applications has been identified. This architecture, which is intentionally very
simplified in order to avoid the risk to stick to specific implementations, is proposed as a basis
for a more accurate hazard analysis and risk assessment, and also to introduce the concepts that
are emerging regarding the level-of-service approach and the management of functional safety
by means of the KARYON elements.

6.1 Requirements	from	Automotive	Standards	

ETSI EN 302 665 Intelligent Transport Systems (ITS); Communications Architecture

 KARYON should assume the availability of the following infrastructures and services:

o V2V communication: ITS-G5, 60 GHz, IR

o Roadside stations: V2I and I2V ITS-G5

o Collision Risk Warning RSU1 (Road Side Unit)

 KARYON should assume that vehicles are equipped with 77 GHz RADAR or/and
LIDAR systems

 KARYON should assume that the cooperative vehicles communicate with the ITS,
whose architecture complies with the specifications of ETSI EN 302 665

 KARYON should assume that the facilities provided by ITS, in particular Local
Dynamic Map (LDM) and support for relevance checking, are available and used to
perform the required functionalities envisaged in KARYON use cases

KARYON ‐ FP7‐288195
D2.1 ‐ First report on the KARYON architecture

© 2012 KARYON Project 36/48

KARY N

 KARYON should assume that the support provided by ITS stations to manage
Cooperative Awareness Messages is provided by ITS

 KARYON should adopt one of the (informative) onboard communication architectures
provided by the standard.

ETSI TR 102 638 Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set
of Applications; Definitions

 No additional requirements can be derived, because some of the most significant
services defined by the standards are already defined in the previous chapter of D1.2.

ETSI TS 102 637-2 Intelligent Transport Systems (ITS); Vehicular Communications; Basic
Set of Applications; Part 2: Specification of Cooperative Awareness Basic Service

 KARYON should include the Cooperative Awareness Messages to identify the global
status of the surrounding environment

For different ITS station types, the mandatory, situational mandatory and optional
content of following tagged data:

o Vehicle type – Public vehicle type
o Light bar in use
o Sirene in use
o Emergency response type
o Station length – Confidence of the station length
o Station width – Confidence of the station width
o Vehicle speed – Confidence of the vehicle speed
o Longitudinal acceleration – Confidence of the longitudinal acceleration
o Yaw rate – Confidence of the yaw rate
o Acceleration control
o Exterior lights
o Cause code
o Ambient air temperature
o Speed, other speed than vehicle speed
o PT line description
o Turn advice
o Distance to stop line – Confidence of the distance to stop line
o Schedule deviation
o Traffic light priority
o Door open
o Data reference
o Confidence ellipse of the position
o Curvature
o Curvature change
o Confidence of the curvature
o Wiper system front
o Crash status
o Heading confidence
o Dangerous goods

 KARYON should comply with the timing specifications of the Co-operative Awareness
Messages (CAMs)

CAMs are generated by the CAM Management and passed to lower layers when any of
following rules apply:

o maximum time interval between CAM generations: 1 s;

KARYON ‐ FP7‐288195
D2.1 ‐ First report on the KARYON architecture

© 2012 KARYON Project 37/48

KARY N

o minimum time interval between CAM generations is 0,1 s. These rules are
checked latest every 100 ms;

o generate CAM when absolute difference between current heading (towards
North) and last CAM heading > 4°;

o generate CAM when distance between current position and last CAM position
> 5 m;

o generate CAM when absolute difference between current speed and last CAM
speed > 1 m / s;

The generation rules are checked every 100 ms.

Table 1: Overview Use Cases based on CAM (source: ETSI).

ETSI TS 102 868-1 Intelligent Transport Systems (ITS); Testing; Conformance test
specification for Co-operative Awareness Messages (CAM); Part 1: Test requirements and
Protocol Implementation Conformance Statement (PICS) proforma

 No additional requirement can be derived for KARYON activities, at the highest
requirement level, because the requirements identified from the analysis of the
preceding standard cover also the present one.

ETSI TR 102 863 Intelligent Transport Systems (ITS); Vehicular Communications; Basic Set
of Applications; Local Dynamic Map (LDM); Rationale for and guidance on standardization

 LDM concept shall be considered to create a global status of the environment

 The reliability issues of ITS station shall be considered by KARYON and suitable
measures shall be taken to avoid possible hazards.

ETSI TR 102 893 Intelligent Transport Systems (ITS); Security; Threat, Vulnerability and
Risk Analysis (TVRA)

 KARYON shall consider the hazards caused by malicious attacks

 The KARYON architecture shall include countermeasures to ensure security

 KARYON, if will not develop the countermeasures, shall define them as assumptions.

ETSI TR 102 862 V1.1.1 (2011-12) Intelligent Transport Systems (ITS); Performance
Evaluation of Self-Organizing TDMA as Medium; Access Control Method Applied to ITS;
Access Layer Part

 KARYON should compare the access methods reported in the standard with the one
under investigation by Chalmers University

6.2 Functionalities	

The automotive functions considered in KARYON can be grouped in three categories:

KARYON ‐ FP7‐288195
D2.1 ‐ First report on the KARYON architecture

© 2012 KARYON Project 38/48

KARY N

 Co-operative driving, based on the Vehicle to Vehicle and Vehicle to Infrastructure
communication

 Advanced Driver Assist Systems (ADAS), based on sensors, that are on board vehicle

 Vehicle dynamics control

6.2.1 Co‐operative	driving	

The functions of co-operative driving are mainly based on:

 Cooperative Awareness Basic Service

 Cooperative Automatic driving

and are listed in Table 2.

Cooperative
Awareness Basic
Service

A) Intersection collision warning
B) Signal violation warning
C) Lane Change Manoeuvre
D) Co-operative adaptive cruise control
 D1) Emergency brake lights
 D2) Stationary vehicle warning
E) Intersection management
 E1) Traffic light optimal speed advisory
 E2) Collision Risk Warning from RSU
 E2) Signal violation warning

Automatic driving F) Co-operative vehicle-highway automation system (Platoon)
 F1) Co-operative side merging
 F2) Co-operative roundabout merging
G) Intersection control

Table 2: ITS and co‐operative driving functions relevant to KARYON

In the following, the functions to be considered in KARYON are briefly described and diagrams
are sketched to show the more significant elements needed.

Cooperative awareness function

Cooperative awareness functionality regarding road safety is a warning service based on the
information about the status of the neighboring vehicles and of the road conditions, intended to
alert the driver and safely anticipate the needed maneuvers. The information provided is
standardized by ETSI. The Human Machine Interface (HMI) includes haptic signal on the
steering wheel. In Figure 10, V2I and V2V mean the information provided by the various
external sources, according to standardized ITS services (e.g. Local Dynamic Maps or CAM
messages).

Cooperative automatic driving function

Cooperative automatic driving includes many possible functions, based on the available
information about the neighboring vehicles and ranging from only longitudinal control to the
complete vehicle control including lateral control. In general and in the complete functionality,
automatic driving does not require any driving action by the driver, but usually the driver
performs a surveillance task and should be ready to take the control in the case of risky
situations or whenever the road conditions do not allow automatic driving (e.g. in complex
traffic scenarios). The main functions that compose cooperative driving are shown in Figure 11.

KARYON ‐ FP7‐288195
D2.1 ‐ First report on the KARYON architecture

© 2012 KARYON Project 39/48

KARY N

Figure 10: Functional architecture on board vehicle for cooperative awareness function.

Figure 11: Functional architecture on board vehicle for cooperative automatic driving
function.

KARYON ‐ FP7‐288195
D2.1 ‐ First report on the KARYON architecture

© 2012 KARYON Project 40/48

KARY N

6.2.2 Advanced	Driver	Assist	function	

Autonomous cruise control

It is an automatic cruise control that uses either a radar or laser sensor setup, with the support of
a camera, allowing the vehicle to slow when approaching another vehicle ahead and accelerate
again to the preset speed when traffic allows. Also in this case the functionality of the automatic
cruise control does not require any driving action by the driver, but usually the driver performs a
surveillance task and should be ready to take the control in the case of risky situations or in
complex traffic scenarios. The functional architecture on board vehicle is shown in Figure 12.

Figure 12: Functional architecture on board vehicle for autonomous cruise control.

Lane departure warning function

It is a mechanism to warn the driver when the vehicle begins to move out of its lane (unless a
turn signal is on in that direction) on freeways and arterial roads. The warning to the driver can
be performed also adding haptic feedback, directly on the steering wheel. The functional
architecture on board vehicle is shown in Figure 13.

KARYON ‐ FP7‐288195
D2.1 ‐ First report on the KARYON architecture

© 2012 KARYON Project 41/48

KARY N

Figure 13: Functional architecture on board vehicle for lane departure warning function.

Collision avoidance function

This functionality is based on the detection of moving obstacles on the vehicle trajectory, by
means of radar systems with an obstacle detection range of at least 150 m, offering brake assist
support across a full range of speeds. In case of an imminent collision with an object in front,
automatic braking support is triggered, helping to mitigate impact or avoid collision, the system
triggers a warning to alert the driver. The warning can be audible, visual or haptic. If the driver
does not react, brake pressure is applied automatically to provide maximum brake boost
immediately once the driver does engage the brake. This functionality can usually require also
short range lidar to detect obstacles in vehicle proximity (up to few meters) covering also a
lateral area, as it is necessary to avoid dangerous situations for pedestrians and other road users
moving with lateral relative speed. The functional architecture is shown in Figure 14.

Figure 14: Functional architecture on board vehicle for collision avoidance function.

KARYON ‐ FP7‐288195
D2.1 ‐ First report on the KARYON architecture

© 2012 KARYON Project 42/48

KARY N

6.2.3 Vehicle	dynamics	control	

The main shared functions to support the above functionalities are now described.

V2X Communication

Communication is a two way function to supply data and to receive information from other
vehicles and infrastructures, according to the services standardized by ETSI. Communication
includes:

 a firewall function, which recognizes wrong messages, and applies countermeasures
against malicious attacks;

 a security check, which provides an additional barrier based on plausibility checks.

Propulsion control

By wire control of the propulsion force, by means of engine torque control and gearbox
management to produce the desired acceleration.

Braking control

By wire control of the braking system, to produce the desired deceleration. This functionality
includes the interaction with other braking sub-functions (e.g. ABS) or with yow rate control.

Steering torque control

This functionality consists of the superimposition of a steering torque on the steering wheel, in
order to implement automatic vehicle steering, allowing at the same way any action by the
driver in the case of need.

Data fusion

This functionality consists of the data fusion of the sensors collected by the different functions
to provide as much as possible detailed and reliable information. Fusing multiple information
sources together also produces a more efficient representation of the external environment.

Function output arbiter

This functionality defines the priority request coming from different functions to drive the
specific actuation.

LoS management supervisor

This functionality defines the LoS in respect of the availability of the information in order to set
the functions and their performance level according to safety rules and ensure safe vehicle
operation.

6.2.4 General	functional	architecture	

The particular functional architectures presented above can be merged into a general functional
architecture, which is presented in Figure 15.

KARYON ‐ FP7‐288195
D2.1 ‐ First report on the KARYON architecture

© 2012 KARYON Project 43/48

KARY N

Figure 15: General functional architecture for the automotive functionalities.

6.3 Level	of	Service	

Starting from the above defined functions, it is possible to classify them into two main
categories, independently from the performance and service level, which are related to the
availability of the needed information and on the operating conditions. The two categories are
based on the resulting action, i.e. vehicle actuation or driver information:

 Automatic driving service

 Warning service

The level of service is a useful concept to identify different operation modes, according to the
following schema.

Information
source

Automatic driving
services

Warning services Level of service

V2V, V2I and
onboard sensors

Co-operative driving
Cooperative awareness

services
High

Onboard sensors
ADAS (vehicle

control functions)
ADAS (driver

information functions)
Low

Driver Manual driving Conventional signals Zero

Table 3: Level of service for different operation modes.

The following principles should be pointed out:

KARYON ‐ FP7‐288195
D2.1 ‐ First report on the KARYON architecture

© 2012 KARYON Project 44/48

KARY N

 any level of service should be a safe state, and corresponds to the operation mode that is
safe in the present operational conditions, including the available information and their
quality;

 in the case of any change of the operational condition, the new safe state (or level of
service) shall be reached, in a way compatible with safety criteria;

 the confidence on the information from outside shall be ensured to manage the
applicable level of service;

 the level of service equal to zero represents an absolutely safe state, corresponding to a
completely manual driving;

 the architectural elements that manage the level of service are not immune to failure
and, therefore, shall be treated according to functional safety development process rules.

Automatic driving service

The various functionalities that can be associated to the automatic driving service are to be
considered an evolution from the lower level of service of collision avoidance till the
cooperative driving, where the driver is only a supervisor and the vehicle is autonomous, as
illustrated in Figure 16. It is possible to associate the Level of Service at the following
functions:

 LoS 3: Cooperative automatic driving, that includes: Overtaking manoeuvre,
Platooning, Roundabout, Intersection

 LoS 2: Autonomous cruise control
 LoS 1: Collision avoidance

The Level of Service LoS 0 is the state in which the system can be positioned after a fault is
detected. This LoS is defined by means of the Hazard Analysis & Risk Assessment; a
preliminary state could be: Control function turned off, leaving the engine brake, alerting the
driver that the control function is unavailable.

Figure 16: Evolution from LoS 0 to LoS 3 for the automatic driving service.

Warning service

Also in this case the various functionalities that can be associated to the traffic warning service
are to be considered an evolution from the higher level of service of cooperative awareness till
lane departure warning function. It is possible to associate the Level of Service at the following
functions (see Figure 17):

 LoS 2: The cooperative awareness, that includes: Intersection collision warning,
Signal violation warning, Lane Change Manoeuvre, Adaptive cruise control emergency

KARYON ‐ FP7‐288195
D2.1 ‐ First report on the KARYON architecture

© 2012 KARYON Project 45/48

KARY N

brake lights, Stationary vehicle warning, Intersection management Traffic light optimal
speed advisory, Intersection management Collision Risk Warning from RSU,
Intersection management Signal violation warning

 LoS 1: Lane departure warning function

The Level of Service LoS 0 is the state in which the system can be positioned after a fault
detected. This LoS is defined by means of the Hazard Analysis & Risk Assessment, a
preliminary state could be: Warning function turned off, alerting the driver that the warning
information is unavailable

Figure 17: Evolution from LoS 0 to LoS 2 for the warning service.

6.4 Boundary	of	the	system	under	safety	analysis		

The goal of the KARYON approach is to develop a safe system that can manage the safety
critical situations caused by the unavailability of the off-board and / or on-board sensors.

Figure 18: Boundary of the service.

To guarantee the demanded system integrity, the automatic driving system needs to be fault
tolerant, reliable and safe. To set up a fault tolerant system, it is necessary to recognize faults in

KARYON ‐ FP7‐288195
D2.1 ‐ First report on the KARYON architecture

© 2012 KARYON Project 46/48

KARY N

an accurate way and quickly. This could be also realized by the plausibility checking system
implemented in the LoS management Supervisor. Based on the information quality regarding
the incoming sensor signals, it enables the controller to take adequate error handling measures,
depending on the safety relevance of the system and the severity of the fault.

The structure of the modular and scalable plausibility checking system allocated into the LoS
management Supervisor is shown in Figure 18.

KARYON ‐ FP7‐288195
D2.1 ‐ First report on the KARYON architecture

© 2012 KARYON Project 47/48

KARY N

7. Conclusions	
This document is the first deliverable of WP2 and describes initial work performed in the scope
of Task 2.1, Hybrid System Architecture. In particular, it provides a preliminary description of
the architectural approach to manage the trade off between improved performance (and higher
uncertainty) and the required safety, providing a description of the functional components in the
architecture and of their interactions, which are established through data flows. The deliverable
also provides a brief discussion on how the proposed architectural pattern addresses the
requirements established in WP1, and discusses the most relevant implications of this
architecture on other work that will need to be performed in WP3, WP4, and in Task 2.2.
Finally, the deliverable also provides a preliminary application exercise, in which the
architectural pattern was applied for concrete functionalities in the automotive domain. This
exercise will have to be further refined and extended, and this work will allow understanding if
the architectural pattern is adequately defined, or if some specific characteristics or
requirements of the concrete functionalities cannot be met without changes in the generic
architecture.

Given the preliminary nature of this document, our objective was essentially to provide an
initial and necessarily broad overview of the main ideas and definitions that are necessary to
perform other related work, namely at lower levels of abstraction. A more in-depth and
complete discussion of the KARYON architectural pattern and solutions will be provided in the
KARYON architecture deliverable (D2.3, to be delivered in March 2013).

KARYON ‐ FP7‐288195
D2.1 ‐ First report on the KARYON architecture

© 2012 KARYON Project 48/48

KARY N

References	
[1] A. Casimiro, P. Martins and P. Veríssimo. How to Build a Timely Computing Base
using Real-Time Linux. Proceedings of the 2000 IEEE International Workshop on Factory
Communication Systems (WFCS'00), pages 127–134. Porto, Portugal, September 2000.

[2] A. Casimiro, J. Kaiser and P. Veríssimo, Generic-Event Architecture: Integrating Real-
World Aspects in Event-Based Systems, Lecture Notes in Computer Science (Architecting
Dependable Systems IV), vol. 4615, pp. 287-315.

[3] M. Correia, P. Veríssimo and N. F. Neves. The design of a COTS real-time distributed
security kernel. In Proceedings of the Fourth European Dependable Computing Conference,
pages 234–252, October 2002.

[4] F. Cristian and C. Fetzer. The Timed Asynchronous Distributed System Model. IEEE
Trans. Parallel Distributed Systems, 10(6):642–657, June 1999.

[5] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial
synchrony. Journal of the ACM, 35(2):288–323, April 1988.

[6] M.J. Fischer, N.A. Lynch and M.S. Paterson. Impossibility of Distributed Consensus
with One Faulty Process. JACM, 32(2):374–382, 1985.

[7] L. Lamport, R. Shostak and M. Pease. The Byzantine Generals Problem. ACM
Transactions on Programming Languages and Systems, 4(3), 382–401. 1982.

[8] L. Lamport and N. Lynch. Distributed computing: Models and methods. Handbook of
Theoretical Computer Science, vol.B: Formal Models and Semantics. J. Van Leeuwen (Ed.),
pages 1158–1199. Elsevier Science Publishers. 1990.

[9] N. F. Neves, M. Correia and P. Veríssimo. Solving vector consensus with a wormhole.
IEEE Transactions on Parallel and Distributed Systems, 16(12):1120–1131, December 2005.

[10] H. Ortiz, A. Casimiro and P. Veríssimo. Architecture and Implementation of an
Embedded Wormhole. In Proceedings of the 2007 Symposium on Industrial Embedded Systems
(SIES'07), pages 341–344. Lisbon, Portugal, July 2007.

[11] D. Powell. Failure mode assumptions and assumption coverage. In Proceedings of the
22nd IEEE Annual International Symposium on Fault-Tolerant Computing (FTCS-22), pages
386–395, Boston, USA, July 1992.

[12] Trusted Computing Group, TPM Main, Part 1 Design Principles. Specification Version
1.2, Revision 62, 2003.

[13] P. Veríssimo and L. Rodrigues. Distributed Systems for System Architects. Kluwer
Academic Publishers, 2001.

[14] P. Veríssimo and A. Casimiro. The Timely Computing Base model and architecture.
IEEE Transactions on Computers, 51(8):916–930, 2002.

[15] P. Veríssimo. Uncertainty and predictability: Can they be reconciled? In Future
Directions in Distributed Computing, volume 2584 of Lecture Notes in Computer Science,
pages 108–113. Springer-Verlag, 2003.

[16] P. Veríssimo. Travelling through wormholes: a new look at distributed systems models.
SIGACTN: SIGACT News (ACM Special Interest Group on Algorithms and Computation
Theory), vol.37, no.1, pages 66–81, 2006.

